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Motivated by recent interest in quasi-one-dimensional compound CaV2O4, we study the ground states of a
spin-orbital chain characterized by an Ising-like orbital Hamiltonian and frustrated interactions between S=1
spins. The on-site spin-orbit interaction and the Jahn-Teller effect compete with intersite superexchange leading
to a rich phase diagram in which an antiferro-orbital phase is separated from the orbital paramagnet by a
continuous Ising transition. Two distinct spin liquids depending on the underlying orbital order are found in the
limit of small spin-orbit coupling. In the opposite limit, the zigzag chain behaves as a spin-2 chain with Ising
anisotropy. The implications for CaV2O4 are discussed.
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Orbital degrees of freedom have been shown to play an
important role in understanding the electronic and magnetic
properties of transition metal oxides.1 This is particularly so
for frustrated magnets with partially filled orbitals. A well-
studied case is vanadium spinels AV2O4 where the A-site
sublattice is occupied by divalent ions such as Zn2+ or
Mn2+.2,3 The magnetic V3+ ions in spinel form a pyrochlore
lattice. It is known that geometrical frustration of classical
spins on such a lattice precludes simple Néel ordering and
gives rise to a highly degenerate ground state. Orbital order-
ing in these compounds partially relieves the frustration by
creating disparities in nearest-neighbor exchange constant,
hence setting the stage for magnetic ordering at lower
temperatures.4,5

In this Rapid Communication, we investigate the physics
of frustrated vanadium chains in which the interplay of geo-
metrical frustration, spin-orbital couplings, Jahn-Teller �JT�
effect, and enhanced quantum fluctuations leads to a rich
phase diagram. Our work is partly motivated by an attempt
to understand another vanadium compound CaV2O4, which
at room temperature crystallizes in the orthorhombic
calcium-ferrite structure �space group Pnam�.6–10 Contrary
to its spinel cousins, V3+ ions in CaV2O4 are arranged in
zigzag chains of edge-sharing VO6 octahedra �Fig. 1�. Anti-
ferromagnetic interaction on zigzag chains consisting of tri-
angular loops is subject to geometrical frustration as well.
The rather weak and frustrated interchain couplings make the
vanadium chains quasi-one-dimensional �quasi-1D� systems
susceptible to quantum fluctuations. Couplings of vanadium
orbitals to spins and phonons add yet another dimension to
the intriguing physics of zigzag chains.

In CaV2O4, the zigzag geometry results in a spin-1 chain
with comparable nearest and next-nearest-neighbor interac-
tions. Combined with the observation that the 3d2 configu-
ration of V3+ ions tend to have an easy-plane anisotropy,10

the quasi-1D compound CaV2O4 has been a favorable can-
didate for the long-sought chiral spin liquid where a long-
range chiral order coexists with algebraically decaying spin
correlations.10,11 However, as first pointed out by Pieper
et al.,8 orbital degeneracy in this compound drastically
changes the above picture. Since the t2g levels are split into a
singlet and a doublet due to a flattened VO6 octahedron, with
the low-energy singlet always occupied, a double degeneracy
remains for the other electron. The orbital degrees of free-
dom in V3+ ion is thus described by an Ising-like variable.

Recent experimental studies on CaV2O4 seem to rule out
a possible chiral liquid phase as well. A structural transition
at Ts�141 K reduces the crystal symmetry to monoclinic
P21 /n.8,9 It was suggested in Ref. 8 that the simultaneous
orbital ordering relieves the magnetic frustration of zigzag
chains. As the interchain frustration is also lifted by the lat-
tice distortion, a three-dimensional Néel order sets in at
TN�71 K. The collinear spins are parallel to the crystal b
axis as evidenced by both nuclear magnetic resonance and
neutron-diffraction measurements.6–8

To make progress toward an understanding of the ground-
state structure and the nature of phase transitions in CaV2O4,
here we study the zero-temperature phase diagram of its
building blocks, i.e., zigzag chains with S=1 spins and Ising
orbital variables. We propose a theoretical model which in-
cludes the superexchange �SE� interaction, relativistic spin-
orbit �SO� coupling, and JT effect. We find that antiferro-
orbital order favored by an Ising-like orbital exchange is
destroyed in the presence of large on-site spin-orbit or Jahn-
Teller coupling. Depending on the underlying orbital con-
figuration, magnetic properties of the zigzag chain are
equivalent either to those of two weakly coupled S=1 chains
or to those of an unfrustrated spin-1 ladder. In the limit of
large spin-orbit coupling, the zigzag chain can be viewed as
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FIG. 1. �Color online� �a� Two crystallographically inequivalent
vanadium chains in CaV2O4. The V3+ ions are arranged in zigzag
chains of edge-sharing VO6 octahedra. For both vanadium sites, the
VO6 octahedra are flattened at room temperatures. A local reference
frame is defined in such a way that the z axis is parallel to the
tetragonal axis of the crystal field. The black and white circles de-
note the vanadium and oxygen ions, respectively. �b� A simplified
view of the zigzag chain. The red �dark gray�, green �light gray�,
and blue �gray� bonds are parallel to the local �011�, �101�, and
�110� axes, respectively. Consequently, electron hopping on the red
�dark gray�, green �light gray�, and blue �gray� bonds is possible
only when dyz, dzx, and dxy orbitals are occupied, respectively.
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a spin-2 chain with anisotropic interaction. Finally, we dis-
cuss implications for CaV2O4.

Model Hamiltonian. We first define a local reference
frame for the two crystallographically inequivalent vanadium
chains �referred to as type-I and -II chains here� in CaV2O4
such that the z axis is parallel to the tetragonal direction of
flattened VO6 octahedron �Fig. 1�a��. Nearest-neighbor
bonds along the chain are parallel to the local �011� and
�101� directions alternatively. In the following, we employ a
convention in which even-numbered bonds are along the
�011� axis.

Geometrical frustration of the zigzag chain comes from
the fact that second-nearest-neighbor bonds parallel to the
local �110� axis have a length close to that of nearest-
neighbor bonds. In fact, the second-nearest-neighbor interac-
tion is the dominant one as the dxy orbital is occupied at
every site due to the flattened VO6 octahedra. The remaining
orbital degeneracy is described by a pseudospin 1

2 with
�z= �1 corresponding to the �yz� and i�zx� states, respec-
tively.

Having introduced the basic notations, we now discuss a
minimal model for the spin-orbital chain. Since orbital inter-
action with a 90° angle between vanadium-oxygen bonds is
governed by direct dd� exchange of t2g orbitals, the corre-
sponding spin interaction on a bond depends on whether the
relevant orbital is occupied.12 Essentially, orbitals participate
in the superexchange only via orbital projectors Pyz/zx. Not-
ing that Pyz/zx= �1��z� /2, we first define the antiferro-orbital
and ferro-orbital bond operators,

On,n+1 = 1
2 �1 − �n

z�n+1
z �, On,n+1 = 1

4 �1 � �n
z��1 � �n+1

z � ,

with � signs for even- and odd-numbered bonds, respec-
tively. The model Hamiltonian is divided into three parts:
H=H0+H�+Hon-site. The first H0 term represents decoupled
spin and orbital systems,

H0 = J2�
n

Sn · Sn+2 − �
n

�KOn,n+1 + K�On,n+1� . �1�

Since J2 couples every second-nearest neighbors, the spin
part can be viewed as two decoupled S=1 Haldane chains,
corresponding to the two vertical blue �gray� lines in Fig.
1�b�. The K and K� terms denote the energy gain of an
antiferro-orbital and a ferro-orbital bond, respectively. In
general, we have K�K� due to a finite on-site Hund’s cou-
pling JH, and hence an antiferro-orbital order in the ground
state of H0.

The H� term introduces interactions between the two
spin-1 chains,

H� = �
n

�J1On,n+1 − J1�On,n+1�Sn · Sn+1. �2�

As discussed above interaction between spins depends on
orbital occupations: the antiferromagnetic coupling J1 is non-
zero only when the dyz �dzx� orbital is occupied at both sites
of an even �odd� bond, whereas the strength of ferromagnetic
J1� term depends on the expectation value of the antiferro-
orbital bond operator On,n+1.

Explicit expressions relating the exchange constants to
microscopic parameters are obtained from the SE Hamil-
tonian of vanadium spinels,12 where neighboring VO6 octa-
hedra share the same edge as in zigzag chains considered
here. Assuming an exact octahedral site symmetry, we find
K= �1+2���t2 /U�, J2=J1=K�= �1−���t2 /U�, and J1�
=��t2 /U� to lowest order in Hund’s parameter �	JH /U.
Here, t is the hopping integral and U is the on-site Coulomb
repulsion. The parameters of the model can be estimated
from known values of the same parameters in other vana-
dium compounds. Measurements on cubic vanadates yield
JH
0.68 eV, U
6 eV, and t
−0.35 eV,13,14 which gives
�
0.11 and t2 /U
20.4 meV. The estimate of � is less
certain; we find �
13–25 meV.5,13,15,16 In the following,
we shall measure the energy in units of t2 /U.

The remaining single-ion interactions are included in the
Hamiltonian

Hon-site = − ��
n

�n
xSn

z − ��
n

�n
z . �3�

The first term originates from relativistic SO coupling
��L ·S�. Since the dxy orbital is always occupied, the x and y
components of the orbital angular momentum are quenched;
the remaining Lz=−�x in the pseudospin representation. A
similar situation has been studied in cubic vanadates.17 The
effect of the monoclinic structural transition at Ts is modeled
by the second term with 2� denoting the level splitting due to
the induced orthorhombic distortion of VO6 octahedra. Note
that the orthorhombic distortion is different on type-I and -II
chains.8,9

Orbital orders. We first consider a simpler case of the
model Hamiltonian by assuming the presence of a collinear
Néel order on the zigzag chain. This is a plausible assump-
tion as the SO term ��n

xSn
z breaks the spin SU�2� symmetry

and, as will be discussed later, closes the energy gap of lon-
gitudinal magnons at large enough �, hence signaling a tran-
sition to the Néel state with Sn

z parallel to �ẑ. Even with this
simplification, the competition between intersite exchange
and various on-site interactions still poses a rather nontrivial
problem. This study also sheds light on orbital orders in the
ground state of CaV2O4, where spins develop a three-
dimensional collinear antiferromagnetic order at TN�71 K.

Due to the strong second-nearest-neighbor exchange J2,
collinear orders on a zigzag chain consisting of repeated
++−− spins have a quadrupoled unit cell. There are a total of
four degenerate Néel states related to each other by lattice
translations and time reversal �Figs. 2�a� and 2�b��. After
applying a � rotation about the z axis to pseudospins at
Sn

z 	0 sites, we obtain an effective orbital Hamiltonian,

Horb = �
n

�J + �− 1�nK��n
z�n+1

z − �
n

�hz�n
z + hx�n

x� . �4�

This model is equivalent to an Ising chain with alternating
nearest-neighbor couplings in a skewed magnetic field. The
effective exchange constants are J= �2K−K�� /4 and
K=
2�2J1�+J1� /4. Here, we have assumed �Sn ·Sn+1�= �
2

on even and odd bonds, respectively. The longitudinal and
transverse fields are given by hz=�+
2J1 /2 and hx=�, re-
spectively. The parameter 
	1 characterizes the magnitude
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of the Néel order. Its value can only be determined with a
proper treatment of the SO coupling term. For simplicity, we
set 
=1 in the following calculation. Hamiltonian �4� with-
out the staggered exchange K is one of the simplest models
exhibiting nontrivial quantum critical point:18 numerical cal-
culation shows an order-disorder transition belonging to two-
dimensional Ising universality class. The staggered exchange
K involves higher-order spatial derivatives in the continuum
limit and thus represents an irrelevant perturbation in the
renormalization group �RG� sense.

A schematic phase diagram of model �4� is shown in Fig.
3�a�, where an antiferro-orbital phase is separated from the
orbital paramagnet by an Ising transition line. Along the �
axis ��=0�, the antiferro-orbital phase coexists with ferro-
orbitally ordered phase, shown in Figs. 2�c� and 2�d�, respec-
tively, at the multicritical point �c= �2K−K�−J1� /2. On the
other hand, in the large � limit, the pseudospins are polarized
by the transverse field hx such that spins Sz= �1 are accom-
panied by complex orbitals 1

�2
�dyz� idzx�, respectively, result-

ing in a uniform orbital occupation nyz=nzx=1 /2 at all sites
�Fig. 2�e��. Using the infinite-system density matrix renor-
malization group �DMRG� method with periodic boundary
condition,19 we obtain a critical �c at �=0, taking into ac-
count the effect of staggered K. The Ising transition line is

bounded by the critical points ��c ,0� and �0,�c�. Figure 3�b�
shows �c and �c as functions of the parameter �=JH /U. As
expected, the antiferro-orbital phase shrinks with decreasing
Hund’s coupling JH. In a full quantum treatment of the zig-
zag chain, we expect a similar critical line characterized by
massless orbital excitations �Fig. 4�.

Spin-liquid phases. We now discuss the original Hamilto-
nians �1�–�3� in the small � limit without assuming the exis-
tence of a magnetic order. It is important to note that the spin
part of the Hamiltonian in this limit preserves a continuous
SU�2� symmetry, which cannot be broken in one dimension.
One thus expects stable spin-liquid phases whose properties
depend critically on orbital configurations. Furthermore, the
absence of �x term at �=0 indicates that the orbital part is
described by a classical Ising-like Hamiltonian. Conse-
quently, the search of ground states reduces to first enumer-
ating over all possible Ising configurations �n

z� and then
comparing their energies taking into account contribution
from spins. As antiferro-orbital and ferro-orbital orders are
favored by SE and JT interactions, respectively, it is natural
to consider these two configurations first.

In the case of antiferro-orbital order �Fig. 2�c�� where
bond operators �On,n+1�=0 and �On,n+1�=1, the zigzag chain
behaves as two spin-1 chains weakly coupled by a frustrated
ferromagnetic J1�. The corresponding spin-liquid phase �SL1
phase in Fig. 4� has an energy gap at an incommensurate
wave vector.20 On the other hand, the frustrated J1� coupling
is quenched by the ferro-orbital order shown in Fig. 2�d�.
Depending on the sign of the ferro-Ising order ��n

z�= �1, the
J1 term is nonzero only on even or odd bonds, but not on
both. The spin Hamiltonian is equivalent to that of a spin-1
ladder with rung coupling J1. The magnetic ground state is
again disordered �SL2 phase in Fig. 4�.21,22 The magnetic
energy of spin-1 ladder with arbitrary rung coupling has been
calculated using quantum Monte Carlo method in Ref. 21.
Comparing the energy of the two phases, including both spin
and orbital contributions, yields a boundary �c surprisingly
close to the one obtained assuming a Néel order.

Although the SU�2� symmetry is broken in the presence
of SO coupling, both spin liquids persist up to finite �. In the
SL2 phase, stable at large JT distortion ���c, SO coupling
provides an easy-axis anisotropy DSz

2 with D
−�2 /2�. The
spin-1 ladder undergoes an Ising transition to a Néel phase
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FIG. 2. �Color online� Spin and orbital orders on a zigzag va-
nadium chain. Néel orders �a� and �b� are related to each other by
lattice translations. There are a total of four degenerate Néel states;
the other two are related to states �a� and �b� by time reversal. �c�
Antiferro-orbital order consisting of staggered dyz and dzx orbitals.
�d� and �e� correspond to ferro-orbital orders with real orbital dyz

and complex orbitals �dyz� idzx� /�2, respectively.
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FIG. 3. �Color online� �a� Schematic phase diagram of orbitals
in the presence of a collinear Néel order on the zigzag chain, effec-
tively described by Hamiltonian �4�. AF and PM refer to antiferro-
orbitally ordered and orbital paramagnetic phases, respectively. �b�
Critical boundaries �c and �c measured in units of t2 /U versus
Hund’s parameter �. The critical distortion is determined analyti-
cally from �c= �2K−K�−J1� /2, whereas �c is obtained from
DMRG calculation. The various effective parameters in Eq. �4� are
expressible in terms of model parameters J1, J1�, J2, K, and K� of the
original SE. Hamiltonian, whose relations to � and t2 /U can be
found in the text.
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FIG. 4. �Color online� Schematic phase diagram of the zigzag
vanadium chain. The various phases are characterized by the mag-
netic properties. SL and N represent spin-liquid phase and Néel
order, respectively. The SL1 and N1 phases are accompanied by an
antiferro-orbital order, while in the N2 and SL2 phases the orbitals
behave as an orbital paramagnet. The first-order transition along the
dashed line is an extension of the multicritical point ��c ,0� in the
phase diagram in Fig. 3.
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�N2 phase in Fig. 4� with increasing �. At large �, the con-
dition D=Dc gives rise to a critical �c���. On the other
hand, Néel transition at small � can be understood by con-
sidering the � dependence of the spin gap in SL1 phase. The
singlet ground state of weakly coupled Haldane chains has
triply degenerate magnon excitations with dispersion
k=��0

2+v2�k−k0�2. In the limit of vanishing J1�, the system
reduces to two decoupled Haldane chains with k0=�,
�0=0.410J2 �Haldane gap for spin 1�, and v=2.49J2.23 A
simple second-order perturbation calculation adds a correc-
tion to the spin gap,

� = �0 −
�2��0�Sn

z �k0��2

�� − �0
, �5�

where ���2��c−�� is the energy of a domain-wall pair
�a flipped pseudospin in the antiferro-orbital state�, �0�
is the singlet ground state, and �k� denotes one-magnon
excitation with wave vector k. The matrix element
�0�Sn

z �k�=�Zeikn, with Z�1.23 For ����0, the spin gap
decreases with increasing � and eventually reaches zero at
�c2��2��c−��−�0, signaling a transition into magnetically
ordered phase �N1 phase�.

The two Néel phases in Fig. 4 are distinguished by the
underlying orbital orders; the phase boundary �c1 separating
N1 from N2 phases is thus analogous to the Ising transition
line of the orbital only model �Fig. 3�b��. Since the upper
critical �c1�JH, at small Hund’s coupling the zigzag chain
could bypass the N1 phase and enter the orbital paramagnetic
phase simultaneously with a magnetic ordering. A conjec-
tured phase diagram of the zigzag chain is shown in Fig. 4.

Anisotropic J=2 spin chain. In the limit of large SO cou-
pling, the appropriate degrees of freedom are effective spins
of length J=2, where J=L�+S and L�=1 is the angular mo-
mentum of the unoccupied t2g hole. The system thus behaves
as a spin-2 chain with anisotropic exchange interaction.5 Fur-
thermore, JT coupling adds an anisotropy DJz

2+E�Jx
2−Jy

2�,
where D	0 and E�� are proportional to the tetragonal and
orthorhombic distortions of VO6 octahedron, respectively.

Assuming a dominating easy-axis anisotropy �D��E, the N2
phase can also be viewed as Néel ordering of the effective
spins Jz= �2 in such a way that spins of a given direction
Sz= �1 are coupled to orbital angular momenta Lz�= �1,
respectively. The corresponding ferro-orbital order with
complex orbitals dyz� idzx is shown in Fig. 2�e�. The V3+

ions have a reduced magnetic moment �= �2S−L���B=1�B.
We have presented and analyzed a minimal model of frus-

trated vanadium chains, pertinent to quasi-1D compound
CaV2O4. A conjectured phase diagram �Fig. 4� is obtained
based on analytical arguments and numerical calculations.
The observed P21 /n crystal symmetry of CaV2O4 at low
temperatures indicates that only two inequivalent vanadium
sites exist as in the high-temperature phase. The absence of
doubled unit cell resulting from antiferro-orbital order thus
implies that both vanadium chains are in the orbital paramag-
netic phase. This is a plausible conclusion noting that a
rather small �c1�0.22�t2 /U��4.5 meV is estimated from
Fig. 3 assuming ��0.11. However, the monoclinic distor-
tion below Ts places the two types of vanadium chain at
rather distinct regions of the phase diagram.

The type-I chain acquires a small � in addition to the
dominating tetragonal crystal field and behaves as a spin-2
chain subject to an easy-axis anisotropy. This Ising aniso-
tropy is important to the stabilization of three-dimensional
Néel order in CaV2O4, as the collinear spins are found to
point along the easy axis of type-I chains.8 The measured V
moment of 1.06�B is also consistent with the picture of an
anisotropic spin-2 chain.7 On the other hand, a strong ortho-
rhombic distortion � at type-II ions completely removes the
orbital degeneracy and makes the vanadium chains effec-
tively spin-1 ladders. In fact, the well-separated t2g levels at
type-II ions lead to a possible easy-plane spin anisotropy.8

Consequently, induced collinear order on type-II chains fol-
lows the spin direction of type-I vanadium ions, as indeed
observed in CaV2O4.

We acknowledge fruitful discussions with A. Chubukov,
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and O. Tchernyshyov.

1 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 �1998�.

2 S.-H. Lee et al., Phys. Rev. Lett. 93, 156407 �2004�.
3 V. O. Garlea, R. Jin, D. Mandrus, B. Roessli, Q. Huang, M.

Miller, A. J. Schultz, and S. E. Nagler, Phys. Rev. Lett. 100,
066404 �2008�.

4 H. Tsunetsugu and Y. Motome, Phys. Rev. B 68, 060405�R�
�2003�.

5 O. Tchernyshyov, Phys. Rev. Lett. 93, 157206 �2004�.
6 J. Hastings et al., J. Phys. Chem. Solids 28, 1089 �1967�.
7 X. Zong, B. J. Suh, A. Niazi, J. Q. Yan, D. L. Schlagel, T. A.

Lograsso, and D. C. Johnston, Phys. Rev. B 77, 014412 �2008�.
8 O. Pieper et al., Phys. Rev. B 79, 180409�R� �2009�.
9 A. Niazi et al., Phys. Rev. B 79, 104432 �2009�.

10 H. Kikuchi, M. Chiba, and T. Kubo, Can. J. Phys. 79, 1551
�2001�.

11 T. Hikihara et al., J. Phys. Soc. Jpn. 69, 259 �2000�.
12 S. Di Matteo, G. Jackeli, and N. B. Perkins, Phys. Rev. B 72,

020408�R� �2005�.
13 T. Mizokawa and A. Fujimori, Phys. Rev. B 54, 5368 �1996�.
14 K. Takubo, J. Y. Son, T. Mizokawa, H. Ueda, M. Isobe, Y. Mat-

sushita, and Y. Ueda, Phys. Rev. B 74, 155103 �2006�.
15 A. Abragam and B. Bleaney, Introduction to Ligand Field

Theory �Clarendon Press, Oxford, 1970�, pp. 377–378; A.
Abragam and B. Bleaney, ibid., pp. 426–429.

16 A. Tanaka, J. Phys. Soc. Jpn. 71, 1091 �2002�.
17 P. Horsch, G. Khaliullin, and A. M. Oleś, Phys. Rev. Lett. 91,

257203 �2003�.
18 A. A. Ovchinnikov, D. V. Dmitriev, V. Ya. Krivnov, and V. O.

Cheranovskii, Phys. Rev. B 68, 214406 �2003�.
19 S. R. White, Phys. Rev. B 48, 10345 �1993�.
20 D. Allen and D. Sénéchal, Phys. Rev. B 61, 12134 �2000�.
21 D. Sénéchal, Phys. Rev. B 52, 15319 �1995�.
22 S. Todo, M. Matsumoto, C. Yasuda, and H. Takayama, Phys.

Rev. B 64, 224412 �2001�.
23 I. Affleck and R. A. Weston, Phys. Rev. B 45, 4667 �1992�.

GIA-WEI CHERN AND NATALIA PERKINS PHYSICAL REVIEW B 80, 220405�R� �2009�

RAPID COMMUNICATIONS

220405-4


