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We apply a low-frequency �mHz� ac pressure gradient to a sample of solid helium in order to search for a
superfluidlike response. Our results are consistent with zero supersolid flow. Through a statistical analysis of
our data, we set a bound on the rate of mass flow between two chambers, and hence the mass current density
j. At the 68% confidence level, we bound v� j /��9.6�10−4 nm /s for the mass transport velocity. In terms
of a simple model for the supersolid, we find an upper bound of 8.4�10−6 for the supersolid fraction at 25 mK,
at this same confidence level. These findings force the conclusion that the NCRI observed in the torsional
oscillator experiments is not evidence for a frequency-independent superfluidlike state. Supersolid behavior is
a frequency-dependent phenomenon, clearly evident at frequencies above 100 Hz of the torsional oscillator
experiments, but undetectably small at frequencies approaching zero.
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I. INTRODUCTION

Forty years have passed since the suggestion, by Chester,1

Andreev and Lifschitz,2 and Leggett,3 that a Bose-condensed
supersolid state might exist in solid 4He at sufficiently low
temperatures. The remarkable discovery in 2004, by Kim and
Chan �KC�,4,5 of an anomalous drop in the rotational inertia
of solid 4He in a torsional oscillator below 200 mK, provided
the first convincing evidence for the existence of the super-
solid state. The findings of KC have since been confirmed by
other experimental groups.6–9 In spite of extensive experi-
mental work and vigorous activity by the theoretical commu-
nity, the exact nature of the supersolid state remains unre-
solved at this time. A fundamental open question is whether
the supersolid state is a Bose-condensed state with superflu-
idlike properties. In this paper, we address this question ex-
perimentally by examining the low-frequency response of
the supersolid to an imposed ac pressure gradient.

KC performed an extensive series of torsional oscillator
experiments for both solid helium contained in porous media
and for bulk samples contained in cylindrical and annular
geometries. An annular geometry has the advantage of re-
stricting the range of variation in the velocity field and by
placing a blocking partition across the annulus also allows
the topology of the sample to be altered from the doubly
connected sample geometry of an open annulus to a singly
connected geometry. In a blocked annulus experiment, Kim
and Chan4 found that the magnitude of the supersolid re-
sponse was reduced to 1% of the open annulus fraction. This
blocked annulus result has also been confirmed by Rittner
and Reppy10 and provides evidence that the supersolid phe-
nomenon involves a long-range correlated flow similar to
that of superfluid 4He.

When the annulus is blocked, the supersolid fraction is
accelerated by a pressure gradient generated by the motion of
the partition. This result suggests that it might be possible to
observe a pressure-driven response in solid 4He in the tem-
perature range of the supersolid state by means other than the
torsional oscillator. In the years since the suggestion of a
supersolid state in solid 4He �1,2,3� there have been a num-
ber of unsuccessful attempts to observe pressure-driven su-

persolid flow.11–13 The majority of these experiments search
for evidence of supersolid mass flow in response to a static
pressure gradient. In a recent experiment, Day and
Beamish13 were able to set a stringent limit on possible dc
supersolid mass flow. Their apparatus consists of two cham-
bers filled with solid 4He separated by a microchannel plate.
The narrow channels in the microchannel plate serve to lock
the 4He solid and prevent, at low temperatures, plastic flow
of the solid from one chamber to the other. When the volume
of one chamber is reduced, an immediate pressure increase is
seen in the second chamber. This pressure signal is attributed
to a flexing of the microchannel plate separating the two
chambers rather than to pressure-driven mass flow. Follow-
ing the prompt pressure response, no further relaxation was
observed for time intervals as long as 20 h. This observation
allows a stringent upper bound to be placed on any dc
pressure-driven mass flow from one chamber to the other.
Presuming that any mass transport would be carried by flow
of the supersolid fraction, the limit on the mass-flow rate can
be converted to a limiting flow velocity of the supersolid
fraction. This limiting supersolid velocity will be inversely
proportional to the supersolid fraction density. For a 1% su-
persolid fraction, Day and Beamish obtain an upper bound of
1.2�10−3 nm /s on any dc supersolid flow and a maximum
displacement of 86 nm for such a flow over the 20-h-long
observation period. The failure to find evidence for long-
term dc supersolid mass transport could be expected because
we know from the blocked annulus experiments that the su-
persolid can adjust to pressure gradients on millisecond time
scales. Thus we expect the supersolid fraction to establish
pressure equilibrium almost immediately as the static pres-
sure gradient is initially imposed, and once this equilibrium
is established, no further mass transport would be expected.

Would there be an observable response to a slow ac varia-
tion in the pressure gradient? If the supersolid does have
superfluidlike properties, as might be expected for a Bose-
condensed supersolid state, we would expect to see an ac
response at low frequencies as well at torsional oscillator
frequencies. In their experiment, Day and Beamish have
searched unsuccessfully for signs of ac pressure-driven su-
persolid response in their cell. Any ac supersolid response is
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superimposed on the feed-through signal arising from the
flexing of the microchannel plate. Assuming a 1% supersolid
fraction and a limit on the superflow velocity of
2.1�10−2 nm /s, Day and Beamish find an upper limit at 0.1
Hz of 3 nm for the maximum ac displacement.

II. EXPERIMENTAL SETUP

In an attempt to improve on these results, we have re-
peated the Day-Beamish experiment with a cell designed
specifically to eliminate direct pressure feed through, and in
addition we have considerably increased the sensitivity of
the detection system. A schematic view of our cell is shown
in Fig. 1. In our design, we have replaced the microchannel
plate of the Day and Beamish design with a narrow 4-cm-
long section consisting of a narrow annular slit to provide a
connecting path of solid between two chambers. This narrow
slit serves to lock the bulk solid in place and prevent plastic
flow of the solid. The basic idea of the experiment is to
squeeze the solid in one chamber and look for a supersolid
mediated response in the second chamber. We have also in-
creased the area of the detection capacitor in the interest of
improved displacement sensitivity.

The internal spacing of the cell has been kept small to
obtain a large surface-to-volume ratio, which has been
shown in torsional oscillator experiments14 to be associated
with large supersolid fractions. The solid samples are grown
using the blocked capillary method to maximize the degree
of disorder in the sample. The cell fill line consists of 2 m of
0.1 mm internal diameter cupronickel tubing with sintered
copper heat sinks at a number of points between 4 K and the
mixing chamber of our dilution refrigerator. The 4He used in
these measurements is standard ultrapure grade commercial
4He with a nominal 3He concentration of 0.3 ppm.

A narrow channel connecting the two chambers is created
by clamping a 4 cm cylindrical rod, 3.175 mm in diameter, in
a slightly oversized hole to form an annular slit with an
average radial gap of 1.0�10−2 cm and open area,
achan=1.0�10−2 cm2. The end plates of the drive and detec-
tion chambers consist of flexible diaphragms, each with an

area of a=2.31 cm2. The zero-pressure height of the cham-
bers has been machined to be close to 2.50�10−2 cm. This
height is increased by 0.13�10−2 cm when the internal
pressure is raised to 30 bar. At this pressure the volumes of
the drive and detection chambers are estimated to be
0.0587 cm3 and the total cell volume to be 0.157 cm3. Par-
allel capacitor plates mounted on the center of each of the
diaphragms serve to monitor the displacement of the end
wall of each chamber. The separations between the plates for
the drive and detection capacitors are calculated from the
known areas of the capacitor plates and the capacitances
measured by two A-D 2500A capacitance bridges. A correc-
tion is made for the dielectric constant of the liquid helium
between the plates of the drive capacitor. The area of the
detection capacitor plates is 5.07 cm2, allowing a short-term
pressure displacement resolution of about 2�10−3 nm cor-
responding to a pressure change of a few microbar. The pres-
sure sensitivity or spring constant of the detector diaphragm,
�2=2.27�104 bar /cm, was determined by calibration at 4.2
K against an external-pressure gauge.

We apply an external force to the flexible diaphragm of
the drive chamber via a controlled variable-pressure source
of liquid helium. This driving pressure is varied by heating a
volume of liquid helium with an ac current supplied by a
high-resolution frequency synthesizer. This method has the
advantage of conveniently producing pressure swings of the
desired amplitude on the order of fractions of a bar, but un-
fortunately it was restricted in our current design to frequen-
cies below 0.1 Hz. The variable pressure generated in the
heated volume is transmitted to the experimental cell through
a liquid-filled fill line similar in construction to that used to
fill the cell. The applied liquid pressure is monitored with a
Straty-Adams pressure gauge15 at the mixing chamber �not
shown in Fig. 1�.

III. EXPERIMENTAL RESULTS

Figure 2 shows displacement of the drive and detection
diaphragms in response to a slow 2 mHz ac variation in the
external drive pressure while the cell was filled with normal-
phase liquid helium. At a pressure of 30.3 bar and a tempera-
ture of 1.90 K the liquid sample is at a point in the pressure-
temperature phase diagram close to the melting curve. The
liquid sample is sealed off by holding a section of the fill line
at a temperature below the melting curve. The displacements
of the diaphragms are monitored as changes in the separation
of the capacitor plates. Our convention has been to count an
increase in capacitor plate separation as a positive diaphragm
displacement. Thus, with an increase in the applied drive
pressure, the drive chamber diaphragm will be displaced to
the right �see Fig. 1� and the capacitor plate separation will
increase. The reduction in the total cell volume produced by
this motion of the drive diaphragm leads to an increase in the
overall cell pressure and a reduction in the capacitor spacing
on the detection side. If we assume that both diaphragms
are rigidly clamped at their edges, then the total volume,
�V, displaced by the motion the diaphragms is
�V=−�a /3��d1+d2�, where a is the area of each diaphragm
and d1 and d2 are the respective displacements of the drive

DetectionDrive Chamber

Cell

fill lineStraty Adams

Pressure

Gauges

BeCu Diaphragms

Liquid He,

p ~ 1 bar

FIG. 1. �Color� Schematic of BeCu flow cell. The total cell
volume is 0.157 cm3. Two Straty-Adams pressure gauges monitor
the pressure of the drive and detection chamber. The pressure reso-
lutions of the drive and detection capacitance gauges are 1 mbar
and 2 �bar, respectively.
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and detector diaphragms. The minus sign is a consequence of
our convention in designating diaphragm displacements. The
ratio of the displacements is �d1 /d2�=−�1+ �3V�2K /a��,
where K is the compressibility of the liquid and V is the total
volume of the liquid sample contained in the cell plus the fill
line and any of the sintered copper heat sinks between the
cell and the point where the fill line is frozen. In the case of
an incompressible fluid, K=0, and the displacement of the
diaphragms will be equal in magnitude but opposite in sign.
Liquid and solid helium, however, are both rather compress-
ible and the term �3V�2K /a��1. For the data plotted in Fig.
2, the amplitude of displacement for the drive diaphragm is
d1=1.65�10−4 cm while the detection diaphragm has a dis-
placement, d2=−2.46�10−6 cm for a liquid sample pressure
amplitude of 55.8 mbar. The ratio �d1 /d2�=−67 is in reason-
able agreement with a value calculated based on the esti-
mated of the volume of the low-temperature liquid sample, a
value for the liquid compressibility16 of 3.45�10−3 bar−1,
and measured value of the spring constant �2. The maximum
volume displaced by the motion of the drive diaphragm is
�V1= �ad1� /3=1.23�10−4 cm3. If this entire volume were
to flow back and forth through the slit between the two
chambers, the maximum flow velocity would be
vs=2�f��V /achan�=1.55 �m /s, a value below the typical
torsional oscillator critical velocity of 10 �m /s.

Although the data shown in Fig. 2 were taken in the
normal-phase liquid helium, there would be little difference
if the cell were filled with superfluid. The viscosity of the
normal fluid is small, on the order of 200 micropoise for the
given temperature and pressure, and consequently the maxi-
mum pressure drop for Poiseulle flow through the slit is neg-
ligible compared to the pressure amplitude, �P=55.8 mbar
arising from the compression of the liquid sample.

When the low-temperature system is filled with solid he-
lium, the relevant volume is now the cell volume alone, since
we do not expect any appreciable mass flow of solid through

the 0.1 mm ID fill line. In Fig. 3 we plot a typical set of drive
and detection diaphragm displacement data with the cell
filled with solid. Since the supersolid signal reaches its maxi-
mum value at the lowest temperatures, we would expect to
see the largest response in our experiment at the lowest tem-
peratures. The data set shown in this figure were taken over
a relatively short period, 40 min, at a pressure of 30 bar and
controlled at the low temperature of 20 mK. Assuming that
little mass leaves the drive chamber, the displacement ampli-
tude of the drive diaphragm, d1=1.75�10−4 cm, corre-
sponds to a pressure swing of 0.55 bar. �The compressibility
of solid helium at 30 bar pressure is K=3.1�10−3 bar−1.� If
mass transport were to take place in response to the periodic
variation in the drive pressure, we would expect to see a
correlated displacement, d2, of the detection chamber dia-
phragm as mass flows in and out of the detection chamber.
The striking feature of these data, however, in contrast to the
situation when the cell was filled with liquid, is the absence
of any signal, discernible to the eyes, above a 2�10−3 nm
noise level. We have repeated this type of measurement for a
number of solid samples formed at different pressures rang-
ing from 27 to 40 bar and for fixed temperatures ranging
from 20 to 400 mK. In no case is there any discernible indi-
cation, above noise, of a signal indicative of ac pressure-
driven mass flow between the two chambers of our cell.
Therefore, we conclude that within the resolution of the data
shown in Fig. 3, that the product, ��s /��vs is consistent with
zero, where ��s /�� is the supersolid fraction and vs is the
flow velocity of the supersolid fraction in the narrow channel
connecting the two chambers.

We now proceed to a more quantitative analysis of our
data. As an example, we shall present an analysis of a set of
a 10 h time period �2000 data points� where the cell tempera-
ture was held fixed at 25	0.2 mK and at a pressure of 30.3
bar. For this data set the mean-displacement amplitude for
the drive diaphragm is d1=0.365�10−4 cm.

As a first step, we compute the power spectra for both the
drive and the detection signals. The spectra are shown in

FIG. 2. The displacement of the drive and detection diaphragms
are shown as a function of time for a cell filled with liquid 4He. The
drive and detection displacements have a phase difference of 180°
because the drive pressure is applied to the diaphragm of the drive
chamber. The liquid pressure is 30.3 bar, the temperature is stabi-
lized at 1.90 K and the drive frequency is 2 mHz.

FIG. 3. The displacements of drive and detection diaphragms
are shown as a function of time when the cell is filled with solid
4He at a pressure of 30 bar. The cell temperature is stabilized at 20
mK and the drive frequency is 2 mHz.
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Figs. 4 and 5. The spectrum for the drive �dashed line� shows
the expected sharp peak at 2 mHz, the spectrum for the de-
tection signal �solid line� shows noise with no evidence of a
signal at 2 mHz. To produce a sharp statistical bound on the
response at 2 mHz, we divide the data into 19 segments, each
of which is four cycles long and contains 107 data points. By
looking at the 2 mHz Fourier component of the jth
subinterval, we calculate the best-fit sinusoidal curve,

d�j��t�= �Aje
i
t+Aj �e−i
t� /2, where 
 /2�=2 mHz. The am-

plitude and phase of the response during that segment is �Aj�
and arg�Aj�. We choose our origin of time so that the drive
has a phase of 0, and we expect the response to have a phase
of 180. By construction, this sets the drive amplitude to be
real and positive, while we expect the response to be real and
negative. Figure 4 shows a scatter plot of the coefficients of
the drive �top� and response �bottom�. We find that the mean
amplitude of the response is �A�=8.0�10−5 nm and the
mean phase is �=75°. �Though since the standard error of
the mean is larger than �A�, this phase has no significance.�
The standard deviation of these 19 segments is
�=7.8�10−4 nm, yielding a standard error of the mean of
�e=1.8�10−4 nm. The latter is the statistical estimate of
how much the calculated mean from these 19 segments is
expected to differ from the mean of an infinite number of
cycles. Statistically, our result is consistent with zero re-
sponse. More precisely, we bound the amplitude to be less
than �A�+�e=2.6�10−4 nm, with roughly a 68% confi-
dence. The value of �e=1.8�10−4 nm, obtained for this fit,
would correspond to pressure change, within the detection
chamber of �P2=4.1�10−7 bar, which could arise from the
flow an additional mass, m=��K�P2V2�, into the volume V2
of the detection chamber. The maximum flow velocity in the
channel, v=
��K�P2V2� /achan�= ��s /��vs. At the frequency

 and for a solid compressibility at 30 bar of
3.1�10−3 bar−1, v=9.6�10−4 nm /s. Since v= ��s /��vs,
one must specify a supersolid fraction to obtain the super-
solid flow velocity, for instance, for a supersolid fraction of
1%, the one �e bound would correspond a superflow velocity
of 9.6�10−2 nm /s. If the supersolid fraction, however, were
to flow through the channel at 10 �m /s, the typical critical
velocity seen in the torsional oscillator experiments, then the
supersolid fraction would be no larger than 2.4�10−8, a
value almost four orders smaller than the minimum value,
��s /��=1.5�10−4, reported for torsional oscillator
experiments.17

With additional model assumptions, one can obtain an
estimate for the supersolid fraction corresponding to a given
displacement of the detection diaphragm without a direct ref-
erence to the flow velocity. In this analysis we shall assume
that the elastic modulus, M =K−1, of the solid can be consid-
ered as the sum of two parts, a contribution, ��s /��K−1, cor-
responding to the supersolid fraction and a contribution,
�1− ��s /���K−1, from the remaining solid. We shall also as-
sume that the partial pressure of the supersolid fraction can
achieve equilibrium independent of pressure gradients that
might exist in the nonsupersolid fraction. These are the con-
ditions that would hold for a pure superfluid contained in a
compressible porous medium.

A slow displacement of the drive diaphragm, d1 will pro-
duce an overall change, �V=a�d1+d2� /3 in the cell volume,
with a corresponding change in the partial pressure of the
supersolid component. The displacement, d2, of the detection
diaphragm will produce a change in the partial pressure of
the nonsupersolid fraction in the detection chamber. The
total-pressure change, �P2=−�2d2, in the detection chamber
is the sum of the two terms corresponding to the partial pres-
sure changes in the supersolid and nonsupersolid fractions,
�P2= ���s /���V /V�+ �1−�s /���V2 /V2�� /K, yielding
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FIG. 4. �Color online� Spectral density of drive �dashed line�
and detection amplitudes �solid line� for 77 cycles. The cell pressure
is 30.3 bar and the temperature is stabilized at 25 mK.
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FIG. 5. �Color online� Complex amplitude of drive �top� and
detector �bottom�. Small �red� dots represent the best-fit amplitude
and phase of the motion of the diaphragm, d=R�A expi
t�,in the
drive/detection chamber at 
 /2�=2 mHz over a four cycle period.
The larger circle around each dot represents the statistical estimate
of the standard error in A. The large black dot near the origin
represents the average of the 19 data points. The size of the black
dot corresponds to the standard error in the mean, and represents the
region over which one has a 68% confidence that after an infinite
number of cycles the mean would be in that region. As is apparent
from the clustering of the drive amplitude along the positive real
axis, the origin of time is chosen so that the mean drive signal has
a phase of 0.
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�P2 =
a�d1 + d2�

3VK

�s

�
+

ad2

3V2K
�1 −

�s

�
� = − �2d2. �1�

The ratio of the diaphragm displacements is then

d1

d2
= − 	1 + � �

�s
− 1� V

V2
+

�

�s

3VK�2

a

 . �2�

Solving for the supersolid fraction we have

�s

�
=

V

V2
+

3VK�2

a

V

V2
− 1 −

d1

d2

. �3�

In interpreting this equation, one should recall that
d1 /d2�0. Moreover, given that �d2�� �d1�, the first two terms
in the denominator can effectively be ignored. If we set
�d1 /d2�=−�d1 /�e�=−2.03�106 then ��s /��=8.4�10−6.
This value for the supersolid fraction is more than an order
of magnitude smaller than a minimum value of 1.6�10−4

reported for torsional oscillator experiments.17

IV. COMPARISON WITH OTHER EXPERIMENTS

In an earlier experiment, Aoki et al.8 explored the fre-
quency dependence of the supersolid response for an open
cylindrical sample in a two-frequency �496 and 1173 Hz�
torsional oscillator. Although they found a small reduction in
the supersolid signal for the low-frequency mode at tempera-
tures above 35 mK, they found no difference for tempera-
tures below this value. In contrast, in more recent experi-
ments with an annular two-frequency cell, the Kojima and
co-workers18 found a 10% reduction for the low-frequency
mode that persists to their lowest temperature. This may be
an important finding and points to the need to extend tor-
sional oscillator measurements to even lower frequencies. An
important challenge for the future will be to devise experi-
ments that span the 105 range between the lowest torsional
oscillator experiments �185 Hz�7 and the millihertz measure-
ments reported here.

In contrast to the absence of evidence for pressure-driven
supersolid flow a zero or low frequencies in the experiments
discussed thus far, there are two positive reports of mass
transport between two regions occupied by liquid through an
intervening region containing solid 4He. The first of these is
an experiment on the melting curve by Sasaki et al.19 at
LÉcole Normal Supériere Paris. Gravitationally driven flow
was occasionally observed between two different regions of
liquid helium separated by an intervening region of solid. In
the second of these experiments, reported by Ray and
Hallock20 at the University of Massachusetts, mass transport
was observed through a solid region at pressures a few bar
above the melting curve. In their experiment, Ray and Hal-
lock **taken advantage of the fact that helium can remain in
the fluid phase within the pores of Vycor glass at pressures
well above the melting curve. Fluid is introduced and ex-
tracted from the sample cell through two Vycor rods. The
mass transport observed in both of these experiments is rela-
tively pressure independent as would be characteristic of su-

perflow limited by a critical velocity. A second feature of
these experiments is the observation of the mass flow at tem-
peratures well above the temperature region of supersolid
behavior as observed in torsional oscillator measurements.

How then can we reconcile our findings with the positive
results of the Paris and Massachusetts groups? There has
been a suggestion by Sasaki et al.,21 that the mass transport
observed on or near the melting curve may, in fact, be the
flow of ordinary superfluid 4He through a connected network
of channels formed at the grain boundaries of polycrystalline
samples or at the wall of the cell. Flow along grain bound-
aries or dislocation lines might account for the mass trans-
port in the Massachusetts experiments. An alternate nonsu-
perfluid explanation might be based on the frost heave
phenomenon. Growth of the solid can occur at the fluid-solid
interface at the surface of the Vycor rod when the pressure of
the superfluid in this rod is raised above the equilibrium
value for the bulk solid. Extrusion of this newly formed solid
into the bulk region would produce pressure gradients, elas-
tic displacement, and possibly plastic flow of the bulk result-
ing in mass transport. The rate of such growth would be
expected to be limited by thermal conduction as the heat of
fusion enters and leaves the liquid-solid interface and would
be nearly constant in time, thus the frost heave mechanism
could mimic the constant mass flow expected for critical
velocity superflow. If these proposed mechanisms were to
provide correct explanations for the Paris and UMass obser-
vations, then the mass flow observed in these two experi-
ments is not relevant to the supersolid phenomenon.

V. DISCUSSION

We briefly discuss the various theories of supersolidity,
and how our observations dramatically reduce the number of
viable scenarios. The first class of theories are based on
Bose-Einstein condensation of vacancies. The simplest such
theories1,2 consider a dilute gas of vacancies in an otherwise
perfect crystal, while more sophisticated models have these
vacancies living in extended defects.22–26 A large amount of
numerical27–34 and theoretical35–41 work has been devoted to
exploring these models, both from phenomenological and
microscopic perspectives. On a macroscopic scale, most of
these models are equivalent to an effective description in
terms of a superfluid in a porous medium. Our observations,
and analysis, effectively rule out any such description.

The second class of theories are purely mechanical in na-
ture. For example, Yoo and Dorsey42 analyzed the possibility
that a viscoelastic model could account for the torsional os-
cillator measurements, finding that they could account for the
dissipation in the torsional oscillators, but not for the fre-
quency shift. Both Andreev43 and Balatsky et al.24 argued for
glassy models. Similarly, Nussinov et al.44 suggested that the
freezing in of glassy regions could be responsible for most of
the observations, but further experimental studies have cast
doubt on that explanation.30 These mechanical models typi-
cally lead to strong frequency dependancies and can readily
be made consistent with our observations. Regardless of their
virtues, it is hard to reconcile a nonsuperfluid scenario with
the blocked annulus experiments, but they are undoubtedly
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responsible for similar observations in solid hydrogen30

Recently Hunt et al.45 proposed a hybrid scenario where
superfluidity is controlled by the dynamics of some glassy
degrees of freedom. While largely phenomonological, this
model accommodates both strong frequency dependance
�from the glassy degrees of freedom� and the ability to sup-
port supercurrents, and may be consistent with our observa-
tions. In a similar vein, Anderson46 has proposed that super-
solidity might be due to a vortex liquid state. Shimizu et al.47

have interpreted their torsional oscillator measurements in
this manner, and Chan48 **argued that the measurements of
Aoki et al.8 could also be explained by this theory. A vortex
liquid would have very pronounced frequency dependence in
its response, with vanishing superfluid response at zero fre-
quency. This would be consistent with our observations.

VI. CONCLUSION

Based on the null result of our ac pressure-driven flow
measurements and the earlier results of the Alberta group, we

conclude that the supersolid phenomenon does not obey the
conventional hydrodynamics of a superfluid, but rather ex-
hibits frequency-dependent behavior, with strong supersolid
signals observable at typical torsional oscillator frequencies
between a few hundred and a few thousands of hertz, but is
absent or unobservable at zero or low frequencies.
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