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We investigated theoretically vortex configurations in thin mesoscopic superconducting equilateral triangles
submitted to an external magnetic field. Analytical expressions for the vortex interactions with the screening
current and other vortices were calculated by considering the sample sides much smaller than the effective
penetration depth within the London limit. The vortex configurations were obtained by using Langevin dy-
namics simulations. In most of the configurations, the vortices sit close to the corners, presenting twofold or
threefold symmetry. We also determined the dependence on the magnetic field of the equilibrium states. The
ground states with larger magnetic field range are those with the number of vortices equal to the triangular
numbers �N�=n�n+1� /2, with n integer�. A study of different stable configurations with the same number of
vortices is also presented.
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I. INTRODUCTION

The study of the vortex matter in mesoscopic supercon-
ductors has been subject of great interest, particularly, be-
cause of the resemblance with the atomic matter. This is a
result of the interplay between vortex-vortex repulsion and
the confinement produced by the external magnetic field-
induced screening currents �see, for instance, Refs. 1–5�. In
circular geometries �thin disks and superconducting cylin-
ders�, for low number of vortices �low total vorticity�, vortex
configurations are arranged in shells and have magic
numbers1,3–6 �similar to electronic states in atoms�. For
higher number of vortices, an Abrikosov �hexagonal� vortex
arrangement appears in the center of the disk surrounded by
two or more vortex shells.4 In superconducting slabs,7–9

squares,10–12 rectangles,11,13,14 ellipses15 �there is also a con-
nection of these systems and two-dimensional clusters of
classical charged particles trapped in an anisotropic parabolic
potential16�, and triangles11,17 �although in this particular case
large mesoscopic samples have not been studied�, vortex sys-
tems have also been theoretically studied by using either the
Ginzburg-Landau �GL� or the London approaches. In these
cases, similarly to the circular geometry, vortex configura-
tions obey the superconductor geometry for low total vortic-
ity; while, for large systems and higher vorticity, a hexagonal
arrangement appears close to the center of the supercon-
ductor. Moreover, due to the adjustment of a hexagonal lat-
tice into a confined geometry, vortex with a coordination
number different from six appears close to the sample edges,
in the form of topological defects in the lattice �such as dis-
clinations and dislocations�.4

In superconductors, the vortex matter has been success-
fully described by the GL theory.18–20 This phenomenologi-
cal theory attributes to the superconducting regions a com-
plex order parameter �= ���ei� �where ���2 is proportional
to the superconducting electrons density�. It also considers
the current density j and the vector potential A related by
�2j����2���−A�, where � is the London penetration depth.
The time-dependent version of this theory has also suc-
ceeded in describing nonequilibrium vortex phenomena, al-
though its range of applicability is more restricted than the
time-independent GL theory.

The London approach can be derived from the GL theory
by considering the order-parameter absolute value ��� uni-
form throughout the entire superconductor. Nonetheless, it
can be shown from the BCS microscopic theory that this
approach is valid for the whole temperature range 0�T
�Tc as long as ��T�� �1 /�+1 / l�−1, where l is the mean free
path, and the superconducting electron density ns�r� is ap-
proximately uniform.21 Equivalently, this means making �
→0. The presence of vortices is accounted by taking singu-
larities in the order-parameter phase �, which results from
treating a zero size vortex core �of radius ���. This approach
works well if the inter vortex distance av is reasonably larger
than the actual value of �, i.e., in the case of nonoverlapping
vortex cores. Therefore, by calculating the vortex interac-
tions with the screening currents and with other vortices, one
can obtain the vortex dynamics, as well as vortex stable
states.

Recently, vortex configurations have also been studied in
superconducting triangles, by using either the Ginzburg-
Landau theory22,23 or the London approach.24 The former
studies apply to small-sized superconductors �sizes of the
order of ��, while the latter can be applied to relatively large
systems �size of several ��. Although applicable to the Lon-
don limit, the present study is intended to the case ��a
��=�2 /d, where a and d are the length of the triangle sides
and the triangle thickness, respectively. This yields vortex-
vortex interactions, as well as the vortex interactions with the
boundaries and the shielding currents, quite different than the
ones studied, for example, in Ref. 24, which are short
ranged. Here, vortex-vortex interactions are long ranged.

This paper is organized as follows. Section II presents the
theoretical formalism, which was used in order to find the
screening currents and the forces acting on each vortex. The
numerical approach is detailed in Sec. III. The discussion of
the results is presented in Sec. IV. This section is divided in
two parts. In the first part, we discuss the vortex ground
states. The second part—dealing with metastable vortex
states—is further split in two parts. The first considers con-
figurations containing only singly quantized vortices �SQVs�,
carrying only one flux quantum 	0. In the second part, we
investigate the possibility of configurations with multiply
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quantized vortices �MQVs�. Finally, we present our conclu-
sions in Sec. V.

II. THEORETICAL FORMALISM

We considered a system with N vortices inside a super-
conducting equilateral triangle of side a. The applied mag-
netic field H=Haẑ is applied along the triangle thickness d,
where d�a��=�2 /d �� is the effective penetration depth
and ẑ is a unit vector perpendicular to the film�. Within this
limit and by using the London approach, the triangle consists
of a two-dimensional system with pointlike vortex cores. The
vortex-vortex interactions are logarithmic since �ri−r j��a
�� �where ri is the position of the ith vortex core�. These
pairwise forces can be computed from the Lorentz force act-
ing on a vortex core fL=	0J
 ẑ, where 	=h /2e=2.07

10−15 Wb.

The time-independent Ginzburg-Landau theory for isotro-
pic superconductors describes phenomenologically the su-
perconducting state by the Gibbs free-energy functional,

G = Gn + �0Hc
2�

V

d3r�− ���2 +
1

2
���4 + ���− iA���2

+ �2�H − Ha�2	 . �1�

Here, Gn is the normal-state free energy, Hc is the thermody-
namical critical magnetic field, V is volume occupied by the
superconductor, A is the vector potential, H is the local mag-
netic field, �=� /� is the Ginzburg-Landau order parameter,
and �= ���exp�i�� is the complex order parameter. In this
equation, it should be noticed that lengths are in units of the
coherence length, �, A in units of 	0 /2
�, H in units of Hc2,
and � is in units of �o �which is the value faraway from the
interfaces�. It is useful to rewrite Eq. �1� �in fact the
Ginzburg-Landau energy density� in a slightly different
form,

G = Gn + Gcore + Gkin, �2a�

where

Gcore =
�0Hc

2

V
�

V

d3r�− ���2
1 −
1

2
���2� + ������2	

�2b�

and

Gkin =
�0Hc

2

V
�

V

d3r����2Q2 + �2�H − Ha�2� �2c�

are the core and kinetic-energy densities, respectively. The
kinetic momenta of the Cooper pairs are proportional to the
superconducting velocity Q=��−A. When minimizing the
Ginzburg-Landau free energy �Eq. �1�� with respect to the
order parameter and the vector potential, the Ginzburg-
Landau equations,

�− i � − A�2� = ��1 − ���2� , �3a�

�2j = �2 � 
 � 
 A = ���2Q , �3b�

are obtained. Here, the current density is in units of Hc2 /�.
The boundary conditions, which must be satisfied along a
superconductor/vacuum interface �V, are

n̂ · �− i � − A����V = 0, �4a�

n̂ · j��V = 0, �4b�

where n̂ represents the outward unit vector to the interface.
The so-called London limit can be derived from either the

microscopic or the Ginzburg-Landau theories by taking the
limit �→0, if there is no appreciable vortex cores overlap-
ping. This means that the modulus of the complex order
parameter ���r�� can be considered uniform over the whole
sample �except at the vortex core, where it should be zero�.
However, the phase of the order parameter should vary by
2
n�n=0, �1, �2, �3, . . .� for every closed path, which
includes a vortex core inside. Therefore, the vortex currents,
as well as the external magnetic field screening current, can
be calculated from the London equation,

�2j + A = �� = �
i=1

N

ẑ 

r − ri

�r − ri�2
, �5�

which is the second Ginzburg-Landau equation �Eq. �3b��,
with ���=1 everywhere. Here, the function in the right-hand
side accounts for the presence of vortex cores at ri= �xi ,yi�,
arising from the singularities of the order-parameter phase
�.1,21 It is worth to notice that although the London limit
considers a vanishing vortex core size, a fairly good approxi-
mation for the behavior of the order parameter close to the
vortex core19,25 removes the divergence of the right-hand
side in Eq. �5� by replacing �r−ri� with 
�r−ri�2+2�2.

In the limit ��a�d, the local magnetic field can be
approximated by the external magnetic field, i.e., H�Haẑ.
Therefore, after averaging along the film thickness, Eq. �5�
becomes

− ẑ
�2

d
�2g + ẑHa = ẑ2
�

i=1

N

��r − ri� , �6�

where the sheet current density J�x ,y�=�0
ddzj�x ,y ,z�

�dj�x ,y ,d /2� and the streamline function g�x ,y� �which can
be regarded as a local magnetization along z in the thin
film26� are related by J=�
 �ẑg�=−ẑ
�g. Interestingly, as
pointed out by Fetter,27 the streamline function and the phase
of the order parameter are related to the real and imaginary
parts of a complex-valued function, ��z ,zj�= i���z ,zj�
+ iG�z ,zj��=−G�z ,zj�+ i��z ,zj�, where z=x+ iy and G�z ,zj�
= ��2 /d�g�z ,zj� �see also Refs. 4 and 28�. This can be veri-
fied, in the absence of external magnetic field, by writing Eq.
�5� in complex notation,

L. R. E. CABRAL AND J. ALBINO AGUIAR PHYSICAL REVIEW B 80, 214533 �2009�

214533-2



i
d�

dz
=

�G

�y
− i

�G

�x
= 
 ��

�x
+ i

��

�y
�

= i� ��− G�
�x

− i
��

�x
	

= i�
j=1

N
z − zj

�z − zj�2

= i�
j=1

N
d

dz
ln�z − zj� , �7�

where the bar means complex conjugation. This equation
yields ��z ,zj�=� j=1

N ln�z−zj�. This corroborates that both g
and � satisfy Laplace equation �except at the vortex cores�,
as stated by Eq. �6� for Ha=0.

For a superconducting medium surrounded by vacuum
�which is equivalent to a confined system of vortices�, the
boundary conditions �Eqs. �4a� and �4b�� are satisfied for
g�r� ��V=const along the interface. For the case of a simply
connected superconductor, that is, with no holes inside the
sample, it is enough to consider g�r� ��V=0 �for multiply con-
nected superconductors, see Refs. 29 and 30�.

The solution of Eq. �5� can be written as g=gH+gv, where
gH and gv are the response to the external magnetic field and
to the presence of vortices, respectively. gH, which is the
solution of �2gH= �d /�2�Ha, is given by

gH�r� =
Had

4�2 
1 −
y

h�

��

3x

a
�2

− 
 y

a
�2	 , �8�

where h�=
3a /2 is the triangle height and g is given in units
of Hc2�.

The streamline function due to the vortices for N vortices
in an infinite thin film is given by gv�r ,ri�= �d /�2��i=1

N ln
��r−ri��. For an equilateral triangle, the zero net current flow
across the interface is satisfied by adding vortex images out-
side the triangular domain. For a vortex core at �xi ,yi�, this
results in an infinite set of rectangular domains, each one
with sides 3a and 
3a, and containing 6 vortices �antivorti-
ces� placed at �xI ,yI���xI ,−yI��,

I = 1 → �xi,yi� ,

I = 2 → �− 0.5�x+ − 3a�,h� − 0.5y−� ,

I = 3 → �− 0.5x+,− 0.5y−� ,

I = 4 → �0.5�x− − 3a�,h� − 0.5y+� ,

I = 5 → �0.5x−,− 0.5y+� ,

I = 6 → �xi − 3a sign�xi�/2,yi − h�� . �9�

Here x�= �xi+
3yi and y�= �
3xi+yi. Therefore,

gv�r,ri� =
1

2 �
m=−�

�

�
n=−�

�

�
I=1

6


ln� �x − xI − 3ma�2 + �y − yI − 
3na�2

�x − xI − 3ma�2 + �y + yI − 
3na�2	 ,

�10�

where the index I refers to the positions of the vortices and
antivortices as defined in Eq. �9�. Figure 1 shows the current
streamlines for a vortex core placed at �0.35a ,0.5h��, as well
as its images. The vortex images periodic unit cell is en-
closed by a rectangle. Also, the superconducting triangle—
defined by the points �0, 0�, �0.5a ,h��, and
�−0.5a ,h��—depicts the current streamlines of gH for Ha
=0.001.

The forces acting on the vortices derived from the Lorentz
force are proportional to the gradient of the streamline func-
tions. The force acting on the ith vortex can be written as
fi= fi

a+� jfi,j, where fi
a�−�gH�r� �ri

�interaction with screen-
ing currents� and fi,j �−� jgv�ri ,r j� �interaction with other
vortices�. When considering the term i= j, it is important to
take into account the interaction of the ith vortex with its
own images �outside the triangular domain�.

The shielding sheet current density JH=−ẑ
�gH has
components �in units of Hc2�

JH,x�r� =
Had

2�2 � y

a
+

3a

2h�
�
 x

a
�2

− 
 y

a
�2	� , �11a�

JH,y�r� =
3Had

2�2 
1 −
y

h�
� x

a
. �11b�

One may observe that the vector potential of the applied
magnetic field Ha is obtained by using the London equation
in the absence of vortices Aa=−�2jH=−�2JH /d. Since this
divergent free vector potential has zero components normal
to the triangle edges, it can be used as a gauge for solving the
Ginzburg-Landau equations.31–33

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

x / a

y
/a

FIG. 1. �Color online� Current streamlines �contour lines of gv�
for a vortex at �0.35a ,0.5h�� and its images. In the triangle defined
by the points �0, 0�, �0.5a ,h��, and �−0.5a ,h�� �corresponding to
the superconducting domain�, the contour lines of gH for Ha

=0.001 are also plotted. A rectangle is drawn to help visualize the
vortex images periodic structure given in Eq. �9�.
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III. NUMERICAL APPROACH

We employed a Langevin dynamics algorithm to simulate
the vortex dynamics. The forces calculated in Sec. II, fi

a and
fi,j, were used in the Bardeen-Stephen equation of motion,34

�
dri

dt
= fi

a + �
j

fi,j + �i, �12�

where the term j= i is included in the summation in order to
account for the vortex interaction with its images and a sto-
chastic random force is added, which takes into account ther-
mal fluctuations. This stochastic force has a random white-
noise spectrum and obeys the fluctuation-dissipation
theorem,

���,i�t���,j�t��� = 2�����ij��t − t��kBT , �13�

where � � means average value, kB is the Boltzmann’s con-
stant, T is the temperature, ��d�0	0Hc2 /�n is the viscous
drag coefficient ��n is the resistivity in the normal state�, and
Greek and italic indexes refer to vector components and vor-
tex labels, respectively. We applied the leap-frog scheme for
the time integration scheme, as described in Ref. 35. The
time step used varied according to �t=�t1+�t0 / �1+V4�,
where �t1=10−5, �t0=5
10−4, and V is a term proportional
to the maximal velocity of the vortices at that time step. The
nonconstant time step allows for achieving higher accuracy
when vortex displacements are large, while speeding up
computation time for smaller vortex displacements.

One difficulty that may arise in implementing numerically
Eq. �10� for the vortex-vortex forces comes from the infinite
number of terms in the summations. Usually, one should not
truncate infinite series of logarithmic interactions since this
kind of potential is slow decaying,36 contrary to interactions,
which present exponential decay.37 In our case, this is not so
problematic because we are dealing with vortices and anti-
vortices, which, at long distances, may act as vortex dipoles,
generating a 1 /r-like potential. Nevertheless, we preferred to
employ a technique, which allows for a rapid converging
series summation,36 therefore, avoiding the truncation of the
series and implementing the full summation of the contribu-
tions of both vortices and antivortices images.

In order to obtain different metastable configurations with
a given total vorticity for a magnetic field Ha, we first dis-
tribute the vortices randomly inside the triangular domain.
Then, we let the system evolve in time according to Eq. �12�.
A metastable configuration is found when the maximal vor-
tex velocity was smaller than �2
10−10 �in units of ��.
When this criterion is achieved, a new attempt is performed
with a new random vortex distribution and subsequent inte-
gration of Eq. �12�. We typically performed 1000 attempts
for given values of the total vorticity L, number of vortices
N, and applied magnetic field Ha in order to have a reason-
able collection of possible vortex configurations. We consid-
ered low total vorticity states, ranging from L=0 to L=37,
with H�0.05Hc2 �however, we used H�0.03 for configura-
tions with L�21 in order to save computational time�.

The equilibrium vortex state at a given applied field was
obtained by calculating the energy from Eq. �1� of all the
different vortex configurations at Ha. Strictly speaking, the

procedure described above does not ensure that the configu-
ration is actually the equilibrium state since it is possible that
some configuration with lower energy was not generated.
However, the probability that it is so is much greater than
otherwise, due to the number of attempts performed �at least
for low number of vortices�. The order parameter was calcu-
lated approximately by the following procedure: the phase of
the order parameter � was computed from a given stable
vortex configuration by using Eq. �10� �this was also used to
solve numerically the Ginzburg-Landau equations in disk,
rings, and squares by using the analytical expressions for the
phase of the order parameter in Ref. 28�; with the analytical
values for � and the vector potential for the applied magnetic
field Aa, the real part of the first Ginzburg-Landau equation
�3a� was solved numerically by using the relaxation method.
We chose a regular uniform equilateral triangular grid of size
about 0.26� �the sample side was discretized by 384 points�.
In fact, this procedure is very similar to including holes in
the sample at the vortex core positions filled with pi fluxoid
quanta each. This allowed us to obtain the modulus of the
order parameter ��� and, therefore, calculate approximately
the Ginzburg-Landau free energy of a given vortex configu-
ration.

When considering multiply �giant� quantized vortices in
the vortex configurations, the procedure was basically the
same as above but taking the vorticity of the giant vortex i as
pi�1. This implies that the phase of the order parameter, the
corresponding streamline function, and the forces acting on
vortices are multiplied by pi. In this manner, we were able to
successfully include MQV in our simulations.

The error associated with our calculation of the Ginzburg-
Landau energy is estimated to be �10−4�0Hc

2 /2. It is in part
related to the truncation the vortex cores position onto the
uniform grid used. The estimation was performed by com-
puting the energy of vortex configurations at magnetic fields
close to or above Hc2. For example, for the sample dimen-
sions considered, the energy of the configuration with one
SQV differs from zero by a quantity about 4
10−5 �in units
of �0Hc

2 /2�.
In Fig. 2, the modulus of the order parameter ����� calcu-

lated from the above procedure is depicted for two stable
configurations with L=9 �at H=0.0210� and with L=18 �at
H=0.0220�. As one can observe, it is in very good agreement
with ��� computed by other approaches.11,23,38

We finally studied the magnetic field dependence of sev-
eral vortex configurations �usually the most stable ones ob-

FIG. 2. �Color online� Modulus of the order parameter ����� for
metastable configurations with L=9 at H=0.0210 �left� and with
L=18 at H=0.0220 �right�. The color map varies from blue ����
�0� to red �����1�.
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tained from the previous procedure�. This was achieved in
the following way. For a given ground-state configuration,
the magnetic field Ha was set at a high-field value �where it
is expected to be well above the range in which the stable
configuration is the ground state�. Then Ha was swept down
by field steps �Ha=2.0
10−5. The magnetic field was
changed after a time interval 2
106�t1. This process was
done until reaching Ha=0, which allowed to observe the vor-
tex states transitions. Therefore, we could investigate the
magnetic field range of the equilibrium states �by calculating
approximately the Ginzburg-Landau energy�. We also ob-
tained the critical magnetic fields �Hunst� below which each
configuration ceases to be stable �only within the London
limit�. Therefore, due to the limitations of our theoretical
framework and numerical procedure, our results are re-
stricted to magnetic fields much smaller than Hc2.

IV. RESULTS

A. Ground states

After performing the numerical procedure discussed in
the previous section, we obtained the stable vortex configu-

rations with number of vortices up to N=37 for given values
of the magnetic field. The resulting configurations considered
also multiply quantized �giant� vortices �MQV� �cf. Sec.
IV B 2�, but it turned out that the ground states are consti-
tuted by only SQV �L=N for these configurations�. Besides,
for each N value, several different configurations can be
found. We call the one with lowest energy the ground state
�for those values of L and Ha�.39 In Fig. 3, the current
streamlines of the ground-states configurations with L=1 to
L=36 are plotted. The magnetic fields at which these con-
figurations were obtained are also depicted in Fig. 3, at the
top or at the bottom of each picture. It is observed that the
competition between vortex-vortex repulsion and the com-
pression on the vortex configuration due to the shielding cur-
rents generates vortices aligned with the edges and sit on the
corners.33 Moreover, as the number of vortices increases
�N�6�, there is a tendency for an Abrikosov-like vortex dis-
tribution, although defects on the vortex arrangements do
appear if N�10,15,21,28,36, . . .. The configurations de-
picted in Fig. 3 can also be useful for comparison with
experimental data.

L = 1, H
a

= 0.0040

L = 2, H
a

= 0.0054

L = 3, H
a

= 0.0065

L = 4, H
a

= 0.0080

L = 5, H
a

= 0.0090

L = 6, H
a

= 0.0100

L = 7, H
a

= 0.0110

L = 8, H
a

= 0.0120

L = 9, H
a

= 0.0125

L = 10, H
a

= 0.0140

L = 11, H
a

= 0.0150

L = 12, H
a

= 0.0160

L = 13, H
a

= 0.0165

L = 14, H
a

= 0.0170

L = 15, H
a

= 0.0185

L = 16, H
a

= 0.0192

L = 17, H
a

= 0.0200

L = 18, H
a

= 0.0210

L = 19, H
a

= 0.0215

L = 20, H
a

= 0.0223

L = 21, H
a

= 0.0230

L = 22, H
a

= 0.0250

L = 23, H
a

= 0.0255

L = 24, H
a

= 0.0260

L = 25, H
a

= 0.0270

L = 26, H
a

= 0.0280

L = 27, H
a

= 0.0283

L = 28, H
a

= 0.0290

L = 29, H
a

= 0.0305

L = 30, H
a

= 0.0310

L = 31, H
a

= 0.0320

L = 32, H
a

= 0.0330

L = 33, H
a

= 0.0340

L = 34, H
a

= 0.0345

L = 35, H
a

= 0.0349

L = 36, H
a

= 0.0360

FIG. 3. �Color online� Current streamlines of the ground-states vortex configurations from L=1 to L=36. Notice that each figure depicts
a different configuration observed at different conditions. The total vorticity and the magnetic field at which the configuration was obtained
are shown at the top or the bottom of each figure. Each vortex configuration can be viewed as being formed by vortex “bricks,” i.e., lower
vorticity configurations plus linear chain of vortices. The red straight lines are guides for the eyes to help visualize the smaller configurations
“bricks,” which form a configuration of higher L. The nomenclature for each configuration is explained in the body of text and is also shown
in Table I.
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The configurations with L equal to the triangular numbers,
i.e., N�=n�n+1� /2, with n integer, have the Abrikosov hex-
agonal lattice arrangement, with intervortex distance av
roughly uniform, which results from the vortex-vortex �radi-
ally symmetric� interaction. In addition, they present both
threefold axial rotation and middle-plane reflexion symme-
tries, which satisfy the confinement �triangular� geometry.
These configurations are very stable, presenting a range of
stability broader than the other configurations. The other two
configurations shown with both symmetries are the L=4 and
L=12 �although without the Abrikosov lattice arrangement�
ground-states configurations. Except from the configuration
with L=31 �which do not possess any symmetry�, the other
configurations depicted �i.e., L=2, L=5, L=7, L=8, L=9,
L=11, L=13, L=14, L=16, L=17, L=18, L=19, L=20, L
=22, L=23 L=24, L=25, L=26, L=27, L=29, L=30, L
=32, L=33, L=34, and L=35� have the middle-plane reflec-
tion symmetry. One of the reasons why the middle-plane
reflection symmetry seems to be preferred apparently comes
from the fact that frequently the vortex arrangements are less
distorted and the intervortex distance is more uniform in this
symmetry if compared to a configuration with only threefold
axial rotation symmetry.

Interestingly, configurations with higher number of vorti-
ces can be viewed as being constructed by configurations
with lower number of vortices. Therefore, red straight lines
are drawn in Fig. 3 to help the visualization of these lower
vorticity configurations. As an example, take the vortex
ground state with 12 vortices. It seems to be made of a cen-
tral L=3 surrounded by other three L=3 configurations. The
L=9 vortex ground state seems to be constituted by a L=6
vortex ground states plus three vortices aligned along a line,
while the L=18 vortex ground state looks like to be built
from L=9 ground state, in addition to two linear vortex
chains with four and five vortices each. Other examples like
these can be found, which suggest a nomenclature for states
with high number of vortices based on lower total vorticity
states �which could be thought as fundamental bricks�.
Therefore, the L=12 ground state could be named �4t3s1�,
where 4t would refer to the threefold symmetry with four
L=3 ground states, where the �3s1� represent this L=3 state
constituted by three SQV. Another example is the configura-
tion with L=7. It can be viewed as formed by the L=4 con-
figuration plus a chain of three vortices �r4s1+ l3s1� ��r4s1�
referring to the L=4 ground state, where the r means that the
configuration has middle-plane reflexion symmetry, while
�l3s1� refers to a linear chain of three singly quantized vor-
tices�. The L=9 would be �t6s1+ l3s1�, the L=13 could be
�r9s1+ l4s1�, and the L=18 ground state would be �r9s1
+ l4s1+ l5s1� or �r13s1+ l5s1�. In this manner, the higher L
vortex configurations can be viewed as being formed by
lower L configurations �the description of the other ground-
state configurations using this nomenclature is given in Table
I�. Of course, this nomenclature cannot define all the con-
figurations unambiguously but would be of great help in dis-
tinguishing between configurations with same number but
with different arrangements of vortices. Nevertheless, all the
configurations observed can be represented by smaller
“bricks,” i.e., a combination of configurations with N�=n�n
+1� /2 �n integer� vortices and linear vortex chains.

The dependence of the energy on the magnetic field was
calculated for vortex states from L=0 to L=37. This allowed
us to obtain the magnetic field range within which a given
vortex configuration is the ground state. Figure 4 depicts the
energy ��EGL=G−Gn in units of �0Hc

2 /2� and the total vor-
ticity L as functions of the applied field Ha. Both the curves
for the energy and the total vorticity stop at a certain mag-
netic field Hunst. For Ha�Hunst, the configuration with that
value of L ceases to be stable and a transition to another
stable vortex state occurs. In this figure, three vortex states
are stable at Ha=0: the �trivial� L=0, the L=1 vortex states,
and the L=2 giant vortex state �1g2�, where the vortex is
doubly quantized. The other configurations studied present
Hunst�0.

In Fig. 4, the magnetic field range, where a given configu-
ration is the ground state, is marked by a “staircase” thick
line. Hunst as well as the initial H1 and final H2 magnetic
fields of the region over which a vortex configuration with
total vorticity L is in the ground state �also the field range of
this stability, �Hstab=H2−H1� are shown in Table I.

Our study shows that the ground states are characterized
by SQV. For example, states with giant vortices—the L=2
state with one giant vortex ��1g2�-state� and the L=5 state
composed of one giant and three singly quantized vortices
��3s1,1g2�-state�—are also shown in Fig. 4 by lines with
circles.40 They have a higher energy than the corresponding
L states with only singly quantized vortices. Other configu-
rations, containing giant vortices, were also obtained �see
next section�, but none of them had lower energy than the
ones composed of singly quantized vortices.

The dependence of the magnetization on the external
magnetic field was also studied. The calculated magnetiza-
tion follows from the expression:

M =
m

A�d
=

1

2A�d
�

A�

d2r�r� 
 J�ri,r��

= ẑ
1

A�d
�

A�

d2r�g�ri,r�� , �14�

where A�=
3a2 /4 is the triangle area, r�=x�+y� is a two-
dimensional vector representing a point in the triangle, ri
represents the dependence of the supercurrents on the posi-
tions of the vortex cores, and m is the magnetic dipole mo-
ment generated by J=�
 ẑg �cf. Sec. II�. Since we are deal-
ing with a thin superconducting triangle, M=Mẑ. For the
stable configurations, Eq. �14� was computed by using the
supercurrents produced by the vortices at ri, i=1, . . . ,N.

In Fig. 5, we present the applied magnetic field depen-
dence of the magnetization for the singly quantized vortex
configurations, as well as for the �1g2� and the
�3s1,1g2�-states. The equilibrium magnetization is depicted
by the thick line.

In our simulation, the �3s1,1g2�-state decays at Ha
=0.0043 to the �1s1,1g2�-state. This state decays at Ha
=0.0032 to the �1g2�-state. The doubly quantized vortex is
expelled at Ha=0.0005. The �1g2�-state can be stable at Ha
→0, although it is possible that transitions �such as, vortex
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expulsion or splitting of the giant vortex in a multivortex
state� occur at fields higher, but close, to Ha=0 due to ther-
mal fluctuations.

The values of �Hstab versus the number of vortices of
ground-states configurations are shown in Fig. 6. One may
observe that the vortex states with the number of SQV equal
to the triangular numbers N�=n�n+1� /2, n=1,2 ,3 , . . ., have
a field range ��Hstab� over which they are ground states

much larger than the other configurations. Apart from the L
=0 state, those highly stable have �Hstab�0.0016. Another
interesting feature comes from the fact that the configura-
tions with one less vortex than N�, i.e., N=N�−1 �except N
=2�, present a rather narrow ground-state field region
��Hstab�0.0005 for L=5, L=9, and L=14, while �Hstab
�0.0002 for L=20 and L=27�, which resembles the behav-
ior of the electronic shells in atoms �noble gases do not in-

TABLE I. Hunst and the initial H1 and the final H2 fields of the region over which a given vortex
configuration is the ground state. The second column shows the nomenclature for each ground-state configu-
ration �see Fig. 3�. In the last column, the field range �Hstab=H2−H1 is listed. The L=37 state does not
present H2 and �Hstab because this was the highest vorticity state we simulated.

L Configuration Hunst H1 H2 �Hstab

0 �� 0.0000 0.0000 0.0033 0.0033

1 �t1s1� 0.0000 0.0034 0.0051 0.0018

2 �t1s1+ l1s1� 0.0024 0.0052 0.0059 0.0007

3 �t3s1� 0.0022 0.0059 0.0075 0.0016

4 �t4s1� 0.0035 0.0075 0.0085 0.0010

5 �t3s1+ l2s1� 0.0051 0.0085 0.0091 0.0005

6 �t3s1+ l3s1� 0.0045 0.0091 0.0107 0.0016

7 �t4s1+ l3s1� 0.0067 0.0107 0.0115 0.0007

8 �t4s1+ l4s1� 0.0073 0.0115 0.0124 0.0009

9 �t6s1+ l3s1� 0.0079 0.0124 0.0129 0.0005

10 �t6s1+ l4s1� 0.0075 0.0129 0.0146 0.0016

11 �t6s1+ l5s1� 0.0099 0.0146 0.0153 0.0007

12 �4t3s1� 0.0106 0.0154 0.0161 0.0007

13 �r9s1+ l4s1� 0.0108 0.0161 0.0170 0.0009

14 �t10s1+ l4s1� 0.0118 0.0170 0.0174 0.0004

15 �t10s1+ l5s1� 0.0112 0.0174 0.0191 0.0017

16 �t10s1+ l6s1� 0.0138 0.0191 0.0199 0.0008

17 �l6s1+ t6s1+ l5s1� 0.0146 0.0199 0.0206 0.0007

18 �r13s1+ l5s1� 0.0149 0.0206 0.0213 0.0007

19 �r14s1+ l5s1� 0.0153 0.0213 0.0223 0.0010

20 �t15s1+ l5s1� 0.0163 0.0223 0.0225 0.0002

21 �t15s1+ l6s1� 0.0157 0.0225 0.0243 0.0018

22 �t15s1+ l7s1� 0.0186 0.0243 0.0251 0.0008

23 �r16s1+ l7s1� 0.0194 0.0251 0.0257 0.0006

24 �r18s1+ l6s1� 0.0202 0.0257 0.0266 0.0008

25 �r19s1+ l6s1� 0.0204 0.0266 0.0273 0.0007

26 �r20s1+ l6s1� 0.0207 0.0273 0.0281 0.0008

27 �t21s1+ l6s1� 0.0216 0.0282 0.0284 0.0002

28 �t21s1+ l7s1� 0.0218 0.0284 0.0302 0.0018

29 �t21s1+ l8s1� 0.0240 0.0302 0.0310 0.0008

30 �l8s1+ t15s1+ l7s1� 0.0248 0.0310 0.0317 0.0006

31 �l8s1+r17s1+ l6s1� 0.0255 0.0317 0.0325 0.0008

32 �r17s1+ l7s1+ l8s1� 0.0265 0.0325 0.0330 0.0005

33 �r26s1+ l7s1� 0.0264 0.0331 0.0340 0.0009

34 �r27s1+ l7s1� 0.0267 0.0340 0.0348 0.0008

35 �t28s1+ l7s1� 0.0276 0.0348 0.0349 0.0001

36 �t28s1+ l8s1� 0.0280 0.0349 0.0370 0.0021

37 �t28s1+ l9s1� 0.0300 0.0370
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teract easily because of their closed electronic shells, while F
and Cl are highly electronegative�. Also, our results yield
that the L=35 configuration is a ground state for a very nar-
row field range. Moreover, for L�21, the configurations
with number of vortices N=N�−2 appear to have quite broad

field region, where they are ground states �Hstab�0.0009.
The other configurations have �Hstab�0.0007. Nevertheless,
for H�21 the behavior of �Hstab versus the number of vor-
tices becomes more intricate.

As it would be expected, the configurations with number
of SQV equal to N�=n�n+1� /2, n=1,2 ,3 , . . . also have
lower Hunst than the other configurations. This feature—
together with large ground-state region—might be under-
stood as a result of the fact that those configurations have
threefold and middle-plane reflection symmetries �the sym-
metries of the equilateral triangle� as well as the sixfold Abri-
kosov lattice symmetry. In other words, those configurations
are well adjusted both to the sample geometry and to the
vortex-vortex interaction.

Finally, different configurations with the same number of
vortices may present different magnetic field stability range,
i.e., different Hunst values.

B. Metastable vortex configurations

1. Singly quantized vortices

For SQV, we obtained usually few distinct configurations
with given L, N, and Ha for a typical simulation with 1000
attempts. Low total vorticity states, ranging from L=0 to L
=37, with magnetic field up to 0.05Hc2, were considered. For
example, our numerical procedure �with singly quantized
vortices� generates only one stable configuration for L
=4,13,22,31 at Ha=8
10−3, 1.7
10−2, 2.3
10−2, and
3.4
10−2, respectively, but seven different stable configura-
tions for L=7 at Ha=4
10−2. Of course, it is possible that
not all stable configurations were generated, even after per-
forming 1000 attempts. Nevertheless, this approach yields a
rather satisfactory picture of the sample space of the stable
configurations at a given field with a reasonable computa-
tional time.

The stable configurations for L=9 at Ha=1.3
10−2 and
L=27 at Ha=3.1
10−2 are depicted in Fig. 7. The red lines
appearing in Fig. 7 are used in the same way as in Fig. 3. The
energy and the fraction of occurrence of each configuration
are shown, as well as its symmetries �if exists�. For the
L=9, the lowest-energy configuration is the one having
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middle-plane reflection symmetry �t6s1+ l3s1� �depicted in
Fig. 7�a� at left�. This configuration resulted from about 82%
of 1000 attempts. The ones with threefold axial rotation sym-
metry �3t3s1� �Figs. 7�a� in the middle and at right�—whose
energies are slightly higher than the former—appeared each
about 9% of the total number of attempts. Because these
configurations lack middle-plane reflection symmetry, there
can be two distinct threefold axial rotation symmetry con-
figurations, each being the mirror reflection of the other, ap-
pearing with similar frequencies. These configurations can be
labeled �3t3s1�d and �3t3s1�l in the same way as some mol-
ecules can appear as dextrogirous � d� and levogirous � l�.

For L=27 at Ha=3.1
10−2, the configuration �with
middle-plane reflection symmetry� having the lowest energy
is the �t21s1+ l6s1� shown at the left of Fig. 7�b�, with
slightly lower energy than the configurations �with threefold
axial rotation symmetry� depicted in the middle and at right
of Fig. 7�b�. The energy difference is within our calculation
accuracy; therefore, we may say that they have approxi-
mately the same energy value at that value of Ha. These
latter two configurations differ from each other in the same
manner as the configurations presented in the right of Fig.
7�a�. They can be viewed as formed by a L=9 configuration
in the center surrounded by three L=6 configurations. The
L=9 configuration is one of the metastable states, which can
be dextrogirous or levogirous. Therefore, those L=27 con-
figuration can be labeled �t9s1d+3t6s1� and �t9s1l+3t6s1�,
where �t9s1� accounts for the �3t3s1� configuration men-
tioned before. Also, whereas the configuration with the low-
est energy appears about 53% of all attempts, the percentage
of occurrence of the other stable configurations is about
16%. The configuration �r20s1+ l7s1� depicted in the middle
left of Fig. 7�b� has higher energy than the other three con-
figurations and appeared in about 16% of the attempts.

Regarding the configuration symmetries, the mirror plane
reflection appeared more frequently than the threefold axial
rotation symmetry. Also, the configurations having the
former symmetry are usually the lowest-energetic ones, even
in the cases where configurations having threefold rotation
symmetry or both were obtained. Therefore, the presence of
symmetries is not directly correlated with lower-energetic
states.

The number of stable configurations can differ for differ-
ent values of the magnetic field. For example, for L=12 one

stable �12s1� configuration at Ha=1.6
10−2 �cf. Fig. 3� is
obtained, while three different ones are generated at Ha
=3.6
10−2 �see Fig. 8�. The lowest-energy configuration is
depicted in the left of Fig. 8. In the nomenclature developed
previously, this is the �4t3s1� configuration. However, the
captions in the middle and in the right of Fig. 8 show two
other higher-energy configurations �which could be named
�r7s1+ l5s1�d and �r7s1+ l5s1�l�, which do not possess any
clear symmetry and which are stable only at fields above
�0.0300. Other different configuration for L=12 is stable at
Ha�0.0460. If we start with this configuration and decrease
Ha, at some Hunst this configuration decays in one of the
configurations shown in Fig. 8. If it results in the configura-
tion depicted in Fig. 8�b�, for example, and Ha is further
decreased, at some other Hunst, the configuration decays in
the lowest-energy configuration. It is also interesting to ob-
serve that at Ha=0.0360, the configurations with higher en-
ergy occur more frequently than the one with lowest energy
with the same total vorticity. Nonetheless, configurations
with higher total vorticity have a lower energy at these mag-
netic fields and, therefore, have much greater probability of
being obtained.

2. Multiply quantized vortices

We discuss now the case of MQV. One interesting possi-
bility was that one configuration containing MQV might
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FIG. 7. �Color online� Current streamlines of the metastable vortex configurations �a� L=9 for Ha=0.0130 and �b�L=27 for Ha

=0.0310. The energy ��EGL� and the fraction of occurrence �f i, where i refers to a different configuration number� of each configuration is
depicted on the top or on the bottom of each figure. � represents middle-plane reflection symmetry and C3 represents threefold axial rotation
symmetry. Notice that configurations, with threefold axial rotation symmetry, do not necessarily have lower energy than configurations with
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have a lower energy than one containing only singly quan-
tized vortices. One might think that this would be particu-
larly probable when a given singly quantized vortex configu-
ration does not satisfactorily match the geometry of the
superconductor.

However, when multiply quantized are considered, the
number of different configurations grows enormously with
increasing total vorticity L. For example, for L=5�L=7� with
three �five� SQV and one doubly quantized vortex at Ha
=0.0110, we obtained two different configurations, whereas
for L=16 with 12 SQV and two doubly quantized vortices at
Ha=0.0190, 52 different configurations were observed by
performing 500 attempts. Therefore, we limited ourselves to
L�18, and performing typically 500 attempts. Our aim was
neither to obtain all the possible stable configurations nor the
state with lowest energy but rather to compare the obtained
stable configurations containing multiply quantized vortices
with those containing only SQV.

The following vortex configurations were studied: L=5,
�3s1,1g2� at Ha=0.0080 and at Ha=0.0110; L=7, �5s1,1g2�
at Ha=0.0110; L=8, �6s1,1g2� and �5s1,1g3� at Ha
=0.0120; L=9, �7s1,1g2� and �6s1,1g3� at Ha=0.0130; L
=11, �9s1,1g2� at Ha=0.0150; L=12, �10s1,1g2� and
�9s1,1g3� at Ha=0.0160; L=13, �11s1,1g2� and �10s1,1g3�
at Ha=0.0170; L=14, �12s1,1g2� at Ha=0.0170; L=16,
�14s1,1g2�, �13s1,1g3� and �12s1,2g2� at Ha=0.0190; L
=17, �15s1,1g2� and �14s1,1g3� at Ha=0.0200; L=18,
�16s1,1g2� and �15s1,1g3� at Ha=0.0210.

Some configurations containing multiply quantized vorti-
ces are shown in Fig. 9. Not all the obtained configurations
are presented for L=14 and L=16. The energy, the fraction
of occurrence, and the symmetries of each configuration are

shown on the top or on the bottom of each frame. Most of
the configurations we observed do not have any particular
symmetry. Middle-plane reflection appears more frequently
than the threefold axis rotation symmetry. Moreover, it is not
straightforward that the appearance of a particular symmetry
implies lower energy. We observed configuration without
symmetries having lower energy than ones possessing
middle-plane reflection, threefold axial rotation, or both sym-
metries. For L=5 at Ha=0.0080, the one depicted in the left
of Fig. 9�a� has lower energy ��EGL=−0.9587 compared to
�EGL=−0.9584� and higher fraction of occurrence ��90%
compared to �10%� than the one presented in the right of
Fig. 9�a�.41 However, this value of energy is higher than the
energy of the configuration containing only singly quantized
vortices ��EGL=−0.9642�. For L=7 at Ha=0.0110, the con-
figuration with lower energy is depicted in the right of Fig.
9�b� ��EGL=−0.9456 with fraction of occurrence �70%
compared to �EGL=−0.9455 occurring �30%, depicted in
the left of Fig. 9�b��, although the difference in energy is
much smaller than in the previous example. Again, the
ground state corresponds to the configuration with only SQV
��EGL=−0.9504�. Interestingly, both configurations with
lower energy are the ones with the doubly quantized vortex
positioned in the corner. It seems to contradict results ob-
tained from Ginzburg-Landau calculations,11 which yield gi-
ant vortex at the center of the sample. Nevertheless, we
would like to draw the attention to the fact that the Ginzburg-
Landau results were computed for systems of small size
�usually �10�� compared to the sides of the superconducting
triangle a=100� considered here. The ratio between the ki-
netic and the core energy counterparts is larger in the latter
than in the former case. For systems with size comparable to
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FIG. 9. �Color online� The same as Fig. 7, but for the following configurations containing multiply quantized vortices: �a� L=5,
�3s1,1g2� at Ha=0.0080; �b� L=7, �5s1,1g2� at H=0.0110; �c� L=14, �12s1,1g2� at Ha=0.0170; �d� L=16, �14s1,1g2� at Ha=0.0190; �e�
L=16, �13s1,1g3� at Ha=0.0190; and �f� L=16, �12s1,2g2� at Ha=0.0190.
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�, superconductivity is enhanced close to narrow channels
and wedges. Therefore, SQV would be positioned preferably
at these regions compared to multiply quantized ones since
they would present less depreciation of the superconductiv-
ity. Moreover, for small systems, giant vortex states are usu-
ally the most stable ones at magnetic fields close to Hc2. For
large systems �much larger than ��, the configurations can
have MQV but not as the most stable states at H�Hc2. Since
the vortex core distance to the triangle corner is much larger
than �, there is no substantial overlapping of the vortex
cores; thus, the spatial modulation of the superconductivity
due to the geometry or magnetic field occurs far from the
vortex cores. Therefore, we attribute the lower energy of
configurations with MQV closer and aligned to the triangles
corner �among those with the same number of vortices and
total vorticity� to the depreciation of the vortex shielding
currents around its core when it approaches a corner �due to
the vortex images�.

In Fig. 9�c�, the two configurations depicted with L=14
and Ha=0.0170 have roughly the same energy ��EGL
=−0.9193 within the error margin �10−4�. Both of them are
the lowest-energetic states found with one doubly quantized
vortices �the ground state containing only SQV has �EGL
=−0.9232�. However, the one shown in the left of Fig. 9�c�
occurred �47%, while the other one shown �in the right of
Fig. 9�c�� occurred less than 3%. Figure 9�d� shows a similar
example of configurations with L=16 ��14s1,1g2�, i.e., 14
singly plus one doubly quantized vortices� at Ha=0.0190
with the same energy �lowest among those with one doubly
quantized vortex �EGL=−0.9113 but higher than the one
with only SQV �EGL=−0.9150�. Also at Ha=0.0190, con-
figurations with the same vorticity, but different number of
multiply vortices, are depicted in Fig. 9�e� ��13s1,1g3�� and
in Fig. 9�f� ��12s1,2g2��. Comparatively, the �12s1,2g2�
configurations have lower energy ��EGL�−0.9072� than the
�13s1,1g3� configurations ��EGL�−0.9046�, but both have
higher energy than the �14s1,1g2� configurations. This is
shown in Fig. 10. The energy of the obtained vortex configu-
rations for L=16, but different number of vortices, is de-
picted in the left, while the energy for each group of MVQ
configurations in the right. The number of different configu-
rations is 2 for the �16s1� state, 5 for the �14s1,1g2� state,
52 for the �12s1,2g2� state, and 14 for the �13s1,1g3� state.
The energy spectra for configurations with different number
of vortices are well separated. Except for the states, contain-
ing only singly quantized vortices, the energies of the con-
figurations with the same number of vortices form an energy
“band.” The separation of the energy values within one band
can be better visualized in the insets at right. For all the
configurations we studied—including those with only
SQV—the energy difference among configurations with
same total vorticity L and same number of vortices N ranges
from about 10−3 to less than 10−4, while for configurations
with same L but different number of vortices �that is, con-
taining vortices of different vorticity� the energy difference is
within the 10−2–10−3 range. This indicates that for these total
vorticity values, the states with MQV are not ground-state
configurations. Moreover, our present study only indicates
that MQV configurations are metastable configurations, with
nonzero, although low, probability of being observed at the

magnetic fields considered. Also, we did not study the ex-
pected lifetime of each of these MQV configurations.

The configuration depicted in the left of Fig. 9�f� has a
lower energy �and occurs more frequently� than the one pre-
sented in the right of Fig. 9�f�. In the former, both of the two
doubly quantized vortices are placed in one of the triangle
corners, while in the latter they are together along and in the
middle of the triangle side. Our explanation for the lower
energy of the former configuration comes from the fact that
���2 is more depreciated when the two doubly quantized vor-
tices are nearest neighbors than when they are separated.
Moreover, positioning one MQV close to the sample sides or
in the corner depreciates the shielding currents generated by
itself �due to vortex images currents, which appear to fulfill
the condition of zero net current across the boundary�.

One feature we observed is that the addition of multiply
quantized vortices increases the number of different configu-
rations obtained from random initial conditions. Adding one
MQV made the number of different configurations, which is
typically one to seven for SQV, jump to an average of ten to
15 different configurations �minimum of two for L=5,
�3s1,1g2� and L=7, and maximum of 22 for L=18,
�16s1,1g2��. When another multiply quantized vortex is in-
cluded, we obtained 52 different configurations. The reason
for the proliferation of different configurations when consid-
ering multiply and SQV together seems to be related to the
number of different arrangements of balls of different sizes
inside a confined geometry. Uniformly sized balls tend to

−0.916

−0.914

−0.912

−0.91

−0.908

−0.906

−0.904

(16s1)

∆
E

G
L

/(
µ 0

H
c2

/2
)

(14s1,1g2)

(12s1,2g2)

(13s1,1g3)

−0.9114

−0.9113

−0.9112

−0.9073

−0.907

−0.9067

−0.9047

−0.9044

−0.9042

FIG. 10. �Color online� Energy of the vortex configurations for
L=16 and Ha=0.0190. The �16s1�, �14s1,1g2�, �12s1,2g2�, and
�13s1,1g3� states are depicted with different colors, with a label
beneath each group of lines. The insets in the right show the energy
of each MQV enlarged.
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have a lower number of different possible configurations
than arrangements of balls of different sizes. It can be hinted
by a given arrangement of balls of the same size: any per-
mutation of two balls generate the same arrangement. Mean-
while, if one ball has different size from the rest, not all the
permutation of two balls generates the initial arrangement. It
is also known that impurities, e.g., atom ‘B, in a lattice of
atoms ‘A, create several lattice defects, such as dislocations,
vacancies, domain walls, etc., therefore, increasing the num-
ber of possible different arrangements among the atoms.

Another interesting point to be mentioned is that the con-
figuration shown in the right of Fig. 9�e� has a lower energy
than the one depicted in the left, although appeared much
less frequently than the latter. For configurations with only
SQV �L=20, 27, 30, 32, 34, and 35�, we also obtained two or
more configurations with roughly the same energy �energy
difference smaller than 10−4� but with very different occur-
rence fractions. For example, for L=30 at Ha=0.033, two
configurations with �EGL=−0.8602 appeared in 23% and
56% of the attempts. Therefore, one may notice that configu-
rations with the same or lower energy do not necessarily
occur more frequently. This can be understood from the
simple picture of two potential wells, one being narrow and
deep and the other one shallow but large. Although the first
has lower energy, the latter will probably be achieved more
frequently, starting from a randomly chosen initial state.

V. CONCLUSIONS

We performed a systematic study of vortex configurations
in thin superconducting equilateral triangles submitted to a
homogeneous external magnetic field. We calculated analyti-
cally the vortex interactions within the London approach.
The vortex stable positions were obtained by a numerical
procedure, which allowed us to collect different metastable
states at a given magnetic field. The large number of attempts
yielded a high probability of finding the states with the low-
est energy. The energy of the stable configurations was com-
puted by solving approximately the first Ginzburg-Landau
equation with the phase of the order parameter calculated
analytically within the London limit.

The configurations have vortices aligned to the sides or sit
close to the triangles corners. Threefold axial rotation sym-
metry or middle-plane reflection symmetry �or both� is ob-
served in many metastable configurations, with a tendency of
the middle-plane reflection symmetry to appear more fre-
quently. The existence of a particular symmetry does not
necessarily implicate in states having lower energy. Never-

theless, configurations with middle-plane reflection symme-
try occur more frequently as the ones with the lowest energy.

We obtained the ground states as function of the magnetic
field. The range of stability of the vortex configurations re-
sembles the stability of atoms in the periodic table. The
states containing number of vortices equal to N�=n�n
+1� /2, for n integer, were the most stable ones for larger
magnetic field ranges. This is due to the threefold axial rota-
tion, middle-plane reflection, and Abrikosov’s hexagonal lat-
tice symmetries presented by these configurations. On the
opposite side, configurations with number of vortices equal
to N=N�−1 have the smallest magnetic field stability range.
These features are closely related to the stability of noble
gases �with completely filled electronic shells� as well as to
the high electronegativity of elements, such as F and Cl,
which need one electron to fill their electronic shells. Inter-
estingly, configurations with N=N�−2 vortices have a mod-
erately large field stability range.

Metastable states with only SQV were studied. For most
configurations with given total vorticity and magnetic field,
those having lower energy occurred more frequently. How-
ever, configurations with higher energy appearing more fre-
quently than ones with lower energy were observed. This
merely reflects the fact that there can be both shallow but
large and narrow but deep minima in the potential landscape.
Also, for fixed L different configurations cease to be stable at
different magnetic fields. This indicates that at higher mag-
netic fields, the number of different configuration might in-
crease, although, for these values of Ha, configurations with
higher total vorticity have lower energy, which eventually
prevents the observation of the former configurations.

Finally, we investigated configurations containing both
singly and multiply quantized vortices. The number of dif-
ferent configurations after hundreds of attempts increases
enormously in the latter case. Also, for the configurations we
obtained, the ones with multiply quantized vortices always
had higher energy than the ones for the same L and Ha but
with only quantized vortices. This suggests that in homoge-
neous superconducting samples �with size much larger than
��, the coexistence of singly and multiply quantized vortices,
although possible, has low probability to occur in compari-
son with configurations with singly quantized vortices only.
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