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We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling
which has been controversial for many years. The theorem of inclusions, proven by Pollet et al. �Phys. Rev.
Lett. 103, 140402 �2009�� states that the Bose-glass phase always intervenes between the Mott insulating and
superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions
between gapped �Mott insulator� and gapless phases �Bose glass�. The apparent paradox is resolved through a
unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical
point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular
gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate
the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The
phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic
superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in
random potentials nearly 50 �!� times larger than the particle half-bandwidth. Finally, we comment on the
feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite
temperature.
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I. INTRODUCTION

The behavior of interacting bosons subject to static disor-
der is a fascinating subject1,24 whose study started more than
20 years ago.2,3 An important question raised in these papers
is whether a direct transition between the gapped Mott insu-
lating �MI� and superfluid �SF� phases is possible in the pres-
ence of disorder. Fisher et al.3 argued that a direct transition
was unlikely, though not fundamentally impossible. Since
then, the issue was a topic of hot debate with numerous
analytical, computational, and experimental results reaching
contradicting conclusions.4–27 Curiously, a large number of
direct6,9,10,12,17–19 and some approximate approaches7,8,11,14,22

observed this unlikely scenario.
In Ref. 1 a final verdict was cast by proving analytically

that for any generic bounded disorder a direct transition be-
tween a superfluid and a gapped insulating phase is not pos-
sible. Generic disorder is characterized by an arbitrary non-
vanishing probability distribution of disordered fields within
the bounds. Careful direct numerical simulations were in line
with this prediction: in the presence of disorder, no matter
how small, a Bose-glass �BG� phase always intervenes be-
tween the superfluid and Mott-insulator phases. The Bose-
glass phase is an insulator with localized particle states at the
chemical potential. Depending on system parameters these
states can best be described either as localized single-particle
levels or as isolated superfluid lakes. While the Bose glass
does not allow for phase coherence to extend over the entire
system, it is characterized by a finite density of states and
thus a finite compressibility and gapless particle and hole
excitations. Recently, a Bose-glass phase of Holstein-
Primakoff �HP� bosons has been observed in a quantum S

=1 /2 spin ladder compound.28 The phase intervenes between
a gapped spin-liquid phase and a condensate of HP bosons.
The result of Ref. 1 comes as a simple corollary of the theo-
rem of inclusions, which states that for any transition in a
system with generic disorder one can always find rare re-
gions of the competing phase on either side of the transition
line, provided the position of the line depends on the disorder
distribution function. However, there is a certain subtlety, if
not a contradiction: The theorem seems to exclude any tran-
sition between gapless and gapped phases in disordered sys-
tems and the question arises of how to reconcile the theorem
with the phase transition between the gapped Mott insulator
and the gapless Bose-glass phase.

Previously it was conjectured3,23,24 but never proven rig-
orously that the Mott-insulator—Bose-glass transition occurs
when the bound � on disorder in the local chemical potential
equals Eg/2. Here Eg/2=min�Ep ,Eh� is the smaller of the par-
ticle �Ep� and hole �Eh� excitation gaps in the ideal Mott
insulator �assuming that one works in the grand-canonical
ensemble�.1 If we denote by �+ and �− the chemical-
potential thresholds for doping the Mott insulator with par-
ticles and holes, respectively, then Ep=�+−� and Eh=�
−�−. The gap for creating a particle-hole excitation �the MI
gap�, Eg=Ep+Eh=�+−�−, is independent of the global
chemical potential �. At zero temperature, the chemical po-
tential of the Mott-insulator state with integer filling factor
can be anywhere between the two thresholds leading to an
ambiguity in the value of Eg/2. The ambiguity is absent in the
canonical ensemble, where particle and hole excitations can
be created only in pairs, to preserve the total number of
particles. The grand-canonical counterpart of the canonical
situation corresponds to the chemical potential being kept in
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the middle of the gap, �= ��+−�−� /2, in which case Ep
=Eh=Eg/2=Eg /2. Therefore, below we always assume this
choice of �.

The above-mentioned �c=Eg/2 conjecture is based on the
assumption that the state remains gapped for ��Eg/2. For
��Eg/2 the state can be shown to be gapless because rare
statistical fluctuations guarantee the existence of arbitrarily
large homogeneous regions with disorder mimicking
chemical-potential shifts exceeding particle or hole gaps. In
other words the conjecture was that the transition is of the
Griffiths type. An alternative scenario would claim that the
transition point happens at smaller values of � due to subtle
interplay between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario is the
only one possible for the gapped-to-gapless transitions. That
is, the vanishing of the gap at the critical point is exclusively
due to a zero concentration of rare regions in which extreme
fluctuations of disorder reproduce a regular gapless system.
In the vicinity of the critical point, the gapless phase must
necessarily be “glassy” because it consists of large gapless
�in our case superfluid� domains embedded in a gapped state.
The absence of phase coherence between domains is caused
by their diverging distance between at the critical line. To
illustrate these general conclusions, we consider the exactly
solvable random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the Bose-
Hubbard model is fixed by theorems, it is both interesting
and important to determine transition lines and properties of
phases numerically. In particular, this is necessary for reveal-
ing potential difficulties in observing and identifying the
phases. To this end, we have calculated the full phase dia-
gram of the disordered three-dimensional �3D� Bose-
Hubbard model, shown in Fig. 1, by quantum Monte Carlo
simulations based on the worm algorithm.31,32 This phase

diagrams shows a few remarkable features: an infinite slope
of the superfluid—Bose-glass line �c�U�, in the weakly in-
teracting gas U / t�1, as predicted by the scenario of perco-
lating superfluid lakes developed in Ref. 29 and an enormous
scale for the superfluid—Bose-glass transition, � / t�300 at
intermediate coupling strength, 1�U / t�30. Here U is the
strength of the on-site repulsion between bosons and t is the
amplitude of hopping transitions between the nearest-
neighbor sites �see Fig. 1�. The percolation character of su-
perfluidity in the vicinity of the superfluid to Bose-glass tran-
sition, is most likely the reason for the enormous scale. In
this range of parameters, the localized states have a localiza-
tion length of the order of one lattice spacing as opposed to
the picture of large superfluid lakes of Ref. 29.

The nature of the transitions and small superfluid fraction
in the SF phase have profound implications for the experi-
mental observation of the phase diagram. We focus here on
cold-atom experiments, where recent experimental claims
are partly in line, partly in contradiction with the phase dia-
gram shown above. We argue that present-day cold-atom ex-
periments face numerous difficulties in obtaining the full
phase diagram; for example, the Griffiths-type Bose-glass—
Mott-insulator transition requires macroscopically large sys-
tem sizes to properly identify the Bose-glass phase. We also
provide arguments why experiments seem to have missed the
superfluid “finger” above the Mott insulator in Fig. 1, though
the right scale for the transition between the superfluid phase
and the Bose-glass phase for very strong disorder has been
revealed.33

The paper is organized as follows. In Sec. II we introduce
the model and recapitulate the theorem of inclusions. The
transition between the Mott-insulator and Bose-glass phases
is discussed in Sec. III and illustrated by the exactly solvable
random transverse Ising model in one dimension. We pro-
ceed with a discussion of the full phase diagram in Sec. IV
and results of cold-atom experiments in Sec. V. The conclu-
sions are presented in Sec. VI.

II. MODEL AND THEOREM OF INCLUSIONS

The disordered Bose-Hubbard model on a simple-cubic
lattice is defined as the Hamiltonian

H = − t�
�jk�

âj
†âk + �

j

�� j − ��n̂j +
U

2 �
j

n̂j�n̂j − 1� , �1�

where âj
† is the creation operator of a boson on a site j; the

symbol � . . . � denotes summation over nearest-neighbor pairs
of sites; n̂j = âj

†âj is the boson density operator; and � j is the
disordered on-site potential. Without loss of generality, we
take � j to be independent random variables distributed ac-
cording to the probability density p�� /��. The probability
distribution satisfies the normalization condition 	−1

1 dup�u�
=1, has zero first moment 	−1

1 duup�u�=0 �otherwise it is
absorbed in the definition of ��, and is taken to be bounded,
that is, p�u�=0 if 
u
�1. Formally, the disorder bound � and
the disorder distribution dispersion � are independent param-
eters. For the most common choice of the uniform distribu-
tion p�u�=const �used in our numerical simulations as well�,
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FIG. 1. �Color online� Phase diagram of the disordered three-
dimensional Bose-Hubbard model at unity filling, obtained by a
finite-size analysis of winding numbers, similar as was done in Ref.
1. In the absence of disorder, the system undergoes a quantum
phase transition between SF and MI phases. The presence of disor-
der allows for a compressible, insulating BG phase, which always
intervenes between the MI and SF phases because of the theorem of
inclusions �Ref. 1�. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At U / t→0,
the SF-BG transition line has an infinite slope �Ref. 29�. The data
for the BG-MI transition line are taken from Ref. 30 with error bars
that are smaller than the line thickness.
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we have �2=�2 /3. A complete characterization of disorder is
based on infinite number of parameters fixing the shape of
p�u�. One may also add parameters which control correla-
tions between potentials on different lattice sites, etc. Collec-
tively, we denote all these parameters by 	 and identify them
with the definition of a particular model of disorder.

Suppose now that a disordered system, described by the
Hamiltonian similar to Eq. �1�, undergoes a transition from
phase A to phase B—let us for the moment not specify the
nature of phases—as the disorder bound � increases and that
the transition happens at a critical point �c, see Fig. 2. One
obviously expects that �c depends on the disorder strength �,
correlations between the sites, etc. For example, if correla-
tions are long ranged and p�u� is very close to a � distribu-
tion, we hardly have any disorder at all no matter what the
bound is while for the uniform uncorrelated distribution dis-
order can radically change system properties for large �. Let
us define the notion of the generic A-B transition as a tran-
sition with some �c�	� dependence. Figure 2 then proves that
close to the transition, if ���c, there exist domains in phase
B which locally look like phase A. Indeed, in the system
described by Eq. �1� at ���c one can always find statisti-
cally rare domains where disorder realization is such that,
within that domain, �i represent a typical realization of an-
other disorder distribution with a bound ��c, see the dashed
line going from B to A in Fig. 2. Locally these domains are
in the phase A. The probability of observing such domains
decreases exponentially with their size.

What is more important is that close enough to the tran-
sition when ���c, there exist domains in phase A which
locally are in phase B. At first glance, this is hard to justify
because the argument of the previous paragraph cannot be
used as � has to be less than �c everywhere. However, if we
think in terms of all possible models of generic disorder we
recognize that the actual value of �c depends on the details
of the distribution function p�u�. This implies that it is al-
ways possible to choose 	 such that �c�	��� and thus there
are going to be domains in phase A, albeit exponentially rare

as they get larger, where local disorder is indistinguishable
from a typical realization of disorder with the distribution
p	�u� and �c�	���, see the dashed line going from phase A
to phase B in Fig. 2. These domains will contain phase B.

The above argument shows that it is not possible for
phase A to be gapped if phase B is gapless. Indeed, the B
domains of arbitrarily large size within phase A guarantee
that phase A is also gapless. As a consequence, no direct
transition between the gapped Mott-insulator phase and the
gapless superfluid phase is possible.

III. GRIFFITHS TRANSITIONS

A. An exception implied by the rule

The theorem of inclusions rests on the dependence of the
critical point on disorder properties such as its dispersion,
correlations, etc. Still one expects the gapful-to-gapless
MI-BG transition to exist, in apparent contradiction with the
theorem. The paradox is resolved by considering the only
remaining possibility, namely, that the transition point �c
does not depend on 	. In this case one cannot use arguments
of the previous section to prove that in the vicinity of the
transition point one can find arbitrary large domains of gap-
less phase B �we identify B with the Bose glass� inside the A
�identified with the Mott insulator�.2

The transition which depends only on the bound � cannot
be linked to any local physics because as the dispersion �
goes to zero the system becomes indistinguishable from a
pure one on larger and larger scales. This forces one to con-
clude that the transition mechanism itself is necessarily
based on rare statistical fluctuations which explore the pos-
sibility of reaching the disorder bound at all sites on larger
and larger scales. Suppose that a gapped phase can be ren-
dered gapless by applying a regular external field H. For the
Mott insulator such a field is a global chemical-potential shift
��; whenever �+�� is above �+ or below �− the system is
doped with particles or holes and enters the superfluid state.
The pathological insensitivity of the critical value �c on 	 is
natural for this scenario of rare regions in which the disorder
fluctuation is reproducing a regular pure system in an exter-
nal field. When the disorder bound allows one to reach the
critical value of the field, a transition occurs. We recognize
that this mechanism is nothing but the conjectured Griffiths-
type MI-BG transition when the vanishing of the gap at the
critical point is due to an infinitesimal concentration of rare
regions in which the fluctuation of disorder mimics a homo-
geneous chemical-potential shift.3 In the general case it can
be any regular external field whose amplitude scales with �.

We thus conclude that that gapless-to-gapful transitions in
disordered systems are possible if, and only if, they are of the
Griffiths type and the transition line is fully determined by
the properties of a pure system. In this case the disorder
bound protects the gapped phase A �the Mott insulator� from
having rare regions of phase B embedded in it. At the same
time, when � is only slightly larger than �c, then phase B
appears to be identical to phase A locally except that it has
rare, well-separated regions containing a gapless pure sys-
tem. This means B cannot be superfluid, i.e., it is a glassy
state.

�

A B
�

C
�0

�
�

FIG. 2. �Color online� A sketch of the generic phase-transition
line between some phases A and B in the plane of disorder distri-
bution parameters � and 	, where � is the bound and 	 is one of the
infinite number of parameters characterizing the disorder distribu-
tion function, e.g., dispersion and its spatial correlations. Dashed
lines with arrows originate from points which determine disorder
properties in the macroscopic �thermodynamic limit� system and
end at points which characterize disorder parameters in an arbi-
trarily large, but finite, domain as a result of a rare statistical fluc-
tuation in the same system.
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B. Illustration

To illustrate the arguments presented above, we consider a
disordered one-dimensional quantum model that shares some
features with Eq. �1� but is exactly solvable. It is closely
related to the two-dimensional �2D� classical Ising model
with bonds whose strength depends randomly on their posi-
tion in one spacial direction while being independent of the
position in the second spatial direction. This model was first
solved in Ref. 34. It is characterized by a high-temperature
gapped paramagnetic phase, low-temperature gapped ferro-
magnetic phase, and the intermediate Griffiths phase.35 The
Griffiths phase is akin to the Bose-glass phase in model Eq.
�1� while the gapped phases are similar to the Mott insulator.
The nature of the transition between these phases can thus be
clarified with the help of the exact solution �see also the
discussion in Ref. 36�.

The model we consider here is a continuum limit in the
second spatial direction, which we interpret as time. Then it
is equivalent to the random transverse field one-dimensional
Ising model, which we can write as

H = �
j

�t
 j
x
 j+1

x + hj
 j
z� . �2�

Here 
 j
x and 
 j

z are Pauli matrices, acting on a jth site of
a linear chain while hj are random independent variables.
The probability distribution p�h� is taken to be uniform on
the h� �h0−� ,h0+�� interval, where h0 and � are positive
parameters such that h0��. In principle, one could also add
disorder to the Ising coupling t, however, this is not needed
for the purpose of our illustration here.

Model in Eq. �2� is solved exactly by the Jordan-Wigner
transformation,37 which became standard for these types of
problems. Let us briefly review this method. With the nota-
tions 
+= �
x+ i
y� /2 and 
−= �
x− i
y� /2 we introduce the
Jordan-Wigner fermions

âj = 
 j
−ei��k�j
k

+
k
−
, âj

† = 
 j
+ei��k�j
k

+
k
−
. �3�

They satisfy the usual fermionic anticommutation rela-
tions

�aj
†, âk�+ = � jk, �âj, âk�+ = 0. �4�

In terms of these, the transverse field Ising model becomes

H = �
j

hj�âj
†âj − âjâj

†� + t�
j

�âj
† − âj��âj+1

† + âj+1� . �5�

This Hamiltonian has the standard Bogoliubov form familiar
from the theory of superconductivity and can be rewritten as

H = �
jk

�âj
† âj �H jkâk

âk
† � , �6�

where

H jk =
1

2
D jk + D jk

T D jk − D jk
T

D jk
T − D jk − D jk − D jk

T � . �7�

and D is a matrix defined as

D jk = hj� jk + t� j,k−1. �8�

The problem now reduces to diagonalizing the real symmet-
ric matrix H. To do so, it is convenient to perform first a
unitary �actually, in this case, orthogonal� transformation de-
fined as

U =
1
�2

 1 1

− 1 1
�, H̃ = UTHU . �9�

This gives

H̃ =  0 D
DT 0

� . �10�

We recognize in H a random one-dimensional Hamiltonian
in the BDI symmetry class, according to the classification

scheme of Ref. 38. This means that H̃ is real and that there
exists a matrix �3, in case of Eq. �10� given by

�3 = 1 0

0 − 1
� , �11�

such that

�3H̃�3 = − H̃ . �12�

The arguments of Ref. 38 relate the peculiar properties of
the spectrum of Hamiltonian �10� which are discussed below
to the existence of the symmetry Eq. �12�. The problem de-
fined by Hamiltonian �10� together with Eq. �8� was solved
exactly over thirty years ago in Ref. 39 by the transfer-matrix
techniques, now standard in one-dimensional disordered sys-
tems. In principle, we could use this solution to extract all
the information we need about the random transverse field
Ising model, Eq. �2�, and its phase transitions. Yet the solu-
tion presented in Ref. 39 is still relatively involved. To illus-
trate the main features of the phase transitions, we can go to
the continuum limit of Eq. �10�. In the continuum, the cor-
responding problem was solved in Ref. 40. Their method is
very simple and versatile so we would like to put it to use
here.

The continuum limit in Hamiltonian H̃ occurs close to the
center of the band or to the momentum �, when hj do not
deviate much from some average value h0. More formally,
we need to further transform the Hamiltonian by the unitary
transformation given by

U = ��− 1� j� jk 0

0 �− 1� j� jk
� , �13�

which keeps the structure of H̃ intact but with the matrix D
now given by

D jk = hj� jk − t� j,k−1 = − t�� j,k−1 − � jk� + �hj − t�� jk. �14�

Now it is clear that the continuum limit of our problem is

given by the same matrix H̃ of Eq. �10� with
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D = ta�−
d

dx
+ V�x�� . �15�

Here the continuum variable x is taken to be equal to j and a
is the lattice spacing while

V�x� =
hj − t

ta
. �16�

In the continuum, V�x� can be thought of as a spatially
random potential. Now the methods of Ref. 40 �as adopted
for this problem in Ref. 41� can be brought to bear on this

problem. One result is that the spectrum of H̃ is fully gapped
if V�x� is everywhere positive or everywhere negative. Re-
calling the definition of V�x� via hj and properties of the
probability distribution p�h�, this implies h0� t+� or h0� t
−�. In other words, hj are either all greater than t or all
smaller than t.

Consider, for example, the case of V�0. Suppose one
increases � until regions appear where V�x��0 �or hj � t�.
As soon as they appear, the spectrum of H becomes gapless.
The density of states for positive energies E can be computed
using the following construction. Take all regions where
V�x��0. Consider the probability P�E� that

ln E � �
x1

x2

dxV�x� , �17�

where the integration goes over one of the continuous inter-
vals �x1 ,x2� where V�x��0. Then the density of states is
given by

�E� �
dP�E�

dE
�18�

with ��−1. We expect this probability to be exponentially
small in ln E or

P�E� � exp��� + 1�ln E� , �19�

where � is some number. Then

�E� � E�. �20�

The derivation of Eqs. �17�, �18�, and �20� is given in Ref.
41, and this completes the exact solution. We are now in a
position to fully describe the transition from a gapped para-
magnetic phase with all hj � t to the gapless Griffiths phase
as the disorder strength � is increased. For ��h0− t, large
rare regions appear where V�x��hj − t is negative. We can
use Eq. �17� to calculate �, whose precise value depends on
the probability distribution p�h� but which, in general, is
equal to some large number decreasing as � is increased past
h0− t. Thus the low-energy states which appear as � is in-
creased above the threshold h0− t will be suppressed by a
power law, according to Eq. �20�. The Griffiths phase we
obtained in this way is characterized by gapless excitations
whose density is suppressed at low energy. Sometimes such a
phase is referred to as a phase with a pseudogap �similar to a
Mott-glass phase arising in systems with exact particle-hole
symmetry and off-diagonal disorder,20,42 see also Refs. 43
and 44�.

We observe that the transition from the gapped paramag-
netic phase to the gapless �but glassy� Griffiths phase pro-
ceeds exactly via the route described in this paper. When �
�h0− t, no disorder, no matter what the details of its distri-
bution are, can create gapless states. The transition to the
Griffiths phase occurs when disorder is just strong enough to
create regions where gapless excitations can reside because
in this region an effective field h=h0−� can be made arbi-
trarily close to the critical value hc= t. We note that the dif-
ference between the Bose-Hubbard model Eq. �1� and the
random transverse field Ising model Eq. �2� lies in the fact
that Eq. �2�, even in the fully clean �no disorder� regime,
does not have a truly gapless phase, such as the superfluid in
the Bose-Hubbard model. Yet the fact that Eq. �2� has a
critical point in the absence of disorder is sufficient to create
a glassy Griffiths phase with gapless excitations described by
the power-law density of states. Identical arguments describe
the transition from the gapped ferromagnetic phase to the
Griffiths phase if h0� t as disorder strength � is increased
past t−h0.

IV. GLOBAL PHASE DIAGRAM

In view of ongoing experimental activity to study the
physics of interacting disordered bosons in optical lattice and
to connect the limit of strong interactions where disorder
competes with the physics of Mott insulators with the phys-
ics of localization in weakly interacting systems, we per-
formed first-principles quantum Monte Carlo simulations of
the model, Eq. �1�. The results at unity filling are presented
in Fig. 1. As predicted by the theorem of inclusions, the
superfluid and Mott-insulator phases are always separated by
the Bose-glass phase at any ��0.

An interesting feature of the phase diagram from Fig. 1 is
the reentrant nature of the Bose-glass—superfluid transition
if the interaction strength is increased at fixed disorder �and
as long as disorder is not too strong to suppress the SF phase
completely�, confirming previous studies.6,45 Figure 3 shows
this reentrant behavior on the more familiar ��+6t� /U vs
t /U phase diagram. The dashed-dotted line represents a line
of unit filling, �n�=1, as the interaction strength is increased
for fixed disorder strength. If the disorder strength is in-
creased, the Bose-glass—superfluid boundary line moves off
to the right so that the BG phase grows.

(

MI

t/U

SF

BG
1−

∆

∆

∆

/U

/U

/U

µ+6t)/U

FIG. 3. The phase diagram ��+6t� /U vs t /U of the Bose-
Hubbard model, adapted from Ref. 3. A dashed-dotted line repre-
sents the process whereby the interaction strength U is increased at
a fixed disorder � in a system with unity filling factor, in the regime
of the reentrant SF-BG transition.
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Somewhat surprisingly, in Fig. 1, we find that the super-
fluid phase extends to the region of very strong interactions
and disorder where both U and � are about two orders of
magnitude larger than the hopping amplitude. This narrow
fingerlike region has fragile superfluid properties: being sur-
rounded by the insulating state it has to have low transition
temperatures to the normal state and small superfluid density
at T=0. Indeed, both quantities go to zero at the phase
boundary. The superfluid transition temperature at � / t=65
and U / t=60 in the middle of the finger base is as low as
Tc / t�0.37�5�. Correspondingly, weak coherence properties
�small condensate fraction� are expected in the finger region.
Moreover, they can be observed only on sufficiently large
scale because the correlation length diverges along the
boundary.

In another region of the phase diagram in Fig. 1, for U
→0, the data clearly indicates an infinite derivative of the
�c�U� curve, in line with the prediction

�c � U1/4 �21�

of Ref. 29. The results of Ref. 29 were based on Gaussian
random disorder as opposed to a bound disorder distribution
discussed in this paper. However, we find that nevertheless
their arguments remain qualitatively correct in our case too.
Indeed, the nature of the Bose-glass—superfluid transition at
weak-interaction strength when U� t and �� t, as discussed
in Ref. 29, is based on percolation between localized states
with energies E��. In this energy range, for states with
large localization length, the Gaussian character of disorder
fluctuations is guaranteed by the central limit theorem.

Quantitatively, we find that extremely large disorder is
necessary to localize bosons even when interactions are rela-
tively weak �U / t=1 in terms of the lattice model parameters
corresponds to the gas parameter nas

3�10−4 for the continu-
ous weakly interacting gas with the s-wave scattering length
as�. At moderate interaction strength and �� t we expect that
the transition between the superfluid and the Bose-glass
phase is still driven by percolation. Because of the imposed
commensurability the mechanism differs from the conven-
tional Anderson localization argument which would predict a
critical disorder on the order of the bandwidth. For strong
disorder all single-particle states are localized with the local-
ization length close to unity �in terms of the lattice
constant�.46 The local �site� Hamiltonian

Hloc = �� − ��n +
U

2
n�n − 1� �22�

can be used to determine the site-occupation number as

n =
U/2 + � − �

U
, �23�

which is valid if n�0 or ��U /2+�. Otherwise, n=0. As
long as ��U the density n can be considered as a continu-
ous function of � and there is no need to take into account
that n can only be integer. The average density is now

�n� =
1

2�
�

−�

U/2+� U/2 + � − �

U
d� . �24�

Setting �n� equal to unity leads to

� = − U/2 − � + 2�U� . �25�

A site will be occupied if its disorder lies within the
�−� ,U /2+��= �−� ,−�+2�U�� interval. The correspond-
ing probability is �U /�. If we assume that superfluidity re-
quires that occupied sites form a percolating cluster then for
a simple-cubic 3D lattice with the percolation threshold pc
�0.31 �Ref. 47� we find the transition line at

U

�
�

1

10
. �26�

This estimate is in good quantitative agreement with the
Monte Carlo results shown in Fig. 1 for intermediate cou-
pling before the Mott physics becomes important at U / t
�Uc / t=29.34�2�.

In turn, the assumption made above relies on the fact that
moving a boson from one occupied site to another requires
energy of the order of U, which is independent of disorder,
while moving it to an empty site requires a much larger
energy on the order of �. We note in passing that while the
percolation scenario drives the system toward the Bose-
glass—superfluid transition and thus defines, with certain ac-
curacy, the position of the critical line, the criticality of the
transition is most likely to be universal everywhere on the
phase diagram.

V. IMPLICATIONS FOR COLD ATOM AND SPIN
SYSTEMS

Recently, experiments with ultracold gases have ad-
dressed the disordered three-dimensional Bose-Hubbard
model.33,48 The random potential is generated using a fine-
grained optical speckle field with correlation length compa-
rable in size to the lattice spacing but the disorder realization
is usually kept fixed. The system is probed by looking at
interference images giving access to the condensate fraction,
n0, provided the time-of-flight duration is sufficiently long
and n0 is large enough to be resolved in a trapped system.
Transport properties are obtained by measuring the motion of
the center of mass of the atomic cloud immediately after an
applied impulse.49–51

There are numerous considerations one has to keep in
mind when trying to compare any experimental data to the-
oretical predictions for the homogeneous thermodynamic
system. The optical speckles not only introduce diagonal site
disorder but also effect the on-site repulsion strength and the
hopping amplitude. In addition, there is a parabolic confine-
ment trap rendering the system mesoscopic and inhomoge-
neous. This means that there is often a mixture of phases in
the trap, such as the wedding-cake structure where commen-
surate Mott domains are separated by liquid regions. Finally,
experiments are done at low but finite temperature. All of
this complicates a direct comparison with the theory. It is
however believed that the experiments can capture the
phases and the transitions to some degree.

GURARIE et al. PHYSICAL REVIEW B 80, 214519 �2009�

214519-6



The lack of a genuine compressibility measurement and a
direct measurement of the gap make it difficult for current
experiments to distinguish between the Mott-insulator and
Bose-glass phases �they only distinguish between superfluid
and insulating phases33�. Moreover, the nature of the Grif-
fiths transition prevents any experiment from direct observa-
tion of the transition line because this would require astro-
nomically large system sizes. As discussed above, on short
scales the Bose-glass phase does appear identical to the
Mott-insulator phase. Since differentiating between the Mott-
insulator and Bose-glass phases in the neighborhood of the
Uc / t point is not possible experimentally, we will discuss
here only the superfluid—Bose-glass transition.

Experiments find that disorder can induce a superfluid-to-
insulator transition but they see no evidence for a disorder-
generated insulator-to-superfluid transition, in apparent con-
tradiction with Fig. 1. At this point we recall that
superfluidity in the finger region is easily destroyed even by
small finite temperature because even at the base of the fin-
ger at � / t=65 and U / t=60 the transition temperature is only
Tc / t�0.37�5�—such low temperatures were never reported
in the literature for the Bose-Hubbard model in the strongly
correlated regime. Furthermore coherence is weak even for
T�Tc, see Fig. 5. It is likely that both effects are important
in understanding why this region will be missed in the time-
of-flight image.

On the positive side, experiments do find the superfluid—
Bose-glass transition for U / t=25 and � /U=10 or � / t=250.
From our single-site localization argument in combination
with percolation it is clear that there is no fundamental prob-
lem in observing this transition experimentally at sufficiently
low temperature because it is dominated by the short-range
physics �the size of the superfluid region shrinks at finite
temperature�. This finding gives the right order-of-magnitude
answer when compared to the phase diagram shown in Fig.
1. We note that a precise determination of the transition point
requires sufficiently big samples that are uniform in the
middle �the Monte Carlo results had to be extrapolated to the
thermodynamic limit since our answers drifted about 10%
for the lowest system sizes studied� and needs an accurate
thermometry to study temperature effects. Our Monte Carlo
results for the superfluid density as a function of disorder at
fixed U / t=30, see Fig. 4 indicate that ns is severely depleted
at large disorder and thus transition temperatures in this re-
gion are small.

Some of the difficulties discussed here are specific to the
Mott physics at integer filling factor. Away from commensu-
rability, cold-atom experiments can probably be successful in
discerning the insulating glassy phase from the superfluid
one.

While at the moment cold-atom experiments have diffi-
culties in obtaining lower temperatures, larger system sizes,
and distinguishing between different insulating phases, a
Bose-glass phase of HP bosons has recently been observed in
a quantum S=1 /2 spin-ladder compound.28 A compressible
but insulating glassy phase was found between a gapped dis-
ordered spin-liquid phase and a condensate of HP bosons
when the magnetic field was increased. Being generic, the
theorem of inclusions applies and states that �i� the transition
between the spin-liquid phase and the glassy phase of HP

bosons is of the Griffiths type, �ii� the glassy phase always
intervenes between the spin-liquid phase and the condensate
of HP bosons, and �iii� the disorder is always relevant for
criticality.

VI. CONCLUSIONS

Summarizing, we have shown that Griffiths-type transi-
tions form a unique exception to the theorem of inclusions.
This immediately implies that all the gapful-to-gapless phase
transitions in disordered systems are of the Griffiths type,
and, correspondingly, close enough to the critical point, the
structure of the gapless phase is what can generically be
referred to as Griffiths glass: The system of distinct gapless
domains containing a regular gapless system embedded into
the gapped phase. The generic scenario was illustrated by the
example of the exactly solvable random transverse-field
Ising model. In particular, it follows directly from the theo-
rem that the Mott-insulator–Bose-glass phase transition as
well as the transition from a gapped spin liquid to a glass of
Holstein-Primakoff bosons28 are of the Griffiths type. With
the local shift of the chemical potential being the relevant
field closing the MI gap, the critical line is given by the
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FIG. 4. �Color online� Superfluid density as a function of disor-
der strength � at fixed interaction strength U / t=30 for a system
size L=8�8�8 and inverse temperature �t=10. The low value of
the superfluid density shows the fragility of the superfluid finger in
the large portion of the phase diagram Fig. 1.
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FIG. 5. �Color online� Superfluid density as a function of inter-
action strength U at fixed disorder strength � / t=65 for a system
size L=8�8�8 and inverse temperature �t=10. The low value of
the superfluid density is indicative of weak coherence properties
and low transition temperature to the normal state in the “finger”
region.
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condition 2�=Eg, where � is the bound of disorder and Eg is
the particle-hole gap in the pure system.

The full phase diagram has been presented in Fig. 1 and
we have discussed the reason behind extraordinary stability
of the superfluid phase against disorder and interactions. In
combination with the analytical results in one dimension,13

numerical results in 2D,20 and the theorem of inclusions,1

this study completes a comprehensive description of the dis-
ordered Bose-Hubbard model at zero temperature in all
physically relevant dimensions.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under Grants No. PHY-0653183 and No. DMR-
0449521, and by the Swiss National Science Foundation.
The authors acknowledge hospitality of the Aspen Center for
Physics where this work has been initiated. We are grateful
to I. Aleiner, J. Chalker, B. De Marco, E. Demler, and P.
Weichman for stimulating discussions. Parts of the simula-
tions were performed on the Brutus cluster at ETH Zurich.

1 L. Pollet, N. V. Prokof’ev, B. V. Svistunov, and M. Troyer, Phys.
Rev. Lett. 103, 140402 �2009�.

2 T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 �1988�.
3 M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,

Phys. Rev. B 40, 546 �1989�.
4 J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 �1996�.
5 R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Phys. Rev.

Lett. 66, 3144 �1991�.
6 W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett. 67,

2307 �1991�.
7 L. Zhang and M. Ma, Phys. Rev. B 45, 4855 �1992�.
8 K. G. Singh and D. S. Rokhsar, Phys. Rev. B 46, 3002 �1992�.
9 M. Makivić, N. Trivedi, and S. Ullah, Phys. Rev. Lett. 71, 2307

�1993�.
10 M. Wallin, E. S. Sørensen, S. M. Girvin, and A. P. Young, Phys.

Rev. B 49, 12115 �1994�.
11 F. Pázmándi, G. Zimányi, and R. Scalettar, Phys. Rev. Lett. 75,

1356 �1995�.
12 R. V. Pai, R. Pandit, H. R. Krishnamurthy, and S. Ramasesha,

Phys. Rev. Lett. 76, 2937 �1996�.
13 B. V. Svistunov, Phys. Rev. B 54, 16131 �1996�.
14 F. Pázmándi and G. T. Zimányi, Phys. Rev. B 57, 5044 �1998�.
15 J. Kisker and H. Rieger, Phys. Rev. B 55, R11981 �1997�.
16 I. F. Herbut, Phys. Rev. Lett. 79, 3502 �1997�.
17 N. Trivedi, Condensed Matter Theories �Nova, New York,

1997�, Vol. 12, pp. 141–157.
18 P. Sen, N. Trivedi, and D. M. Ceperley, Phys. Rev. Lett. 86,

4092 �2001�.
19 J.-W. Lee, M.-C. Cha, and D. Kim, Phys. Rev. Lett. 87, 247006

�2001�.
20 N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 92, 015703

�2004�.
21 J. Wu and P. Phillips, Phys. Rev. B 78, 014515 �2008�.
22 U. Bissbort and W. Hofstetter, EPL 86, 50007 �2009�.
23 P. B. Weichman and R. Mukhopadhyay, Phys. Rev. B 77,

214516 �2008�.
24 P. B. Weichman, Mod. Phys. Lett. B 22, 2623 �2008�.
25 P. Buonsante, F. Massel, V. Penna, and A. Vezzani, J. Phys. B

40, F265 �2007�.
26 P. Buonsante, F. Massel, V. Penna, and A. Vezzani, Phys. Rev. A

79, 013623 �2009�.
27 F. Krüger, J. Wu, and P. Phillips, Phys. Rev. B 80, 094526

�2009�.

28 T. Hong, A. Zheludev, H. Manaka, and L.-P. Regnault,
arXiv:0909.1496 �unpublished�.

29 G. M. Falco, T. Nattermann, and V. L. Pokrovsky, Phys. Rev. B
80, 104515 �2009�.

30 B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov,
Phys. Rev. B 75, 134302 �2007�.

31 N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, J. Exp.
Theor. Phys. 87, 310 �1998�.

32 L. Pollet, K. Van Houcke, and S. M. A. Rombouts, J. Comput.
Phys. 225, 2249 �2007�.

33 M. Pasienski, D. McKay, M. White, and B. DeMarco,
arXiv:0908.1182 �unpublished�.

34 B. M. McCoy and T. T. Wu, Phys. Rev. Lett. 21, 549 �1968�.
35 R. B. Griffiths, Phys. Rev. Lett. 23, 17 �1969�.
36 D. S. Fisher, Phys. Rev. B 51, 6411 �1995�.
37 T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36,

856 �1964�.
38 M. Zirnbauer, J. Math. Phys. 37, 4986 �1996�.
39 T. P. Eggarter and R. Riedinger, Phys. Rev. B 18, 569 �1978�.
40 A. Comtet, J. Desbois, and C. Monthus, Ann. Phys. �N.Y.� 239,

312 �1995�.
41 V. Gurarie and J. T. Chalker, Phys. Rev. B 68, 134207 �2003�.
42 T. Giamarchi, P. Le Doussal, and E. Orignac, Phys. Rev. B 64,

245119 �2001�.
43 E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael, Phys. Rev.

Lett. 93, 150402 �2004�.
44 K. G. Balabanyan, N. Prokofev, and B. Svistunov, Phys. Rev.

Lett. 95, 055701 �2005�.
45 W. Krauth and N. Trivedi, EPL 14, 627 �1991�.
46 B. Bulka, M. Schreiber, and B. Kramer, Z. Phys. B: Condens.

Matter 66, 21 �1987�.
47 M. B. Isichenko, Rev. Mod. Phys. 64, 961 �1992�.
48 M. White, M. Pasienski, D. McKay, S. Q. Zhou, D. Ceperley,

and B. DeMarco, Phys. Rev. Lett. 102, 055301 �2009�.
49 D. McKay, M. White, M. Pasienski, and B. DeMarco, Nature

�London� 453, 76 �2008�.
50 In Ref. 23, the convexity of free energy as a function of �i—the

crucial assumption in that paper—is a conjecture that might hold
for the Bose-Hubbard model but is incorrect in general as shown
by several counter examples.

51 Given an infinite number of continuous parameters determining
disorder properties the probability that any particular model of
disorder 	0 is a minimum is zero.

GURARIE et al. PHYSICAL REVIEW B 80, 214519 �2009�

214519-8


