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The interlayer magnetoresistance of a quasi-two-dimensional layered metal with a d-wave pseudogap is
calculated semiclassically. An expression for the interlayer resistivity as a function of the strength and direction
of the magnetic field, the magnitude of the pseudogap, temperature, and scattering rate is obtained. We find that
the pseudogap, by introducing low-energy nodal quasiparticle contours, smooths the dependence on field
direction in a manner characteristic of its anisotropy. We thus propose that interlayer resistance measurements
under a strong field of variable orientation can be used to fully characterize an anisotropic pseudogap. The
general result is applied to the case of a magnetic field parallel to the conducting layers using a model band
structure appropriate for overdoped T�2201.
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I. INTRODUCTION

High-temperature superconducting cuprates, organic
charge-transfer salts, some heavy fermion materials, and a
host of other intriguing electronic systems, are layered met-
als in which electrons are approximately confined to a given
atomic layer. Much of the interesting behavior of these ma-
terials arises because of strong electronic correlations within
a single layer. Surprisingly, it turns out that one of the most
effective means of accessing in-layer properties, particularly
those properties that are highly anisotropic within a layer, is
to measure interlayer electronic-transport coefficients in a
strong magnetic field.1–11

The interlayer electrical resistivity �zz depends on the di-
rection of the magnetic field in a manner that is highly sen-
sitive to the anisotropy of the quasi-two-dimensional �quasi-
2D� band structure. High-resolution maps of the Fermi
surface and other band-structure properties have already
been obtained by fitting �zz data to calculations based on
semiclassical magnetotransport theory. This technique has
been applied to a wide variety of layered materials including
overdoped cuprates,1–4 ruthenates,5,6 and organic charge-
transfer salts.7,8 The �zz data also contains information about
in-plane scattering and can be used to study the directional
dependence of elastic- and inelastic-scattering rates.12–18 No-
tably, it has been used to reveal a T-linear, anisotropic scat-
tering contribution in overdoped cuprate superconductors
that appears to be tied to superconductivity itself.2,19,20 It is
important to press further, to ask what other anisotropic
properties of the metallic layers can be detected and charac-
terized via interlayer transport in high magnetic fields.

In this paper we ask what field-angle-dependent inter-
plane transport data can tell us about an anisotropic
pseudogap �k in quasi-2D metals. Since an anisotropic gap
in the density of states will affect the field-direction depen-
dence of �zz, we expect that interlayer magnetoresistance can
be used to map out �k as well. A natural application of this
technique would be to slightly overdoped cuprates. For these
materials, a model of a 2D metal with a small d-wave
pseudogap �that is starting to emerge with reduced doping� is
a plausible description of the metallic state at fields above
HC2 and semiclassical calculations of �zz may adequately

capture transport properties. If the magnitude of the gap is
small then it will not appreciably reduce the density of states
�or be observable in angle averaged transport
measurements21� but, as revealed below, can still have a sig-
nificant effect on the field-angle dependence of the interlayer
resistivity. To extract from �zz information about the doping,
temperature, and field dependence of �k would be of great
value toward understanding the relationship between the
pseudogap and superconductivity.22,23 The effects of a non-
zero �k may already be present in existing interlayer resis-
tance data on slightly overdoped cuprates, convoluted with
the effects of anisotropic scattering.24 If so, a reinterpretation
of these data using models that incorporate a pseudogap
could be fruitful.

We study a model with well-defined electronic quasipar-
ticles existing in the presence of a d-wave pseudogap in the
density of states. The manner in which the opening of the
pseudogap will change the interlayer resistivity is predicted
and the following main results obtained: �i� an expression for
the interlayer resistance �zz in the semiclassical limit in a
strong magnetic field of arbitrary strength and direction. �ii�
For the simple case of a field parallel to the layer with arbi-
trary intralayer orientation �B, the quantitative effect of a
pseudogap on �zz��B� is calculated using a realistic model
band structure. The average magnitude of �zz��B� varies non-
monotonically with the size of the pseudogap while its �B
dependence is modified in a manner distinctive of the
pseudogap symmetry. A strongly anisotropic normal state
�zz��� is smoothed by the pseudogap through the introduc-
tion of new low-energy current contributions associated with
d-wave nodes.

Considering our results in light of the success of the
angle-dependent magnetoresistance oscillations �AMRO�
technique in extracting band structure and scattering param-
eters of cuprates, we propose that this technique should also
prove to be a viable means of obtaining a T-, B-, and doping-
dependent parametrization of the d-wave pseudogap. The
characterization of the pseudogap at high fields and low tem-
peratures, following this approach, would be complementary
to the array of other experimental probes of the anisotropic
pseudogap and would likely provide unique insight. The an-
isotropic interlayer resistance technique is a bulk probe, can
be carried out under high magnetic fields �thereby accessing

PHYSICAL REVIEW B 80, 214528 �2009�

1098-0121/2009/80�21�/214528�8� ©2009 The American Physical Society214528-1

http://dx.doi.org/10.1103/PhysRevB.80.214528


the low-temperature field-induced normal state� and enables
a k-space mapping with good angular resolution.

II. SEMICLASSICAL PICTURE OF PSEUDOGAP STATE

As a simple model of the d-wave pseudogap state one can
use the normal �diagonal� part of the BCS Green’s function,
taking the anomalous part equal to zero. The Green’s func-
tion is

G0��,k,x� = � uk
2

� − Ek
+

vk
2

� + Ek
� �1�

with band energy �k, pseudogap �k and relative spectral
weights for the electron and hole terms

uk
2 =

1

2
�1 + �k/Ek�, vk

2 =
1

2
�1 − �k/Ek� �2�

and a quasiparticle energy Ek given by

Ek = ��k
2 + �k

2 . �3�

In Ref. 25, several model Green’s functions for the
pseudogap state are discussed with their associated spectral
functions compared to photoemission spectroscopy �ARPES�
data �in particular, with the observed Fermi arcs in far-
underdoped samples�. Equation �1�, which is particle-hole
symmetric, is discussed along with Green’s functions that,
while similar in structure to Eq. �1�, include particle-hole
symmetry-breaking terms or multiple scattering lifetimes.
These alternative models include the YRZ ansatz, discussed
in Refs. 26–28, and a commensurate spin-density-wave
picture29 �in which electrons on the Fermi surface at k are
coupled via the pseudogap �k to those at k+Q where Q
= �� ,���. In all of these models the underlying Fermi sur-
face, which is described by a tight-binding model and re-
sembles the experimental Fermi surface of the overdoped
systems, is modified by a nonzero d-wave pseudogap: turn-
ing on the pseudogap introduces low-energy elliptical con-
tours near the �� /2,� /2� points in the Brillouin zone �and
gaps out excitations elsewhere on the overdoped Fermi sur-
face�. Each model enjoys partial success in accounting for
the ARPES data �the experimental picture is still unfolding
and it is too early to say which model will ultimately provide
the most complete description� and can be viewed as a can-
didate model of the fermionic quasiparticles in cuprates. The
interlayer resistance of any of these models could be studied
using the approach followed in this paper. We consider here
only the particle-hole symmetric expression �Eq. �1�� in or-
der to illustrate, in the simplest context, the qualitative
changes to the normal metal �zz that are induced by turning
on a small pseudogap �k.

Equation �1� can be viewed as a description of a two-band
metal with band energies of �Ek, measured from the Fermi
level, and k-dependent spectral weights. At T=0 the lower
band is filled, the upper band empty and their nodal crossing
point lies exactly at the chemical potential. If the imaginary
part of the self-energy correction to Eq. �1� is small �com-
pared to relevant �� then the quasiparticles in each band are
well defined and transport properties can be calculated using
a semiclassical Boltzmann approach.

For the semiclassical picture to be applicable, the quasi-
particles in each band must remain well defined, i.e., the
imaginary parts of the self-energy correction to Eq. �1� must
be small compared to relevant frequencies �. At low tem-
perature and frequency, impurity scattering will dominate.
The associated scattering rate can be obtained following the
procedure for d-wave superconductors30 and it is known that
at sufficiently low frequency the impurity scattering rate be-
comes larger than the frequency so the semiclassical picture
of transport is not applicable. At high temperature and fre-
quency, strong inelastic scattering will also render the semi-
classical approach invalid. However there may exist an inter-
mediate frequency range for which both the impurity and
inelastic-scattering rates are relatively small. In this range,
quasiparticles are sharply defined and the scattering rate
	−1�� ,k� can be evaluated at the quasiparticle pole �=Ek.
We assume that such a frequency range exists and calculate
the interlayer resistivity in a magnetic field using Boltzmann
theory.

III. INTERLAYER RESISTANCE IN THE PSEUDOGAP
STATE IN THE PRESENCE OF AN ARBITRARY

MAGNETIC FIELD

To have interlayer current there must be a finite amplitude
t� for hopping between adjacent layers. However, according
to Kennett and McKenzie,13 the form of the interlayer con-
ductivity does not depend on whether or not interlayer trans-
port is coherent �i.e., it does not depend on the relative mag-
nitude of t� and 
	−1� as long as in-plane momentum is
conserved during interlayer hopping. We may thus carry out
the calculation of the interlayer conductivity by supposing
that a three-dimensional Fermi �quasicylindrical� Fermi sur-
face exists even when we are in the regime in which the
Bloch vector in the interlayer direction kz is not well defined.
Taking advantage of this, we simply add to Ek a term
−2t��kx ,ky�cos�kzc� where t��kx ,ky� is the interlayer hopping
coefficient and c the distance between layers. The associated
interlayer velocity is vz�kx ,ky ,kz�=2c
−1t��kx ,ky�sin�kzc�.
The calculation of the interlayer current is done to lowest
order in vz.

The Boltzmann equation in a weak electric field � along
the z axis and a magnetic field B of arbitrary strength and
direction is

�gk

�t
− I�gk� = − e�vz�k��−

df0

dEk
� , �4�

where the total distribution is f = f0+ f1 with f1=
−�df0 /dEk�g, f0�x� is the Fermi function, and I�g� is the
collision functional. The auxiliary time variable t is defined
by the equation of motion31

dk

dt
= − evg � B , �5�

where vg=dEk /dk. Equations �5� and �4� are solved to obtain
the distribution function, which is inserted into the expres-
sion for the interlayer current

jz�t� =
2e

2�3� dkvz�k�t��f1�t,k�t�� . �6�
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The current is found by taking a t-Fourier transform of
jz�t� and evaluating in the zero-frequency limit. The spectral
weights from the two bands combine simply to give uk

2 +vk
2

=1 for the particle-hole symmetric case.
For a field B=B�sin 
B cos �B , sin 
B sin � , cos 
B�, Eq.

�5� gives d� /dt=�C�E ,� ,
B� where the cyclotron frequency
is


�C�E,�,
B� = eB cos 
B
vg · kE

kE
2 . �7�

The cylindrical � variable parameterizes the cyclotron or-
bit around a closed energy contour Ek=E. Any point kE on
the projection of this contour onto the kx-ky plane is written
as kE=kE����cos � , sin �� where kE��� is the radial cylin-
drical distance measured from some arbitrary point in the
region enclosed by the contour. In the normal state we can
use a single energy contour �the Fermi surface� kE=k f
=kf����cos � , sin ��.

The kz momentum varies according to

dkz

dt
= − tan 
B

d

dt
�kE���cos�� − �B�� , �8�

which results in a periodic oscillation of the interlayer veloc-
ity vz�kz�t�� that is determined by the direction of the field
angle 
B.

Finally, since Ek is independent of kz in the collision func-
tional, the integral over kz of the “scattering-in” term van-
ishes by symmetry �this is true not only for scattering from
point defects but for any other scattering mechanism that can
be regarded as spatially confined to a single plane15,18�. We
are left with a relaxation-time description: I�gk�=−gk /	�Ek�
with the current relaxation rate equal to the total quasiparti-
cle scattering rate 	−1��=Ek�. The fact that vertex correc-
tions vanish to lowest order in vz in the calculation of the
interlayer resistivity is a considerable simplification. It
means that we can use any appropriate model for the scatter-
ing rate, including elastic or inelastic scattering or even a
sum over several different mechanisms.

We insert these expressions into Eq. �4�, formally solve
for gk�t� and use this in Eq. �6� to obtain the interlayer con-
ductivity �zz=1 /�zz

�zz�B� = A�
−�

+� dE�− df0/dE�
1 − P�E�

, �9�

��
0

2� d�2t���2�

�C��2� ��2−2�

�2 d�1t���1�

�C��1�

M��1,�2� , �10�

where

A =
e2


�2ceB cos 
B,

M��1,�2� = G��1,�2�cos ���1,�2� ,

G��1,�2� = exp	− �
�1

�2 d��

�C����	���
 ,

���1,�2�
c tan 
B

= �kE��1�cos��1 − �B� − kE��2�cos��2 − �B��

and P=G�0,2��. The function G��1 ,�2� is the probability
that a quasiparticle can proceed from �1 to �2 along its cy-
clotron orbit without being scattered so P is the probability
that a quasiparticle completes an orbit.

Equation �9� has been written in the same form as the
corresponding expression for a normal metal.13 However
�C���, 	, kE���, and P all depend on energy in the
pseudogap state �though we have not always written this
explicitly�. Moreover, the � and kE��� variables must be
interpreted differently in this expression depending on
whether the energy is greater or less than max �k. This is
because these variables are defined with reference to a closed
2D cyclotron orbit but the orbits �i.e., the energy contours�
have different topologies depending on the relative size of E
and max �k as shown in Fig. 1. For E�max �k there are
four equivalent �banana-shaped� contours closed around
nodal points so a node can be taken as an orbit center with
the polar-angle � parameterizing position along the contour.
Thus kE���, which is measured from the node to the contour,
depends strongly on both E and �. �We should include an
overall sum over the four nodes in Eq. �9�, though this has
not been written explicitly. There is no mixing of different
nodes since an electron remains on a single nodal contour
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FIG. 1. �Color online� A small pseudogap reduces the depen-
dence of �zz on the direction �B of a magnetic field B parallel to the
layers. Upper inset: the dashed �green� curve is a Fermi surface,
closed around the corner M point of the square Brillouin zone, and
the hatched curve indicates the magnitude of the d-wave
pseudogap. Main panel: when the field is large, the interlayer cur-
rent is dominated by k points on low-lying energy Ek contours at
which the electron velocity vg=dEk /dk is parallel to B. The solid
curves show low-lying Ek contours �moving outward from the
node, the contours are for E /�0=0.05,0.5,1 ,1.5,2 ,2.5,3� in the
upper right quadrant of the M-centered Brillouin zone. The arrows
�each parallel to B� are located at the dominant k point for each
contour. In the normal state, the dominant k is the point where the
largest �green� arrow intersects the dashed �Green� Fermi surface.
In the pseudogap state, the dominant k are spread over a large range
that extends from the normal-state point �for Ek�max �k� to the
node �for Ek�max �k�. The opening of a pseudogap effectively
spreads the current contribution over the Fermi surface, thereby
smearing the �B dependence of �zz.
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during cyclotron motion and the current contribution from
each nodal region can be obtained separately. For E
�max �k a single contour encircles the entire normal-state
Fermi surface and kE���, measured from a central point, is
weakly anisotropic, i.e., its anisotropy is that of the normal-
state Fermi surface. The energy integral in Eq. �9� must be
broken up into low- and high-energy regions with the kE���
variable defined accordingly.

Equation �9� is the main result of this paper. This expres-
sion could be used in fitting procedures similar to those ap-
plied in the normal state of overdoped cuprates. The magni-
tude of the pseudogap as, say, a function of doping,
temperature, and field strength in overdoped systems could
then be extracted. A typical set of fitting parameters might
include hopping amplitudes describing the normal-state band
structure and interplane hopping magnitude t� �the values of
which would be constrained by independent measurements
and would be expected to be independent of temperature and
weakly dependent on doping�, the normal-state scattering
rate 	−1 �which can also be independently estimated� and the
gap magnitude. Additional parameters could be incorporated
if one were to go beyond the nearest-neighbor expression for
�k or to include anisotropy in the scattering rate. Overall, the
number of parameters would not have to exceed that used in
previous normal-state analysis.

We will not undertake detailed numerical evaluations of
Eq. �9� in this paper but will discuss, in the remainder of this
section, some of the general features of this expression that
distinguish it from the familiar normal-state result. The con-
tribution to the conductivity, Eq. �9�, that comes from ener-
gies E�max �k will be identical to the normal-state expres-
sion. So, the total conductivity is a weighted sum of the
normal-state value and the low-energy �i.e., Ek�max �k�
contribution associated with the pseudogap. The relative
weighting is controlled by the value of �0 /kBT. The proper-
ties of the low-energy �pseudogap� contribution to the con-
ductivity are qualitatively different than those of the high-
energy �normal-state� contribution. It is more strongly
temperature dependent and is less sensitive to the direction
of the magnetic field.

To get some feel for the low-energy contribution to the
magnetoconductivity, associated with the pseudogap, we
consider the nodal limit E��0 for which �k and �k can be
linearly expanded about nodal points. In the nodal limit we
write �k=v2k2 and �k=v fk1 where k2 and k1 are momenta
parallel and perpendicular to the Fermi surface, respectively.
The radius of the energy contour with energy E is given by


kE�E,�� =
E

�v f
2 cos2�� − �n� + v2

2 sin2�� − �n�
�11�

and the cyclotron frequency is

�C��,E� = eB cos 
BE−1�v f
2 cos2�� − �n� + v2

2 sin2�� − �n�� ,

�12�

where �n is the direction of the node ��n= �� /4, �3� /4�.
Since v f �v2 the energy contour is a narrow ellipse and the
cyclotron motion of the quasiparticle slows down dramati-
cally as it crosses the Fermi surface k1=0.

If the probability P is small, then quasiparticles are un-
likely to complete cyclotron orbits without being scattered
and the field dependence of the conductivity is weak. The
field-dependent effects of interest �i.e., the sensitivity of �zz
to in-layer anisotropy and the AMRO� occur when P is of
order 1. The quantity P depends on the scattering mechanism
and, generally in the pseudogap state, on energy E. In the
simple case of point defects, the scattering rate30 is approxi-
mately given by

	−1�E� = 	0
−1���E�/�0��, �13�

where 	0
−1 is the normal-state scattering rate, ��E� and �0 are

the densities of states in the pseudogap and normal states,
respectively, and �=+1 �or −1� in the Born �or unitary� limit.
For unitary scattering �to which we henceforth restrict our-
selves� there is a cancellation in factors of the quasiparticle
density of states so that P becomes energy independent. In
this case, P has roughly the same value as in the normal
state. So, in strong fields, we can ignore the effects of scat-
tering �i.e., set G��1 ,�2�=1� in both the high-energy
�normal-state� contribution and the low-energy �nodal limit�
contribution to �zz. This simplifies the following discussion.

Both the sensitivity of �zz to the anisotropy of the 2D
band structure and the AMRO effect originate from the ar-
gument ���1 ,�2� of the cosine in Eq. �9�. The cosine oscil-
lates rapidly when kfc tan 
B is large and kills the integral
everywhere except at special momentum directions, which
depend on field orientation �B. As discussed in Ref. 13, the
conductivity is thus dominated by the small region where
both �1 and �2 are close to a special direction defined by the
solution of

d

d�
�kf���cos�� − �B�� = 0. �14�

Since the field direction �B determines the value of �1
and �2 that dominate the integrals, the band-structure param-
eters are evaluated at a symmetry-unique point on the Fermi
surface that can be tuned by field direction, allowing the
Fermi surface to be mapped out. Also, since the scale of the
rapid oscillation is set by kfc tan 
B, the overall magnitude of
the conductivity oscillates in 
B with a period determined by
this quantity �this is AMRO�.

However, when we apply this reasoning to the low-energy
pseudogap contribution, we find that such strong dependence
on field-direction angle is not expected. The solution to Eq.
�14� in the nodal limit is �−�n=arctan��2��B−�n�� where
�=v f /v2�1. The large factor �2 means that the dominant
value of �−�n will almost always be close to � /2, i.e., close
to the point at which the nodal energy contour crosses the
Fermi surface, independent of the direction of field. �The
only exception would be if the magnetic field were pointed
precisely in a nodal direction.� So, the dependence on the
field direction �B is far weaker in the low-energy pseudogap
contribution than it is in the normal state. Moreover, the
scale for the oscillatory dependence in the nodal limit is
kEc tan 
B��E /v2�c tan 
. For energies E��0 this quantity
will be much smaller than one for any 
B�� /2. The argu-
ment of the cosine in Eq. �9� will be small and no oscillatory
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dependence on field angle 
B will be seen. Even at tempera-
tures as high as kBT /�0�1 we do not expect to see promi-
nent AMRO coming from the pseudogap contribution to the
conductivity. This is because the integral over energy will
average kE over all values from 0 to nearly kf, giving no
sharp period for oscillatory behavior.

These qualitative arguments suggest that the low-energy
�pseudogap� contribution to the conductivity will not show
the strong field-direction dependence characteristic of the
high-energy �normal-state� contribution. �A detailed analysis
is needed, however, to account for the strong energy depen-
dence of the scattering rate that could change this picture by
giving dominant weight in the integral to a particular energy
range.� So, the onset of the pseudogap should have the ge-
neric effect of smoothing the dependence on field angle.
Nevertheless, this smoothing will proceed in a particular
manner that is characteristic of the anisotropy of the
pseudogap. None of the above effects would occur for an
isotropic pseudogap and the d-wave case discussed here
could be distinguished from alternative forms since the ar-
rangement of nodal points would have a different relation-
ship with the normal-state band anisotropy.

In the next section we consider the simple limit of a field
in the layers, i.e., 
B=� /2. This is done to provide a more
quantitative description of the effect that a pseudogap has on
the field-direction anisotropy of �zz��B�. Also, theoretical ex-
pressions for �zz, with which we can compare our results,
have been obtained previously using a different formalism.

IV. CASE OF A FIELD PARALLEL TO THE LAYERS

The general result Eq. �9� can be evaluated in the limit

B→� /2 �i.e., for the case of a field in the layers� by em-
ploying a stationary phase approximation but it is simpler to
go back to the beginning of the derivation and make this
assumption. When B is in the layers

�zz =
e2c


�2� d2k�−
df0

dEk
�t�

2 �k�
	−1�Ek�

	−2�Ek� + �C�k�2 , �15�

where k is the momentum in the plane and

�C�k� = ec�vg � B� . �16�

In the normal state, 	−1�E�=	−1 and �C�k�=�C��� are
both independent of energy so the integral over Ek gives
unity and Eq. �15� reduces to a Fermi-surface average. The
magnetic field becomes important when the �-averaged
quantity �C�ecv fB becomes comparable to the scattering
rate 1 /	. Note that the criterion for field effects �C	�1 is
more favorable by a factor of kfc than the corresponding
criterion for in-layer transport, where kfc�10 is typical in
cuprates.4

Equation �15� can also be obtained using a tunneling
Hamiltonian approach and a similar result was thus obtained
in Ref. 34. The tunneling current is expressed as a convolu-
tion of spectral functions on adjacent layers. The gauge can
be chosen such that the difference in the vector potential
between adjacent layers is A=c�By ,−Bx ,0� and the corre-
sponding spectral functions differ only by a momentum shift

equal to eA. Evaluating the spectral functions in the quasi-
particle approximation and using �C��Ek−eA−Ek� one ob-
tains Eq. �15�. The advantage of the semiclassical approach
followed here is that it can be generalized to describe fields
out of the layers �Eq. �9��. In the remainder of this paper we
will, however, focus on the simple case of Eq. �15�. We go
beyond the kBT��0 nodal limit considered in Ref. 34 to
consider arbitrary kBT /�0 and a realistic normal-state band
structure for cuprates in order to study the effect of a small
pseudogap on the �B dependence of �zz.

In a strong magnetic field, �C	�1 so �C��B�	�1 at
typical �B, the Fermi-surface average in Eq. �15� is domi-
nated by the k values for which �C�k�=0, i.e., by k for
which the quasiparticle velocity is parallel to B. This means
that the normal-state interlayer resistivity is determined by
the values of band parameters at a particular point on the
Fermi surface k=k�=kf�����cos �� , sin ��� where the value
of �� is controlled by �B �in an isotropic system �B=���.
Moreover, the resistivity is independent of 	−1 in strong
fields since the current is limited by classical magnetoresis-
tance rather than scattering. Upon varying �B, one can use
�zz to effectively map out the � dependence of the in-plane
band parameters.

In the pseudogap state, the energy dependence of �C�k�
changes this simple picture as illustrated in Fig. 1. For ener-
gies Ek�max �k, the energy contours of the pseudogap state
are almost identical to the Fermi surface itself. So the con-
tribution to �zz that comes from energies much larger than
max �k are the same as in the normal state. However, when
a pseudogap opens up �i.e., once �0 becomes comparable to
kBT� the conductivity begins to receive significant contribu-
tions from energies Ek�max �k. The associated low-energy
energy contours are centered on nodes and the k point on
such an energy contour where �C�k� vanishes is far removed
from the corresponding normal-state point k�. This means
that a small pseudogap results in contributions to �zz coming
from a much broader range on the Fermi surface, thereby
weakening the �B dependence.

This loss of �B dependence occurs initially without a cor-
responding increase in the magnitude of �zz. In fact, the ef-
fect of turning on a small pseudogap in the presence of a
strong in-layer magnetic field is to decrease the �B averaged
interlayer resistivity as shown in Fig. 2. This comes about
because classical magnetoresistance is relieved by the
pseudogap, both through a reduction in the average quasipar-
ticle velocity and through the increased range of k that con-
tribute to the current. The effect is independent of 	−1 at large
fields, as noted above, so the energy dependence of the scat-
tering rate �i.e., whether we are in the Born or unitary limit�
does not matter. For a sufficiently large pseudogap, the re-
duction in the carrier density overcomes this effect, so �zz
reaches a minimum at �0 /kBT�1 and thereafter increases,
eventually becoming very large for �0 /kBT�1 when the cur-
rent comes only from the nodal regions.

V. CALCULATION OF INTERLAYER RESISTIVITY
USING MODEL BAND STRUCTURE OF T�2201

To obtain a more quantitative picture of the �B depen-
dence of �zz we use band-structure parameters obtained from
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ARPES and interlayer resistance data on the two-layer cu-
prate T�2201. The ARPES data32 can be reasonably fit by a
tight-binding model with nearest and next-nearest hopping
parameters: �k=−2t�cos kx+cos ky�−4t� cos kx cos ky −�0
with k measured from �� /a ,� /a�, t� / t=0.42 and �0 / t
=1.36. The resulting Fermi surface is shown in Fig. 1. In this
material the interlayer hopping parameter t��kx ,ky� vanishes
by symmetry at eight points on the Fermi surface �along kx
=ky and kx=0 directions�. It can be modeled �according to
AMRO data1� as t����= t��sin 2�+k6 sin 6�+ �k6
−1.0�sin 10�� with k10=k6−1.0 and k6=0.71. The energy
scale t� can be absorbed into the zero-field, normal-state
resistivity but the large anisotropy in t���� contributes to the
strong �B dependence observed for this material in the nor-
mal state. Moreover, since t���� vanishes at the nodes, the
magnitude of �zz becomes extremely large in the nodal limit
�0 /kBT�1.

The anisotropic magnetoresistance in the normal state is
illustrated33 in the polar plots of �zz��B� /�0 versus �B in
panel A of Fig. 3. A field of �C	�0.5 is sufficient to reveal
the strong anisotropy of the underlying band structure. �For
the low-temperature scattering rate reported2 for T�2201,
this value of �C	 is achieved for fields of approximately 50
T.� Note also that the �B-averaged magnitude of �zz /�0 de-
creases as the scattering rate increases for a given field
strength. In panel B, the nodal limit �0 /kBT�1 of �zz /�0 is
depicted. Here the current is coming entirely from momenta
near the nodes and thus provides no information about the
normal-state band parameters elsewhere on the Fermi sur-

face. The anisotropy, which has been discussed in Ref. 34,
results from unequal, and �B-dependent, contributions from
different nodes owing to the large ratio of v f /v2 where v f is
the Fermi velocity is the “gap” velocity.

Panels C and D of Fig. 3 describe the effect that turning
on a d-wave pseudogap has on �zz��B� in a relatively strong
field ��C	=0.5�. The scattering rate was evaluated in the
unitary limit, using the rounded density of states plotted in
Fig. 2. In panel C, which shows small values of �0 /kBT, the
magnitude of �zz decreases as the gap opens. In panel D,
which shows larger values of �0 /kBT, the �B-averaged resis-
tance has already reached its minimum value, depicted in
Fig. 2 and is thus growing with �0 /kBT.

It is seen, by comparing panels A and C that the initial
effect of a small gap on �zz��B� is similar to the effect of an
enhancement in the scattering rate. The reason for this simi-
larity follows from the discussion of Fig. 1: the pseudogap
increases the band of k points that contribute to the interlayer
current just as would an increase in 	−1. The manner by
which the �B dependence changes as the pseudogap contin-
ues to grow in magnitude is, however, very different from
that resulting from an increase in the scattering rate. Not only
does the magnitude of �zz vary nonmonotonically with
�0 /kBT but also �zz��B� evolves to incorporate the aniso-
tropy of �k along with that already coming from t���� and
the intralayer band parameters. Given the success of the
angle-dependent interlayer resistance technique in extracting
precise values for several band-structure parameters, it ap-
pears that this technique should be equally capable of obtain-
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FIG. 2. �Color online� The nonmonotonic dependence of the
interlayer resistivity �zz on the magnitude of a d-wave pseudogap.
Main panel: the vertical axis is the interlayer resistivity, averaged
over the direction of the in-layer magnetic field �B, in units of the
normal-state zero-field value �0. The horizontal axis is the magni-
tude of the d-wave pseudogap and the different curves are for dif-
ferent field strengths. For weak fields ��C	�1�, turning on the gap
has no effect other than reducing the carrier density so the resis-
tance increases with �0 /kBT. In strong fields, the opening of a small
gap reduces the average quasiparticle velocity and the associated
Lorentz force responsible for the large magnetoresistance. This ef-
fect results in an initial drop in the interlayer resistance. As �0 /kBT
becomes large, the reduction in carrier density eventually overrides
this effect and �zz begins to increase. Upper inset: the pseudogap
density of states ��E� in terms of the normal-state value �0. The
scattering rate 	−1 depends on E through the density of states.
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FIG. 3. �Color online� Anisotropy of the interlayer resistance �zz

in the normal and d-wave pseudogap states. Solid curves are polar
plots of �zz /�0 versus �B where a crystal axis is along the horizontal
and the band structure of T�2201 has been used. The dashed curve
is the unit circle �unseen in panel B, where the radial scale is much
larger�. Panel A: the normal state �constant �0 /kBT=0� for varying
field strength; the solid curves from inside out are for: �C	
=0.1,0.2,0.3,0.4,0.5. Panel B: the low-temperature pseudogap
state ��0 /kBT=10� for varying field strength; the solid curves from
inside out are for: �C	=0.5,1 ,2 ,4 ,6. Panels C and D: a large ap-
plied field �constant �C	=0.5� with varying pseudogap magnitude.
The solid curves in C are, from outside in: �0 /kBT=0,0.2,0.4,0.6
and in D, from inside out: �0 /kBT=0.6,1.0,1.4,1.8. The resistance
first decreases �in C� then increases �in D� as the pseudogap grows.
The angle dependence is reduced by the opening of a pseudogap
and is eventually replaced by that associated with the anisotropic
gap itself.
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ing both the magnitude and anisotropy of a pseudogap as it
emerges in the over or near optimally doped cuprates.

VI. CONCLUSIONS

Measurements of the interlayer resistivity in layered met-
als, made in a magnetic field with varying orientation, can be
used to characterize anisotropic properties within individual
layers. Among these properties, band-structure parameters
and the inelastic-scattering rate in various systems have al-
ready been extracted by this method. In this paper we have
extended the analysis of such measurements to incorporate a
pseudogap with d-wave symmetry. A general expression for
the interlayer resistivity in the pseudogap state was obtained
via a semiclassical calculation.

For a field along the layers, the main effect of a small
pseudogap is to smooth the dependence of the resistivity on
the in-layer field direction �B. This occurs because while
electrons only contribute to the normal-state interlayer cur-

rent if they are located at a particular point on the Fermi
surface so that they have a velocity parallel to the magnetic
field, quasiparticles with an energy smaller than the
pseudogap can contribute to the interlayer current from any-
where on the Fermi surface. The average magnitude of the
interlayer resistivity first decreases then subsequently in-
creases as the pseudogap opens, reaching a minimum value
when the magnitude of the pseudogap is comparable to the
temperature. We hope that this work will stimulate new ex-
periments and analysis to detect the presence and map the
anisotropy of a pseudogap in layered strongly correlated
materials.
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