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With the implementation of a relativistic Korringa-Kohn-Rostoker Green’s function and band-structure
method, we analyze the spin-expectation value of the electron states on the Fermi surface of nonmagnetic as
well as magnetic metals. It is shown that for relatively light elements such as Cu the spin states are well
defined. A separation of all electron states to “up” and “down” spin-polarized states can be done even in the
case of quite heavy but monovalent elements such as Au. In contrast, for heavy polyvalent metals such as Pt,
the expectation value of the spin operator can be close to zero in large regions of the Fermi surface. In this case
the nonrelativistic language of well-defined “spin-up” and “spin-down” states is not valid anymore. For mag-
netic materials, the relativistic Fermi surfaces change their topology with respect to the nonrelativistic majority
and minority sheets because of spin-orbit driven avoided crossings of the bands. As a result, regions with
vanishing spin polarization appear.
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I. INTRODUCTION

The spin degree of freedom of an electron has attracted a
lot of attention over the last years.1–6 Since the field of spin-
tronics opened new perspectives in data storage and informa-
tion technology. After the discovery of giant
magnetoresistance,7,8 tunneling magnetoresistance,9–12 and
current-induced switching,13–16 phenomena such as spin Hall
effect1,4,17,18 and anomalous Hall effect19–22 attracted atten-
tion. The latter effects are caused by spin-orbit interaction.
Thus, a detailed insight into the microscopic origin requires a
relativistic description of the electron system.

While the intrinsic contribution to the anomalous Hall
conductivity was discussed originally in terms of an integral
of the Berry curvature over all occupied states, it was later
shown that for low temperatures this quantity can be ex-
pressed as a Fermi-surface property.23,24 The same holds for
the spin Hall effect in nonmagnetic materials. For an under-
standing of these effects the spin degree of freedom of an
electron state is an important quantity. Experimentally, the
spin orientation can be changed with respect to the lattice
structure either by spin injection from a ferromagnet into a
nonmagnetic material or by an external magnetic field. As a
consequence spin-flip scattering is observed to be
anisotropic.25 To account for related effects, we present a
method to analyze the spin-expectation value of the elec-
tronic states at the Fermi surface within a fully relativistic
�FR� treatment.

A further motivation for our work is the existence of so-
called spin hot spots. They are characterized by zero spin
polarization and occur at the Fermi surface.26 Level cross-
ings at the zone boundary or at high-symmetry points, or
lines of accidental degeneracy are typical locations on the
Fermi surface. Spin hot spots exist usually for polyvalent
metals such as Al, Pd, Mg, and Be and cause an unexpected
fast spin relaxation.26

For magnetic materials the spin hot spots are caused by
spin-orbit driven hybridization points, i.e., k points with

avoided crossing. That is, the considered states would be
degenerate in a nonrelativistic �NR� treatment, “spin-up” and
“spin-down” bands cross each other. Spin-orbit interaction
forces a splitting of the two states and the spin polarization
vanishes at the splitting points. If such points occur close to
the Fermi level, they can enhance spin-flip scattering by sev-
eral orders of magnitude and cause ultrafast
demagnetization.27 For a theoretical study of this problem, it
is very desirable to know the spin-mixing parameter of the
electron states in the vicinity of the Fermi level.28

The aim of this paper is to introduce our ab initio method
that provides a scheme for the calculation of the relativistic
band structure and wave functions. In the application of this
method, we present relativistic Fermi surfaces and consider
the spin polarization of the corresponding electronic states.

We start with a short introduction of the relativistic
Korringa-Kohn-Rostoker �KKR� band-structure theory29–38

and discuss the treatment of degenerate bands in a nonmag-
netic system with space inversion symmetry. For the Fermi-
surface calculation, we present Cu, Au, and Pt as nonmag-
netic and Fe as magnetic examples. Different spin-mixing
parameters obtained for several materials will be discussed in
detail.

II. METHOD

For the self-consistent procedure, we use a screened
KKR-Green’s function method,39,40 generalized
relativistically.35,38 It is based on the density-functional
theory in the local spin-density approximation with the pa-
rametrization of Vosko et al.41 The magnetic moments are
forced to be collinear. An angular momentum cutoff lmax=3
is used for the Green’s function expansion. The relativistic
Kohn-Sham-Dirac equation

Ĥ�r��nk�r� = Wn�k��nk�r� �1�

with the Hamiltonian
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Ĥ�r� =
�

i
c�̂�r + Î4Vef f�r� + �̂� · Bef f�r� + mc2�̂ �2�

and the 4�4 matrices

�̂ = � 0 �

� 0 �, �̂ = � Î2 0

0 − Î2

�, Î4 = � Î2 0

0 Î2

� �3�

is solved. Here Î2 is the 2�2 unit matrix, n is the band
index, and k is the Bloch vector. First we use the KKR-
Green’s function method to obtain the scalar potential Vef f�r�
and the vector of the effective magnetic field Bef f�r� self-
consistently. Then, the KKR band-structure method is ap-
plied to compute the electron energy spectrum

Wn�k� = En�k� + mc2. �4�

The band structure En�k� is calculated on the real energy axis
with an angular momentum cutoff lmax=3. The cluster used
to calculate the screened structure constants contained at
least 225 atoms depending on the crystal structure.

We have different options to analyze the influence of rela-
tivistic effects. First of all, the results of the FR calculation
can be compared with the ones obtained from the NR equa-
tion. In addition, in the fully relativistic calculation, the spin-
orbit interaction can be scaled to zero.42 This corresponds to
the so-called scalar-relativistic approximation �SRA�. The
scaling of spin-orbit coupling can be performed by a continu-
ous variable x. Calculations without scaling �FR�x=1�� and
with scaling to zero �FR�x=0�� are discussed, respectively.

The relativistic band-structure calculations are performed
analogously to the NR case.43 However, the wave functions
are expanded now into spin-angular functions �Q as38

�nk�r� = �
Q

�
Q�

aQ�
n �k�� gQQ��r��Q�r̂�

ifQQ��r��Q̄�r̂�
� , �5�

where Q= �	
	 and Q̄= �−	
	. The solutions of the radial
differential equation in the atomic sphere approximation for
the effective potential are gQQ��r� for the large and fQQ��r�
for the small component, respectively. The band structure
En�k� is evaluated from the secular KKR equation

det
Ĝ�k,E� − ��t̂�E��−1
 = 0 �6�

with the screened structural Green’s function Ĝ�k ,E� and the
difference of the single-site t matrices �t̂�E�= t̂− t̂r with t̂r
being the t matrix of the reference system formed by repul-
sive potential wells. The expansion coefficients aQ�

n �k� are
calculated from the KKR eigenvalue problem

�
Q�

�GQQ��k,En� − ��t−1�En��QQ��cQ�
n �k� = 0 �7�

via

aQ
n �k� = �

Q�

��t−1�En��QQ�cQ�
n �k� . �8�

In the case of a nonmagnetic crystal with inversion symme-
try every k state is twofold degenerate.44,45 Let us label the

two orthonormal wave functions corresponding to that de-
generacy as 
�k

1� and 
�k
2�. All linear combinations of these

functions are also solutions at the same energy En�k�. In the
nonrelativistic case one would associate them with spin-up
and spin-down states relative to an arbitrary quantization
axis. For the relativistic treatment we have to define a quan-
tization axis. In an experimental situation, this axis can be
given by a ferromagnet used for injection of spin-polarized
electrons. For a theoretical consideration, we can choose, for
instance, the z direction as the quantization axis. Then, we
apply the following unitary transformation:


�k
3� = c1
�k

1� + c2
�k
2� ,


�k
4� = − c2

�
�k
1� + c1

�
�k
2� �9�

with 
c1
2+ 
c2
2=1. Here the coefficients c1 and c2 should
fulfill the conditions of spin alignment along z direction for
the two new states

��k
3
�̂�x
�k

3� = ��k
3
�̂�y
�k

3� = 0,

��k
4
�̂�x
�k

4� = ��k
4
�̂�y
�k

4� = 0. �10�

In fact, the upper conditions automatically provide the lower
one in Eq. �10�. Explicit expressions for the coefficients c1
and c2 are given in the Appendix. The normalization

��k
3
�k

3� = ��k
4
�k

4� = 1 �11�

and the orthogonality

��k
3
�k

4� = 0 �12�

are conserved under the unitary transformation in Eq. �9�.
The choice of the quantization axis in z direction is not
unique and any arbitrary direction can be chosen. For the
further discussion of the results the expectation value of the
z component of the spin with the transformed wave functions

Pk = ��k
3
�̂�z
�k

3� = − ��k
4
�̂�z
�k

4� �13�

will be referred to as spin polarization. For a clear interpre-
tation, as what follows, we shall label the states constructed
from the degenerate band with Pk0 by 
�k

+� and those with
Pk�0 by 
�k

−�. In the nonrelativistic case �without spin-orbit
coupling� the two states simplify to the degenerate spin-up

�k

+�= 
�k ,↑� and spin-down states 
�k
−�= 
�k ,↓�.

III. RESULTS

A. Band structure

First, we present the band-structure calculations to show
that our relativistic code works properly. Pt is chosen as a
nonmagnetic example since the large atomic number leads to
significant relativistic effects in the electronic structure. Fig-
ure 1 shows the relativistic band structure of Pt, in compari-
son to a nonrelativistic approximation which fails for such a
heavy element. The electronic structures obtained with the
two approaches differ strongly over the whole Brillouin
zone. Our relativistic results are in very good agreement to
earlier calculations.46
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To illuminate the origin of changes in the band structure
going from NR to the FR calculation, we perform the FR
�x=0� calculation. The results are presented in Fig. 2. Espe-
cially, the flat bands are affected and the degeneracy at sym-
metry points is lifted by the spin-orbit coupling, whereas the
band bottom at the � point is correctly reproduced within
SRA �FR�x=0��.

In contrast, the band structure of Fe shown in Fig. 3 is
only slightly affected by relativistic effects since Fe is a light
element in comparison to Pt. However, the changes are im-
portant because some degeneracies are lifted leading to
avoided crossings of former majority and minority
bands.46–48 It causes a mixing of bands which were well
separated with respect to the spin in the nonrelativistic cal-
culation. This result is especially important for the topology
of the Fermi surface and the spin-polarization analysis in the
following section.

B. Fermi surface

Here we present the relativistic Fermi surfaces of Cu, Au,
Pt, and Fe with the spin polarization of the electronic states.

Let us first analyze the polarization of the nonmagnetic
Fermi surfaces. The quantization axis is defined by the trans-
formation in Eqs. �9� and �10� explained in Sec. II. The po-
larization of 
�k

+� states only is shown in Fig. 4. A figure for

�k

−� states would look the same but with opposite sign. For
the monovalent metals Au and Cu the band at the Fermi level

FIG. 1. �Color online� Band structure of Pt from the fully rela-
tivistic �gray, red� and the nonrelativistic �black� calculation.

FIG. 2. �Color online� Band structure of Pt from the fully rela-
tivistic �gray, red� and the relativistic with the spin-orbit coupling
scaled to zero �black� calculation.

FIG. 3. �Color online� Calculated fully relativistic band structure
of bcc Fe. The small inset shows a comparison to the calculation
with the spin-orbit coupling scaled to zero �x=0�. The spin-orbit
interaction leads to avoided crossings.

(b)(a)

(c) (d)

FIG. 4. �Color online� Calculated relativistic Fermi surface of
Cu �upper left�, Au �upper right�, and Pt �lower left: nineth band and

lower right: 11th band�, and the expectation values of �̂�z for the

�k

+� states are indicated as color code. Note the different scale for
Cu and Au in comparison to Pt.
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is shown. Pt, which is a polyvalent metal, exhibits a very
strong influence of the spin-orbit coupling that can be seen
from the shown bands with small spin polarization in large
regions of k space. All polarization values between 0 and +1
for the 
�k

+� states are obtained for Pt. The effect is much
weaker for Cu and even for Au. Notice the different scales in
Fig. 4. It is important to mention that the symmetry of the
spin polarization P is lower than the symmetry of the Fermi
surface. The spin degree of freedom is coupled to the lattice
because of spin-orbit interaction. The operator �̂� does not
commute with the relativistic Hamiltonian of Eq. �2� and the
chosen quantization axis is reflected in the symmetry. If the
transformation is applied using the quantization axis along x,
the pictures in Fig. 4 would be rotated by 90° around y axis.

There are two reasons why the influence of the spin-orbit
coupling is increased. First, Au and Pt are heavier than Cu
with atomic numbers of Z=79 and Z=78 in comparison to
Z=29. Since the spin-orbit coupling strength is proportional
to Z, the effect in Pt and Au is stronger. Second, the band
structure affects directly the strength of the spin mixing. As it
was discussed in Ref. 26, the spin polarization in regions
where two bands are close to each other can be approxi-
mately written as P=� /�2+4VSO

2 . This expression is based
on the consideration of a two-level system with the spin-orbit
interaction as a perturbation, where � is a band separation
and VSO is some effective spin-orbit interaction. It is evident
that for k points with small energetic separation of a few
bands, small spin polarizations are obtained. Especially, if
certain k points have degeneracy ��=0� in the nonrelativistic
case, the spin polarization vanishes for them.

For example, a degeneracy is lifted close to the Fermi
energy at the X point of Pt �Fig. 2�. This leads to the spin
polarization P close to zero at the Fermi surface �Fig. 4,
ninth band�. The same holds for the L point of the 11th band
�compare Figs. 2 and 4�. In the literature other examples
such as Al �Ref. 26� and Co �Ref. 27� are discussed with
special emphasis on the influence on experimental results.
Especially, spin-flip scattering rates can be strongly influ-
enced by this effect.

The dominant bands for Fe in a relativistic calculation are
shown in Fig. 5, where the spin polarization is given as color
code. The calculated Fermi surface is in very good agree-
ment to results of Wang et al.24 We obtain the same bands
�5–10� but only four bands �7–10� are shown here. Since
only very small pockets are formed by the bands 5 and 6,
they are skipped for further discussion. From the picture of
spin polarization, one can see that the nineth band is domi-

nated by electrons with ��̂�z��1 and the tenth band by

��̂�z��−1 only. This is obvious from a comparison to the
Fermi surface of a nonrelativistic calculation shown in Fig.
6. The sixth band of the majority electrons is definitely re-
lated to the nineth band of the relativistic calculation. The
same holds for the fourth minority band in Fig. 6 and the
tenth band in Fig. 5. Since Fe is still a relatively light ele-
ment, the relativistic treatment gives absolute values of the
spin polarization close to the one �namely, P=1� obtained by
the nonrelativistic approach with well-defined spin-up and
spin-down states. For the bands 7 and 8 the result is different
since they are mixtures of the fifth majority and the third

minority band. In a nonrelativistic calculation both bands are
well separated by the spin quantum number. Including rela-
tivistic effects, the spin is not any more conserved and the
bands intermix. It is an important change that should influ-

(b)(a)

(c) (d)

FIG. 5. �Color online� Calculated relativistic Fermi surface for

the bands 7–10 of bcc Fe. The expectation values of the �̂�z opera-
tor are given as color code.

(b)(a)

(c) (d)

FIG. 6. �Color online� Calculated nonrelativistic Fermi surface
of bcc Fe �upper left: fifth majority band, upper right: third minor-
ity, lower left: sixth majority band, and lower right: fourth minority
band�.
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ence spin sensitive measurements. Values close to zero are
obtained in small regions where the spin polarization
changes sign. These states are complete mixtures of spin-up
and spin-down states. For special symmetry lines this effect
was discussed by Ackermann et al.49 They have found the

transition from spin-expectation value ��̂�z��1 to ��̂�z�
�−1 at anticrossing points in �-H direction of Fe. However,
their discussion was not focused on the k points at the Fermi
level which are the important states for the spin-dependent
electronic transport.

To compare the effect of the spin-orbit coupling in differ-
ent materials, a histogram of the k-dependent spin-mixing
parameter �1− 
Pk
� is shown in Fig. 7 ���P� is the probability
to find states at the Fermi level with the polarization P� for
Li, Mg, Al, Fe, Cu, Pt, and Au. Here we introduce k as a
combined index for the band number n and the crystal mo-
mentum k. Li, Cu, and Au are examples with only one band
at the Fermi level far from points of degeneracy. The distri-
butions of ��P� are very narrow for these three materials and
mainly shifted by the difference in the atomic number. In
contrast, the distributions for Mg, Al, Fe, and Pt are very
broad with a linear slope in the double-logarithmic plot. In
the case of the light elements Mg and Al, spin-mixing pa-
rameters comparable to Cu are possible. It has two reasons as
explained by Fabian and Das Sarma.26 First, Fermi-surface
sheets are close to the Brillouin-zone boundaries that in-
creases the spin mixing. Second, it is due to the crossing of
bands �accidental degeneracy� at the Fermi level which leads
to an increase in the spin-orbit coupling strength. As shown
in Ref. 26 spin-mixing parameters up to unity can be re-
solved, if a very fine k mesh is used around the hot spots
where the degeneracy is lifted. However, these points are
statistically irrelevant and do not contribute significantly to

Fermi-surface averages. The slope of the probability ampli-
tude ��P� with the long tail is similar for Al and Mg and can
explain a special behavior of Al and Mg in conduction
electron-spin-resonance experiments.26 For the understand-
ing it is instructive to compare also Cu with Fe and Au with
Pt. In both cases the atomic number Z is very similar for the
two compared materials. Due to the multisheeted Fermi sur-
face of Fe and Pt with several lifted degeneracies, the spin
mixing parameter is strongly enhanced and the distribution is
broadened. This result shows that for Fe similar effects as
discussed for Co by Pickel et al.27 should be measurable.
They found that the spin hot spots increase the spin-
relaxation process drastically.

Figure 7 reflects perfectly the situation with the assump-
tion of well-defined spin-up and spin-down states. For light
elements with a simple Fermi surface such as Li, the assump-
tion works fine. That is quite reasonable even for Cu. In
contrast, it is already questionable to assume well-defined
spin states in the case of heavy materials such as Pt or poly-
valent light materials such as Al. The averaged spin-mixing
parameters are summarized in Table I. For Fe and Cu, the
elements with comparable atomic numbers, the averaged
spin mixing parameters differ by a factor of 10. It is caused
by the avoided crossings of bands in Fe. For Pt and Au a
similar behavior is obvious. The present results for the aver-
aged spin mixing parameters of Fe, Cu, and Au are in good
agreement with similar calculations published recently.28

IV. CONCLUSION

We present the implementation of relativistic band struc-
ture, Fermi surface, and wave-function calculations in the
relativistic screened KKR method. By means of these quan-
tities, the spin polarization on the Fermi surface of several
metals is discussed. Such information is important for a the-
oretical analysis of spin and electronic transports. It is shown
that for monovalent metals such as Li, Cu, and Au, the “up”
and “down” spin-polarized states are well defined for all k
points on the Fermi surface. Whereas for polyvalent materi-
als such as Mg, Al, Fe, and Pt, electron states with zero spin
polarization exist. The effect is drastic in the case of heavy
elements where large regions with vanishing spin polariza-
tion exist. As an additional mechanism, spin hot spots occur
for magnetic materials such as Fe at the avoided crossing
points of the exchange-split bands. For such materials it can
be essential to take relativistic effects into account for a
proper description of spin-dependent phenomena. In addi-
tion, an appropriate method to treat the spin polarization of
degenerate bands in nonmagnetic materials is proposed.
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�k for dif-
ferent metals �scaled by a factor of 103�.

Li Mg Al Fe Cu Pt Au

0.005 0.049 0.083 49 3 118 60
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APPENDIX: TRANSFORMATION TO A GLOBAL
QUANTIZATION AXIS

In order to apply the transformation given by Eqs. �9� and
�10�, we need to calculate matrix elements such as

��nk
�̂�z
�n�k�

= − �
	�
�

�
	�
�

a	�
�
n� �k�a	�
�

n� �k�

� �
	

�� 2


2	 + 1
�� g	
;	�
�

� �r�g	
;	�
��r�r2dr

+
2


2	 − 1
� f	
;	�
�

� �r�f	
;	�
��r�r2dr

+1 − � 2


2	 + 1
�2� g	
;	�
�

� �r�g−	−1,
;	�
��r�r2dr

−1 − � 2


2	 − 1
�2� f	
;	�
�

� �r�f−	+1,
;	�
��r�r2dr� ,

�A1�

��nk
�̂�+
�n�k�

= − �
	�
�

�
	�
�

a	�
�
n� �k�a	�
�

n� �k��
	

�	2 − 1/4 − 
�
 − 1�

� � 2

2	 + 1
� g	
;	�
�

� �r�g	
−1;	�
��r�r2dr

+
2

2	 − 1
� f	
;	�
�

� �r�f	
−1;	�
��r�r2dr�
+

�2	 + 1 − 2
��2	 + 3 − 2
�
2	 + 1

�� g	
;	�
�
� �r�g−	−1,
−1;	�
��r�r2dr

+
�2	 − 1 + 2
��2	 − 3 + 2
�

2	 − 1

�� f	
;	�
�
� �r�f−	+1,
−1;	�
��r�r2dr� , �A2�

and

��nk
�̂�−
�n�k�

= − �
	�
�

�
	�
�

a	�
�
n� �k�a	�
�

n� �k��
	


��	2 − 1/4 − 
�
 + 1�

� � 2

2	 + 1
� g	
;	�
�

� �r�g	
+1;	�
��r�r2dr

+
2

2	 − 1
� f	
;	�
�

� �r�f	
+1;	�
��r�r2dr�
−

�2	 + 1 + 2
��2	 + 3 + 2
�
2	 + 1

�� g	
;	�
�
� �r�g−	−1,
+1;	�
��r�r2dr

−
�2	 − 1 − 2
��2	 − 3 − 2
�

2	 − 1

�� f	
;	�
�
� �r�f−	+1,
+1;	�
��r�r2dr� . �A3�

The expressions above are written in a general form valid for
nonmagnetic as well as magnetic systems. Actually, in the
nonmagnetic case, they can be simplified due to the depen-
dence of the radial solutions on 	 only.38 Thus, with n�=n in
Eq. ��A1�, we have the expression for the spin polarization
used in our calculations.

The implementation of the ladder operators �+=�x+ i�y
and �−=�x− i�y in Eqs. ��A2� and �A3� provides us an easier
way for dealing with the conditions given by Eq. �10�. Fi-
nally, we can write the coefficients of the transformation in
Eqs. �9� and �10� in the following form:

c1 =
1
2
1 +


a


a
2 + 4
d
2

�A4�

and

c2 = − � 
a

a
� d2


a
2 + 4
d
2 + 
a

a
2 + 4
d
2
, �A5�

where the parameters a and d are given by

a = 2i Im���k
1
�̂�y
�k

2���k
2
�̂�x
�k

1�	 �A6�

and

d = ��k
2
�̂�x
�k

1���k
1
�̂�y
�k

1� − ��k
2
�̂�y
�k

1���k
1
�̂�x
�k

1� .

�A7�

Here we use c1= 
c1
 as the choice of an arbitrary phase,
which does not influence the results.
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