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The loop-current state discovered in the pseudogap phase of cuprates breaks time-reversal symmetry and
lowers the point-group symmetry of the crystal. The order parameter and the magnetic structure within each
unit cell which is associated with it can be described by a toroidal moment parallel to the copper-oxide planes.
We discuss lattice point-group symmetry of the magnetic structure. As an application, we discuss a few effects
that necessarily accompany order parameter in the pseudogap phase. The magnitude estimated for these
specific effects makes them hard to observe because they rely on the small magnetic fields associated with the
order parameter. Effects, associated with the electronic energies are much larger. Some of them have already
been discussed.
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I. INTRODUCTION

Polarized neutron-scattering experiments, dichroic angle-
resolved photoemission experiments and magnetization
measurements1–5 reveal the predicted line of phase
transition6 in cuprates at pseudogap temperature T��x�. At the
present time four classes of cuprates have been studied, all of
which show consistency with the same form of order. The
purpose of this paper is to present a symmetry analysis of the
order parameter, which is necessary for further work. The
neutron spin-flip intensity observed in the experiment in the
pseudogap phase is consistent with the magnetic structure
that transforms under the two-dimensional irreducible repre-
sentation Eu of the point group of the copper-oxide lattice,
D4h. The order parameter L that can be used to characterize
the magnetic structure of such symmetry is a polar time-
reversal-odd vector parallel to the copper-oxide planes. Such
a vector has been termed a “toroidal” or an “anapole” mo-
ment in the literature. The relation of such an order param-
eter to the magnetic structure and the loop currents in the
unit cell of cuprates is specified.

Several experiments other than those which measure the
order parameter directly1–5 have already been proposed
which lead to unusual effects due to the coupling of the order
parameter to external probes. These include several forms of
dichroism in x-ray scattering7 and second-harmonic genera-
tion in optical experiments.8 As an application of the sym-
metry analysis presented in this paper, we discuss few other
physical phenomena that necessarily accompany the order
parameter L. These are crystal lattice distortions which are
second order in the order parameter, crystal distortion linear
in an applied uniform field and linear in the order parameter,
and magnetoelectric phenomena in transport properties.
These are effects related to the small energies associated with
the magnetic field due to the order parameter. Much larger
effects are associated with the electronic energies associated
with the order parameter. This distinction is similar to the
difference between the exchange energies and energies of
magnetic fields associated with spin-moment order. For ex-
ample, the spin splitting in ferromagnetic iron �ordered mo-
ment of �2.5�B /unit cell� is about 1 eV while the magne-

tostrictive distortion due to the magnetic fields is a lattice
distortion only about one part in 103.

II. LOOP-ORDER PARAMETER: TOROIDAL MOMENT

The polarized neutron-scattering experiments1,2 reveal an
elastic spin-flip intensity on top of the subset of Bragg peaks
in pseudogap phase in cuprates. No new Bragg peaks appear;
the magnetic structure responsible for spin-flip intensity does
not break translational invariance. However, it follows from
the analysis of the neutron data that the symmetry of the
observed magnetic structure is lower than the point-group
symmetry of the lattice. The copper-oxide lattice has tetrag-
onal symmetry 4 /mmm �D4h� �the effects of the small ortho-
rhombic distortion due to ordering in Cu-O chains in some
cuprates will be mentioned�. In the pseudogap phase the
symmetry is lowered to m� mm or D2h�C2v�.5,7 Such lowering
of the symmetry follows if the magnetic structure transforms
under irreducible representation Eu of the point group of the
lattice. For an order parameter in the pseudogap phase one
can choose a polar in-plane �parallel to copper-oxide plane�
vector L= �Ly ,Lx� which is restricted to four crystalline di-
rections because it transforms the same way, Eu, under the
operations of point group of the lattice. Order parameter L is
time-reversal odd because the magnetic structure which it
represents is odd under time reversal. In the literature polar
time-reversal-odd vector is called a toroidal moment as it is a
symmetry of a magnetic field in a solenoid bent into a torus;9

in the particle physics object of the same symmetry is known
as anapole moment.10

A natural way to relate the order parameter L to the pat-
tern of the magnetization M�r� in the pseudogap phase is as
follows. Since the observed magnetic structure retains lattice
translation symmetries it is enough to consider magnetization
M�r� within single unit cell. In general, the function M�r�
can be decomposed into spatial harmonics of point group of
the lattice �D4h�; M�r�=���c��M���r�. Here harmonic
M���r� transforms under the irreducible representation � of
the group D4h and � is internal index of the representation �
if it is not one dimensional; c�� is a set of coefficients. The
mathematical representation of the fact that the magnetic
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structure M�r� belongs to the irreducible representation Eu is
that it can be written as M�r�=c1M1�r�+c2M2�r�, where
M1,2�r� are two orthogonal harmonics that transform under
two-dimensional irreducible representation Eu. It can be seen
that under all group operations a pair of vectors L�=1,2 de-
fined by

L� = �
unit cell

drM��r� � r �1�

also transforms under Eu representation. The two vectors L�

are parallel to the copper-oxide plane and are orthogonal to
each other; we can use them as a basis to define a toroidal
moment L=c1L1+c2L2 which is associated with the mag-
netic structure M�r�=c1M1�r�+c2M2�r� in the unit cell. Con-
versely, if the magnetization M�r� does not have a compo-
nent that transforms under Eu, the integral in Eq. �1�
vanishes. We also note that the out-of-plane component of
the integral in Eq. �1�, if nonzero, transforms under A2u rep-
resentation; it vanishes if M1,2�r� transforms under Eu repre-
sentation. We conclude that the vector L defined by

L = �
unit cell

drM�r� � r �2�

can be used as an order parameter to characterize the mag-
netic structure in the pseudogap phase of cuprates.

The simplest structure that has nonzero toroidal moment
is a pair of moments at finite offset; each moment is directed
perpendicular to the line connecting them; the moments are
of equal magnitude and opposite in direction. However,
function M�r� may have more elaborate structure; see the
end of this section for discussion of the experimental situa-
tion. It is instructive to separate M�r� into planar and perpen-
dicular components, M�r�=M��r�M��r�; here M�=zMz and
M� =xMx+yMy and x ,y is the basis in the plane parallel to
the copper-oxide plane and z is in the direction perpendicular
to it. Figure 2 schematically represents this decomposition
with the red arrows understood as a magnetization direction
M�r�. Under the point-group operations each component,
M� and M�, transforms independently under its own Eu rep-
resentation. Consequently, each component may contribute
independently to the toroidal moment L= �Lx ,Ly� via Eq. �2�.
We conclude that on symmetry grounds the magnetic struc-
ture in the pseudogap phase can be an arbitrary combination
of, M� and M�; the precise balance between the two depends
on the microscopic details and is decided experimentally, see
discussion in the end of this section.

Experimental data and theoretical calculations indicate
that microscopic orbital currents within the unit cell are re-
sponsible for magnetic structure in pseudogap phase of cu-
prates. Here we discuss symmetry aspects of this relation. In
general, magnetic structure in the crystal can be equivalently
described in terms of the periodic magnetization function,
M�r�, or a pattern of periodic microscopic currents jm closed
within the unit cell �loop currents�. The two are related by

jm = c � � M , �3�

see Ref. 11. In the absence of macroscopic currents, H=B
+4�M=0, the magnetization M�r� is proportional to the

magnetic field within the unit cell, B=−4�M. The magneti-
zation can be solved in terms of microscopic currents jm�r�
by inverting equation jm=c� �M,

M�r� =
1

4�c
� dr�

jm�r�� � �r − r��
�r − r��3

, �4�

where integral dr� is over the whole volume of the crystal. If
the magnetization M�r� is a periodic function on the lattice,
so is jm�r�, and vice versa.

We can relate directly the toroidal order parameter L to
the microscopic current distribution within unit cell. Current
pattern is restricted to the unit cell, �unit celldrjm�r�=0. Con-
sider second moment of current distribution

�
unit cell

drr2jm�r� . �5�

Using definition of microscopic current in terms of magneti-
zation, jm=c� �M, we write this as

�
unit cell

drcr2� � M�r� . �6�

Using identity

r2 � � M = � � �Mr2� + 2M�r� � r �7�

and the definition of the toroidal moment in Eq. �2� we find

L = �
unit cell

dr�1/2c�r2jm�r� −
1

v
� ds � M�r�r2/2. �8�

The second integral is over the surface of the unit cell, ds is
surface element. Using the fact that the surface is shared
between adjacent unit cells, the surface integral vanishes.
Therefore, one can define a toroidal moment by

L = �
unit cell

dr�1/2c�r2jm�r� . �9�

We conclude that the toroidal order parameter is proportional
to the planar �parallel to copper-oxide plane� component of
the second moment of microscopic currents within the unit
cell.

The magnitude of the spin-flip intensity observed in ex-
periments for the most underdoped samples studied is con-
sistent with a pair of magnetic moments 	0.1�B in the cen-
troids of the two triangles; the centroids are located at
distance x0	a /2 from the center of the unit cell �a is unit-
cell size in the CuO plane�. The magnetic moment M is
given by a volume integral of magnetization, �drM�r�. Inte-
grating over half of unit cell �the full integral over unit cell
vanishes� we must obtain magnetic moment of order of
0.1�B; we conclude that the magnetization in the unit cell is
estimated as �M�	0.1�B /a3 and the integral in Eq. �2� is L
	�M�a4	0.1�Ba.

The simplest loop-current pattern that leads to magnetic
structure consistent with an in-plane toroidal moment con-
sists of a pair of planar current loops passing via planar oxy-
gen and planar copper, see Fig. 1�b�. Such distribution of
microscopic currents generates two opposite magnetic fluxes
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directed along z axis, see Fig. 2; as has been mentioned
earlier, this is consistent with the pattern of the magnetiza-
tion which has nonzero toroidal moment. However, polarized
neutron-scattering experiments indicate a finite horizontal
component of the magnetization M�r� in the unit cell.1,2 If
the assumption is made in the analysis of the experiments
that the structure factor for the in-plane and the out-of-plane
components is the same, the magnitude of the horizontal and
the vertical components are similar. To understand the pres-
ence of both horizontal and vertical components in the pat-
tern of magnetization one has to consider also spin-orbit in-
teractions and/or loop currents involving the apical oxygen.
In YBCO �yttrium barium copper oxide� each copper-oxide
plane is seeing noncentrosymmetric environment; conse-
quently, symmetry allows a Dzialoshinskii-Moriya-type in-
teraction which in the presence of vertical component of the
magnetization �planar loop currents� leads to a horizontal
component of the magnetization due, for example, to an in-

plane polarization of electron spin in the unit cell.12 In mer-
cury compound this mechanism is not allowed because each
copper-oxide plane sees centrosymmetric environment. A
horizontal component however naturally appears if one con-
siders loop currents via apical oxygen2,13 as well as via pla-
nar copper. It is then reasonable that the major part of the
horizontal component in YBCO is also due to loop currents
via apical oxygens.

III. LATTICE DISTORTIONS THAT ACCOMPANY
LOOP-CURRENT ORDER

As mentioned earlier,14 m� mm symmetry does not allow
piezomagnetism, i.e., no distortion changing spontaneously
the symmetry of the unit cell to linear order in the order
parameter is allowed. Here we discuss lattice deformations
that accompany current-loop order to second order. To do so
and for the other results derived in this paper, one must
specify the irreducible representations of the crystal symme-
try in the absence of the loop-current order. The copper-
oxide lattice has tetragonal symmetry 4 /mmm �D4h�. The
operations in the group fall into ten equivalence classes: � /2
rotations around z axis C4, � rotations around z axis C2, �
rotations around x axis C2�, � rotations around x+y axis C2�,
� /2 rotations around z axis followed by reflection S4, reflec-
tions �h ,�v�d in the planes perpendicular to axes z ,x ,x+y,
respectively, spatial inversion i and identity operation E, see
Fig. 1�a�. Under symmetry operations in D4h, any physical
object transforms under one of the ten irreducible represen-
tations,
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The second column illustrates each irreducible representa-
tions by a polynomial of the same symmetry. Within D4h the
vector representation of the rotations in space is no more
irreducible; instead, the polar vector E and axial vector M
break into irreducible representations of D4h as follows

A2g Mz

Eg �My�,Mx��

A2u Ez

Eu �Ey�,Ex��

. �11�

The basis x , y is chosen along the copper-oxide links. We
use notation x� , y� for a basis rotated by 45° with respect to
x ,y, i.e., x�= �x−y� /
2 and y�= �x+y� /
2. Representations
Eu and Eg are two-dimensional representations, all other ir-
reducible representations are one dimensional.

The term in the free energy that can couple loop order and
lattice distortion has to be of at least a second order in the
current-loop-order parameter since L is time-reversal odd;
such a term has a structure LLu where u describes distortion.

(a)

v
d

C'
2

C''
2 Lx+y Lx-y

(b)

FIG. 1. �Color online� �a� YBCO unit cell, black dots—copper
atoms and open circles—oxygen atoms. Operations of the point
group are indicated. �b� Representations of the point group can be
constructed on the space of patterns of currents on the interatomic
links in the unit cell. Two diagrams indicate the pair of current
patterns that transforms under inversion-odd two-dimensional rep-
resentation Eu. The loop-order parameter transforms under the same
representation and can be represented by these pictures.

YBCO

=

HgBaCuO

= +

+

FIG. 2. �Color online� Schematic representation of the
magnetic-flux distribution observed in the experiment. The diagram
symbolically represents decomposition of the magnetic structure
into horizontal and vertical components. The actual composition of
the two into the physical order parameter depends on microscopic
details and is not dictated by symmetry.
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As a consequence, the lattice distortion is of a second order
in loop-order parameter, u	L2. To obtain the symmetry of
allowed distortions we have to break bilinear products of L
into irreducible representations. Within D4h the product of
two polar in-plane vectors �transforming under Eu represen-
tation� breaks into four irreducible representations

A1g Ly�
2 + Lx�

2

A2g Ly�Lx�
� − Lx�Ly�

�

B1g Ly�Lx�

B2g Ly�
2 − Lx�

2

. �12�

Let us consider each of the terms above. One kind of distor-
tions that belongs to A1g variety amounts to a change in the
size of the cell and is obviously allowed to couple to the
square of the order parameter. Examples of the distortions in
the other irreducible representations are shown in Fig. 3
where black arrows represent atom displacements. The most
interesting case is that corresponding to the third and fourth
lines above: the free energy contains a term 
B2g

uB2g
�Ly�

2

−Lx�
2 �, where uB2g

is the distortion that belongs to B2g irre-
ducible representation and 
B2g

is a coupling constant; simi-
larly for B1g. From the point of view of symmetry, this dis-
tortion is reminiscent of how finite polarization is generated
in improper ferroelectrics.11

In YBCO distortion of the A2g symmetry is allowed in the
presence of loop order and intrinsic orthorhombic distortion.
At low enough temperatures the crystal structure of YBCO
has intrinsic orthorhombic distortion u�B1g� of the B1g sym-
metry due to the ordering in the copper-oxygen chains �the
lattice constants are a=3.82 Å and b=3.89 Å�. Within D4h
group the following relation holds B1gB2g=A2g �this can be
deduced from the character table�. Therefore, there exists a
term u�A2g�u�B1g��Ly�

2 −Lx�
2 � which will create a distortion

u�A2g� of A2g symmetry in the presence of finite orthorombic
lattice distortion u�B1g� and loop-order parameter Lx� or Ly�.
Another effect of finite orthorhombic distortion u�B1g� in
YBCO is to introduce a mixing between Ly� and Lx� via the
term u�B1g�Ly�Lx�. Along the same line of analysis one con-
cludes that no distortion of A2g symmetry is allowed in mer-
cury compound in the pseudogap phase since its lattice has
tetragonal symmetry.

The magnitude of the distortions may be estimated from
the free energy

�F = 
�u/a�L2 + E�u/a�2/2, �13�

where u is distortion in a particular symmetry channel �a is
in-plane lattice constant�, L2 stands for one of the loop-order
bilinears in Eq. �12�, and E is the elastic modulus �in energy
units� for the distortion in the corresponding symmetry chan-
nel. Minimizing the free energy we obtain u /a=
L2 /E. It is
quite difficult to get an estimate of the magnitude of the 
’s
directly. For an order-of-magnitude estimate, we proceed as
follows: The A1g distortion arises from the same symmetry
arguments as the change in the volume of ferromagnetic sub-
stances due to their order and we may use experimental re-
sults obtained for them to get an idea on the order of mag-
nitude of the effect to be expected. For example, detailed
measurements are available for Fe.15 The lattice constant
changes from above the transition at over 800 °C to 300 °C
due to ferromagnetism with a moment of about 2.5�B per
atom by less than a part in 103. With the ordered moment an
order of magnitude smaller, we would therefore expect for
similar coupling constant and Bulk modulus, a change in
similar temperature region of only a part in 105. This esti-
mate is unlikely to be incorrect by more than an order of
magnitude. One would expect that similar magnitude of dis-
tortion is to be expected in the interesting case of the B2g
distortion and much smaller for the A2g distortion since that
must rely also on the orthorhombicity of the original struc-
ture.

IV. DEFORMATIONS INDUCED BY MAGNETIC FIELD

We now consider possible unit-cell distortions that can
couple linearly to magnetic field H and linearly to the order
parameter. Such distortion is allowed by symmetry since the
order parameter L is polar time-reversal-odd vector. So a
term in the free energy 	uLH is allowed with the lattice
distortion u being odd under space inversion. To find the
symmetry of all allowed distortions we must decompose the
product of L and H into irreducible representations. For vec-
tor H= �Hx� ,Hy�� in plane �transforming under Eg�, the prod-
uct LH breaks into four irreducible representations

A1u Ly�Hy� + Lx�Hx�

A2u Ly�Hx� − Lx�Hy�

B1u Ly�Hy� − Lx�Hx�

B2u Ly�Hx� + Lx�Hy�

. �14�

For magnetic field out of plane H=Hz �which transforms
under A2g� the distortion u= �ux� ,uy�� transforms under Eu.

A1g

A2g

B2g

B1g

Eg

A1g

Eg Eg

FIG. 3. �Color online� Inversion-even representations of the
group D4h. Black arrows represent a polar vector, such as atom
displacement; red arrow represent an axial vector, such as
magnetization.
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Indeed, the product uL contains irreducible representation
A2g,

A2g � Ly�ux� − Lx�uy�. �15�

We conclude that depending on the orientation of the mag-
netic field and the order parameter, distortion can appear in
each of the five inversion-odd representations, see Fig. 4.

To estimate the magnitude of the distortion we consider
free energy

�F = �u

a
�LM + Eu

a
�2

/2,

where u is distortion in one of the possible irreducible rep-
resentations and LM is the corresponding bilinear. Minimi-
zation gives u /a=�LM /E. We can estimate the magnitude of
the coefficient � as well as typical distortion magnitude us-
ing data from recent magnetization measurements.4 The cu-
bic term of the form �� u

a �LM introduces additional contribu-
tion to magnetic susceptibility via the term CL2M2 which is
obtained upon minimization with respect to u /a; here C
=�2 /E. The change in susceptibility in the presence of loop
order is �	−2CL2, see Ref. 16 for details. Both L and M
can be measured in units of Bohr magnetons per unit cell,
with L interpreted as staggered magnetization within unit
cell; the convenient energy units are set with �B

2 /Å3	1 K.
In the experiment the susceptibility is measured 3 mm3 /mol
�or about 3�10−5 in dimensionless units for YBCO� at tem-
peratures about pseudogap temperature. Since the loop order
saturates rather quickly below the pseudogap temperature,
we can attribute experimental value �	0.1 to saturated
loop-order magnitude Ls	0.1�B /unit cell. We estimate C
	�� /2��1 /Ls

2�	108 K−1 /unit cell; the unit-cell volume
of YBCO is 	170 Å3. Using C=�2 /E with E
	10 eV /unit cell we estimate �	5�106 in dimensionless
units �where L2 and M2 are in units of energy per volume of
unit cell�. We can now estimate the magnitude of the distor-
tion. In the experiment the magnetization at external field of

1 T corresponds to magnetic moment M 	10−5�B /unit cell.
In this situation the distortion is estimated as u /a=�LM /E
	10−6.

Magnetic field dependence of elastic
neutron-scattering intensity

We now discuss a possibility of detecting lattice distor-
tions in the present of external magnetic field by the usual
x-ray or neutron crystallographic techniques. The dominant
contribution to elastic neutron-scattering intensity comes
from contact interaction between neutron and atomic
nucleus. One can analyze these starting with

IN�q� 	 �AN�q��2,

AN�q� = �
R,�

f�eiq�R+r��, �16�

where q is the �neutron� momentum transfer. r� is the posi-
tion of atom � within unit cell R and f� are the nuclear-
scattering amplitudes. Let us assume that due to lattice dis-
tortion atoms shift to a new positions r�→r�+u� within unit
cell and ask whether there is a change in intensity to linear
order in u�,

�IN�q� = �AN
† �q�AN�q� + c.c. �17�

For centrosymmetric crystal the sum in Eq. �16� evaluates to
a real number �the nuclear amplitudes f� are real for q typi-
cal of slow neutrons�, i.e., the amplitude AN�q� is real. To
linear order in u� the change in the amplitude is

�AN�q� = �
R,�

f�iqu�eiq�R+r��. �18�

In loop-ordered phase, external magnetic field can produce
several types of distortions, all of which are odd under spa-
tial inversion, see Eqs. �14� and �15�. For the inversion-odd
distortion u� the sum in the right-hand side of Eq. �18� is
pure imaginary; intensity variation �IN�q� given by Eq. �17�
vanishes. We conclude that the lattice distortion associated
with external magnetic field, though nonzero, does not
change intensity of the Bragg peaks in elastic neutron scat-
tering to linear order in magnetic field.

V. MAGNETOELECTRIC EFFECTS IN THE
PSEUDOGAP PHASE

Copper-oxide metal in the pseudogap phase exhibits mag-
netoelectric effects. Magnetic field out of plane belongs to
A2g irreducible representation. The product of an in-plane
electric field E and loop order L has a component E�L that
belongs to the same, A2g irreducible representation �and simi-
larly for out-of-plane electric field which belongs to A2u�,

A2g Hz E � L = Ey�Lx� − Ex�Ly�

A2u Ez H � L = Hy�Lx� − Hx�Ly�
. �19�

Corresponding to the two lines in this table, there are two
terms in the free energy that couple electric and magnetic
fields in the presence of loop-order parameter L= �Lx� ,Ly��,

B1u

B2u

A2u

A1u

Eu

FIG. 4. �Color online� Inversion-odd representations of the
group D4h.
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�FME = �1Hz�Ey�Lx� − Ex�Ly�� + �2Ez�Hy�Lx� − Hx�Ly�� .

�20�

We rewrite these in a matrix form

�Hx� Hy� Hz �� 0 0 − �2Ly�

0 0 �2Lx�

− �1Ly� �1Lx� 0
��Ex�

Ey�

Ez
� .

�21�

The two coupling constants �1,2 have different magnitude
since they describe coupling in two different irreducible rep-
resentations. Assuming a single domain phase, say L
= �Lx� ,0�, we obtain a magnetoelectric tensor in the
symmetry-broken phase of the form

�0 0 0

0 0 �2

0 �1 0
� , �22�

where �1,2=�1,2Lx. General symmetry consideration allow
axial time-reversal-odd tensor of the second rank of this form
in the crystal class m� mm, see Ref. 17.

We now discuss the magnitude of the magnetoelectric
susceptibility � in cuprates that is associated with the mag-
netic structure in the pseudogap phase. In spin systems the
magnetoelectric coefficient is limited by the magnitude of
the spin-orbit coupling;18,19 a typical value �	10−4–10−3

�dimensionless in cgs units� is several orders of magnitude
smaller than the upper bound set by thermodynamics.20 In
the cuprates the magnetic structure in the pseudogap phase
has an orbital origin. However due to finite resistivity of
cuprates in the pseudogap phase the observation of the mag-
netoelectric phenomena may not be possible. To estimate the
magnitude of the magnetoelectric coefficient � we start with
thermodynamic identity �see, e.g., Ref. 21�

�ij = −
�2F

�Ei � Hj
=

�Mj

�Ei
=

�Pi

�Hj
. �23�

We use the last equality, i.e., we apply magnetic field H and
estimate the induced polarization. It has been estimated ear-
lier that in the experiments in Ref. 4 the displacement of
copper and oxygen atoms relative to each other is of order
u /a	10−6 at external field of 1 T; the symmetry of the dis-
placement has been discussed earlier in the paper. The polar-
ization which corresponds to such displacement is estimated
as P	�e /a2��u /a�	10−3 esu �here a is the ab plane unit-
cell size 	4 Å; we have assumed that copper and oxygen in
the copper-oxide plane have charge �e�. We find that mag-
netoelectric susceptibility is �= P /H	10−5, �which is di-
mensionless in cgs units�. This corresponds to about 3
�10−8 G / �V /cm�. This value could be observed experi-
mentally in an insulator but not in the metallic pseudogap
state of the cuprates where final voltage arises in the bulk
only due to finite resistivity. We should mention for com-
pleteness that the orbital-ordered phase also supports a zero-
field Hall effect. But for a field applied of 10 V/cm, the Hall
effect would correspond only to that due to a magnetic field
of about 10−6 G.

Not all effects accompanying the observed orbital order
are so small. For example, x-ray dichroism is predicted to be
observable.7 So is the predicted second-harmonic
generation.8 All the effects investigated here come due to the
periodic magnetic fields generated by the orbital-ordered
phase, which are always small. The effective electronic en-
ergy of such phases is two to three orders of magnitudes
larger than the magnetic energies. This is similar to the dif-
ference between exchange energies and magnetic field ener-
gies in magnetic order due to spin moments.
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