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The field- and temperature-dependent de Haas-van Alphen oscillations spectrum is studied for an ideal
two-dimensional compensated metal whose Fermi surface is made of a linear chain of successive orbits with
electron and hole character, coupled by magnetic breakdown. We show that the first harmonic amplitude can be
accurately evaluated on the basis of the Lifshits-Kosevich semiclassical formula by considering a set of random
walks on the orbit network, in agreement with the numerical resolution of Pippard equations associated with
the surface. Oppositely, the second-harmonic amplitude does not follow the Lifshits-Kosevich behavior and
vanishes at a critical value of the field-to-temperature ratio which depends explicitly on the relative value
between the hole and electron effective masses.
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I. INTRODUCTION

Due to their rather simple Fermi surface, organic metals
provide a powerful playground for the investigation of
quantum-oscillation physics. In that respect, the most well
known example is provided by �-�BEDT-TTF�2Cu�NCS�2
which can be regarded as the experimental realization of the
Fermi surface considered by Pippard in the early 1960s for
his model.1 In the extended zone scheme, such a Fermi sur-
face is composed of closed hole orbits and quasi-one-
dimensional �1D� sheets, with gaps separating the holes
bands from these sheets. Since these gaps are small com-
pared with the Fermi energy, magnetic breakdown can de-
velop as magnetic field increases. The tunneling probability
amplitude p is function of the internal field B via the relation
p2=e−B0/B, where B0 is the breakdown field which depends
on the Fermi-surface geometry �see, for example, Chambers
formula2 or more generally Refs. 3 and 4 for a topological
point of view�. By including this effect in the semiclassical
oscillations spectrum of Lifshits-Kosevich �LK�, Falicov and
Stachowiak5 developed a theory based on the Green’s-
function formalism in order to evaluate exactly the Fourier
amplitudes of the oscillating part of the magnetization. In-
deed, the knowledge of the Green’s function for wave pack-
ets traveling along closed and classical orbits on the Fermi
surface leads directly to the quasiparticle density of states. In
particular, the amplitudes are expressed as a sum over all
classical orbits allowed on the network by using only tunnel-
ing rules. However, the above-mentioned type of Fermi sur-
face yields quantum-oscillations spectra with numerous fre-
quency combinations that cannot be accounted for by this
semiclassical model. This phenomenon which has raised a
great interest6–12 is generally attributed to either the forma-
tion of Landau bands or �and� oscillations of the chemical
potential in magnetic field.

Beside the observation of frequency combinations, strong
deviations of the field and temperature dependence of both
the first- and second-harmonics amplitude are observed in
few �-phase BEDT-TTF salts.13,14 Even though the Fermi-

surface topology of �- and �-phases salts is similar, the sa-
lient feature of the former is their very large magnetic break-
down gap. As a result, the quasi-1D sheets can be regarded
as electron reservoirs and the resulting magnetization data
were interpreted on the basis of a quasi-1D density of states-
dependent oscillation of the chemical potential.15,16

Contrary to the above-mentioned examples, the Fermi
surface of numerous organic metals is composed of compen-
sated electron- and hole-type closed orbits,17 yielding many
frequency combinations as well, as far as Shubnikov-de Haas
oscillations are concerned.18–20 In the case of a Fermi surface
composed of two compensated orbits coupled to each other
through magnetic breakdown but isolated from the other or-
bits outside the first Brillouin zone, it has been shown that
the oscillations of the chemical potential can be strongly
damped21 which could account for the absence of frequency
combinations reported in the de Haas-van Alphen �dHvA�
spectra of two-dimensional �2D� networks of compensated
orbits in fields up to 28 T.20 However, the Fermi surface
considered in Ref. 21 which, to our knowledge, has no coun-
terpart among the compounds synthesized up to now, does
not provide a network of orbits and, therefore, do not yield
Landau bands in magnetic field.

The aim of this paper is to explore the field and tempera-
ture dependence of the dHvA oscillations spectra of an
ideal 2D metal whose Fermi surface achieves a linear
chain of successive electron- and hole-type compensated
orbits with no reservoir of electron. Such a topology can
be relevant in compounds for which the Fermi surface origi-
nates from an orbit with an area equal to that of the
first Brillouin zone and coming close to the boundary
along one direction, as it has been predicted for
�BEDT-TTF�4NH4�Fe�C2O4�3� .C3H7NO.22 In this case, a
large magnetic breakdown gap is observed at this point and a
linear chain of successive electron-hole tubes separated with
a smaller magnetic breakdown gap can be observed. Analo-
gous topology is also realized in the Bechgaard salt
�TMTSF�2NO3 in the temperature range in between the an-
ion ordering temperature and the spin-density wave
condensation23 �see Fig. 1�. We will focus on the field- and
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temperature-dependent amplitude of the first and second har-
monics A1 and A2 of the oscillatory part of the magnetization
Mosc, derived for such Fermi-surface topology, which can be
expanded as Mosc=�n�−1�nAn sin�2�nF0 /b�, where the fun-
damental frequency of the problem F0 and the dimensionless
magnetic field b are specified in the next section. It is shown
that A1 is nicely accounted for by the Lifshits-Kosevich for-
mula, provided the summation over all possible paths con-
tributing to the main frequency is considered. Oppositely, in
the case where the effective masses linked to the electron and
hole orbits are different, strong deviations from the Lifshits-
Kosevich formula can be observed for A2 which vanishes at
a field value depending on the ratio of the two effective
masses, only, irrelevant to the magnetic breakdown field
value.

II. MODEL

We consider a 2D metal whose electronic structure con-
sists of two parabolic bands with hole and electron character
yielding a periodic array of compensated orbits �see Fig. 2�.
The bottom of the electron band is set at zero energy while
the top of the hole band is at ��0 with the possibility for
the quasiparticle to tunnel through a gap between two suc-
cessive orbits by magnetic breakdown. The total number of
quasiparticles in the system is constant and, to lower the total
energy at zero field and zero temperature, the area of the hole
band at the Fermi surface should be equal to the area of the
electron band which accounts for compensation. Indeed, if
the hole band were completely filled, the zero-field energy
would be higher than if part of the quasiparticles were trans-
ferred from the hole band to the electron band. In the follow-
ing, the effective masses linked to the two bands, me

� and mh
�,

can be different. As in Refs. 12 and 21, the dimensionless

field b and temperature t are given by b=B / B̃ and t=T / T̃,

respectively, where B̃=h /eA0, T̃= Ẽ /kB, and A0 is the unit
cell area. The effective masses and energies are expressed in

free-electron mass m0 units and in units of Ẽ=2��2m0A0,
respectively. Unit-cell area of most organic metals is in the

range 100–200 Å2 yielding B̃ and T̃ values of few thou-

sands of teslas and kelvins, respectively. Therefore, realistic
experimental conditions yield small values of b and t com-

pared to B̃ and T̃, respectively. On the contrary, the ratio b / t,
which is the relevant external parameter for perfect crystals,
is given by b / t= �e� /m0kB� B /T. Its value is close to the B /T
ratio achieved in experiments since e� /m0kB�1.34 K T−1.
Given an energy E, the areas of the electron- and hole-type
surfaces are, respectively, Se=2�me

�E and Sh=2�mh
���−E�,

which are both quantized for closed orbits in the Brillouin
zone. The zero-field Fermi energy �0 is given by the condi-
tion of compensation Se��0�=Sh��0� hence �0=mh

�� /
�me

�+mh
��. The fundamental frequency of this system is there-

fore equal to F0=Se��0� /2�=Sh��0� /2�=me
�mh

�� / �me
�+mh

��.
Each Landau level has a degeneracy b per sample area. The
spectrum of such chain of coupled electron-hole orbits and
the quantization of the energy are determined by semiclassi-
cal and conservation rules of the wave-function amplitudes
at the junctions where the quasiparticles tunnel and across
the boundaries of the Brillouin zone. In particular, the am-
plitude of the wave function at different points of the Fermi
surface �see Fig. 2 for notations� satisfies the following rules:
its phase is proportional to the area swept by the quasiparti-
cle around the trajectory divided by b. We will note 	e
=Se /2b and 	h=Sh /2b the phases around half the electron
and hole orbits, respectively. Also, at every junction there is
a probability ip for the quasiparticle to tunnel and a probabil-
ity q to be reflected. Finally we add a Maslov index i=�−1 at
the vertical extrema of the orbits �cross symbols on Fig. 2�.
With these rules, we can write the relations between the
wave-function amplitudes �’s and 
’s,

�1 = i exp�i	e��ip� + q
� ,

�2 = ip�1 + q
2, �� = i exp�− i	h��2


1 = q�1 + ip
2, 
 = i exp�i	e�
1


2 = i exp�− i	h��q�� + ip
�� . �1�

As boundary conditions, we impose that the amplitudes
across the first Brillouin zone are identical up to an arbitrary
phase �: ��=� exp�i�� and 
�=
 exp�i��. Solving this sys-
tem of closed equations, we obtain the quantization of the
energy which satisfies the spectrum equation

�1 + q2 exp�2i	e� − p2 exp i�	e − 	h + ���

� �1 + q2 exp�− 2i	h� − p2 exp i�	e − 	h − ���

= − p2q2�exp i�	e − 	h� + exp�− 2i	h + i���

� �exp i�	e − 	h� + exp�2i	e − i��� . �2�

β’ α ’

β2 α1

β1α2 β α

he e h

x

x x

x x

x x

x

FIG. 2. One-dimensional chain of coupled electron and hole
orbits. The first Brillouin zone is delimited by the dotted lines.
Amplitudes are chosen at specific points on the trajectory �see text�.

FIG. 1. �Color online� Calculated Fermi surface of the Bech-
gaard salt �TMTSF�2NO3 in the temperature range below the anion
ordering and above the spin-density wave condensation, according
to Ref. 23. Solid blue, centered at �a� ,0� and red centered at
�a� ,b��, lines are compensated hole and electron orbits,
respectively.
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We can distinguish two limiting behaviors. For q=1 �or,
equivalently, p=0�, the spectrum reduces to �1+exp�2i	e��
� �1+exp�−2i	h��=0 which corresponds to the discrete Lan-
dau levels of two independent electron and hole orbits:
Se�En�=2�b�n+1 /2� and Sh�En�=2�b�n+1 /2�, with n posi-
tive integer. In the opposite case where q=0, the spectrum
corresponds to nonquantized phases 	e�E�−	h�E�= 
�
since no closed orbit exists in such case �open chain� and
therefore magnetic oscillations vanish, leaving the place to a
continuum of states. To study numerically the spectrum
given by Eq. �2�, we first determine the periodicity in energy
of the discrete Landau levels. For that purpose, we assume
that mh

� /me
�=q0 / p0, where q0 and p0 are coprime integers that

can be as large as needed to approximate the ratio of the two
masses. It is indeed useful to express this quantity with a
rational number since it allows to consider as necessary only
a finite set of solutions of Eq. �2�. The minimal periodicity
TE of the spectrum is, in this case and for a given phase �,
equal to TE=2bp0 /me

�, which is twice the periodicity calcu-
lated for an isolated system made of one hole and one elec-
tron band.21 The number of solutions inside each interval of
width TE is found to be equal to 2�p0+q0� �this number is
conserved when p varies and can be counted exactly for p
=0�. Given a set of solutions Eeh�q ,n ,��, n=0, ¯ ,2�p0
+q0�−1, we introduce a cutoff function �c�E� such as
�c�E�=1 for E larger than a characteristic energy Ec and
equal to exp�−c�E−Ec�2�� for E�Ec, where � is any positive
integer greater than 1 �we take �=4 in the simulations which
gives a very smooth cutoff function�, and c a positive param-
eter determined self-consistently. This function has the prop-
erty of preserving the physical features near the Fermi sur-
face and the ground-state energy is, in particular, finite since
now the corresponding hole spectrum is bounded for large
and negative energies. The Landau-level density of states
�c�E� takes the following form

�c�E� =
b

2�
�

0

2�

d� �
n=0

2�p0+q0�−1

�
k=−�

�

�c�E��

��E − Eeh�q,n,�� − kTE� . �3�

Given Ec, the positive parameter c is found to be solution
of the equation of conservation at zero temperature

Neh = �
−�

�0�b�

dE�c�E�

=
b

2�
�

−�

�0�b�

dE�
0

2�

d� �
n=0

p0+q0−1

�
k=−�

�

�c�E��

��E − Eeh�q,n,�� − kTE� , �4�

where Neh is, as mentioned before, the total number of
quasiparticles in the canonical ensemble. In the numerical
simulations, �0�b� is taken as the first Landau level located
below �0. We choose Neh, which is arbitrary, as a multiple of
the characteristic zero-field energy density �me

�+mh
���0

�which is proportional to the areas of the Fermi surface�.
We will also choose in the following Ec=−2 and Neh
=8�me

�+mh
���0, and 10 values of � for the integral evalua-

tions. For each value of the field b, the parameter c defined
from Eq. �4� is unique and determined self-consistently. Then
we can compute, for example, the ground-state energy �E0

�E0 =
b

2�
�

−�

�0�b�

dE�
0

2�

d� �
n=0

p0+q0−1

�
k=−�

�

E�c�E��

��E − Eeh�q,n,�� − kTE� �5�

and the free-energy �F

�F = −
tb

2�
�

−�

�

dE�
0

2�

d� �
n=0

p0+q0−1

�
k=−�

�

�c�E�log

��1 + exp 
�� − E����E − Eeh�q,n,�� − kTE� + Neh� .

�6�

The chemical potential �=��t ,b� is calculated from Eq.
�6� by extremizing the free energy ��F /��=0. The magne-
tization Mosc=−��F /�b=x2��F /�x, where x=1 /b, has to
be independent of the parameter Ec for Ec far away from the
chemical potential or at energies large compared to the Lan-
dau gap for a given magnetic field. We have checked, for
different values of Ec with �=1, for example, Ec=−1,−2,
−4, and for a large range of fields, that the resulting magne-
tization is stable in this procedure.

Examples of field-dependent dHvA and chemical-
potential oscillations deduced from the numerical resolution
of Eq. �6� are given in Figs. 3 and 4, respectively. As evi-
denced in the inset of Fig. 4, the oscillations of the chemical
potential are weaker than in the case of two electron bands
�assuming same effective masses and same unique fre-
quency�. They even vanish in the case where me

�=mh
�. As it

will be discussed in Sec. IV and contrary to the case of two
electron orbits, the chemical-potential oscillations for com-
pensated orbits are linked to the difference between two
temperature-dependent amplitudes. In the case where the ef-
fective masses �and the relaxation times for real crystals� of
electron and hole orbits are the same, these amplitudes can-
cel each other and the chemical potential does not oscillate.
It is due to the fact that the Landau levels of the quasielec-
trons and quasiholes are perfectly symmetric around the

FIG. 3. �Color online� Fourier spectra of the oscillatory magne-
tization �displayed in the inset� for various values of the magnetic
breakdown field b0. The effective masses are me=1 and mh=2.5. F0

is the fundamental frequency �see text�.
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zero-field Fermi energy since the masses are identical. Fi-
nally, Fig. 4 also shows that the oscillations decrease as mag-
netic breakdown develops. These features, which are in
agreement with the conclusion derived for isolated orbits,21

confirm that the field-dependent chemical-potential oscilla-
tions are damped in 2D compensated metals when compared
to the uncompensated case. Nevertheless, as observed in Fig.
4, chemical-potential oscillations remain detectable if we
consider the quantity ��−�0� /b, which is the principal argu-
ment of the oscillating sine functions of the chemical poten-
tial �see below Eq. �19��, in particular, in the case where the
magnetic breakdown field is large and the two effective
masses strongly differ. Hence, the field and temperature de-
pendence of the first- and second-harmonics amplitude are
explored accordingly in the following. We will show that
even though the first harmonics is almost not influenced by
the chemical oscillations, these ones noticeably modify the
features of the second harmonics.

III. AMPLITUDE OF THE FIRST HARMONIC WITHIN
THE LIFSHITS-KOSEVICH THEORY USING

RANDOM WALK ANALOGY

In this section, we compute the expression for the first-
harmonic amplitude A1

LK, corresponding to the frequency F0,
using the Lifshits-Kosevich and Falicov-Stachowiak theories
based on the semiclassical calculation of all possible orbits in
the network of closed orbits and contributing to this ampli-
tude. We will check numerically that these two theories
nicely account for the amplitude A1 extracted from the spec-
trum computed numerically in the previous section. This has
for important consequence that the Lifshits-Kosevich theory
is accurately valid in most of field and temperature ranges for
determining the first amplitude in the case of small oscilla-
tions of the chemical potential in this kind of Fermi surfaces.
We first notice that there are an infinite number of orbits

along the chain contributing to this amplitude �see Ref. 21�
since all the trajectories involving an odd number of orbits
contribute to the frequency F0. In contrast, an orbit involving
an equal number of individual electron and hole orbits yields
a zero frequency. Therefore, any orbit contributing to A1 can
be regarded as the sum of such a zero-frequency orbits com-
bined with one electron or hole orbit. These orbits yielding
the frequency F0 can be classified by their successive masses
me�l�= lme

�+ �l−1�mh
� or mh�l�= �l−1�me

�+ lmh
�, where l is a

positive integer. The contribution of orbits with large effec-
tive mass is negligible at low field or high temperature �b / t
small� but have a significant value in the large b / t limit
where all the orbits have to be taken into account. Indeed the
field- and temperature-dependent damping factors which are
defined for a given set of effective masses me�h�

� by the for-
mula

RT�me�h�
� � =

2�2me�h�
� t/b

sinh�2�2me�h�
� t/b�

�7�

are close to unity in this limit. Dingle factors

RD�me�h�
� ,te�h�

� � = exp�− 2�2me�h�
� te�h�

� /b� , �8�

where te�h�
� =m0A0 /4�2��e�h� are the reduced Dingle tem-

peratures, can also be simply added as factor of the damping
amplitudes RT to account for real crystals in which the relax-
ation times �e�h� have finite values, so that the overall damp-
ing factor R can be written as

R�me�h�
� � = RT�me�h�

� �RD�me�h�
� ,te�h�

� � . �9�

In the following we will assume first that these two relax-
ation times are negligibly small to simplify the calculations
so that R=RT. The existence of an infinite set of orbits con-
tributing to the first harmonic leads us to define a closed
random walk on the chain in the Brillouin zone 	xi
i=0,2n,
with origin and end at x0 and x2n, respectively, with the con-
dition x0=x2n=0. These coordinates take integer values �ei-
ther negative or positive� and define precisely the pocket
inside which the quasiparticle is located. We chose xi with i
even to be the positions of the electron bands and i odd for
the hole bands. A closed path has an even number of steps
2n. For a given xi, the particle can also orbit a number ni
�0 of times around the surface before going to the next
band. An example of a typical closed trajectory is given in
Fig. 5.
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FIG. 4. �Color online� Field dependence of the chemical poten-
tial ��� relatively to its value in zero field ��0� for various values of
the magnetic breakdown field b0 at t=10−4. The effective masses
are me

�=1 and mh
�=2.5. The inset compares the ratio � /�0 behavior

for two compensated orbits �solid line� and two electron-type orbits
�dashed line� of same area �or frequency� F0=5 /7 with effective
masses m0

�=1 and m1
�=2.5, in the absence of magnetic breakdown

�b0→��. The chemical potential for two electron orbits is com-
puted from Ref. 12, Eq. �3� �see also Eq. �19� for the compensated
orbit case�, with the values �from this reference� m0

�=me
�=1, m1

�

=mh
�=5 /2, and �0=0, �1=��mh

�−1� / �mh
�+1�=3 /7.

x =00

x =04 4σ =1 x =13

x =11 2σ =1

3σ =−1
x =22

1σ =−1

ehe

FIG. 5. �Color online� Example of a trajectory contributing to
the first amplitude with fundamental frequency F0 and mass
me�1�=2me

�+mh
�. The successive coordinates 	xi
i=0,. . .,4 of the qua-

siparticle are given below the figure. Here ni=0 �see text�. 	−1=
−1 since the particle is going backward when it is reaching the
location x0=x4 from x−1=x3 on a periodic orbit.
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We can rewrite coordinates xi by the mean of forward/
backward variables 	i= 
1 such as xi=xi−1+	i�xi−1−xi−2�.
Here 	i=1 when the particle is going forward on its path �in
the same direction� and 	i=−1 when it is going backward in
the reverse direction �see Fig. 5 for an explicit set of 	i’s�.
The path is moreover made periodic by imposing xi=xi
2n
�just as for variables 	i�. On Fig. 5, x3=x−1 and the particle is
moving on the reverse direction when it is reaching the point
x0=x4 along the portion of path �x−1 ,x0 ,x1�, which implies
that 	1=−1.

It will be also useful in the following to introduce new
periodic variables yi=xi−xi−1= 
1 which satisfy the simple
relations yi=	iyi−1 and 	i=yiyi−1. Let us now calculate the
total number of possible orbits with a given effective mass
me�l� �or equivalently mh�l� for a hole orbit since the prob-
lem is symmetric by exchange of electron and hole masses�
and their contribution to the amplitude of the first harmonic
A1

LK with the fundamental frequency F0. If the particle is
going forward, there is an amplitude equal to ip to be trans-
mitted from one band to the next one or ipq if the particle is
going backward �it has first to perform exactly one reflection
with amplitude q on the band edge before being transmitted
back through the previous junction�. In term of variables
	i, this is equivalent to write this partial amplitude as
ip��1+	i�+ �1−	i�q� /2= ip�qeK	i, with eK=1 /�q. Then the
Lifshits-Kosevich amplitude corresponding to all electron-
like contributions can be written as

A1
LK�e� =

q2R�me
��

me
� + �

l�2

R�me�l��
me�l�

� �
n=1

2�l−1�
1

n
�

	ni,	i

�− p2�nqn+2�j=0

2n−1njeK�i=1
2n 	i. �10�

The sum over l and n�1 corresponds to all possible ef-
fective masses and number �2n� of tunnelings, respectively.
The first term l=1 in Eq. �10� is the simplest orbit of the
expansion: a closed trajectory around one electron pocket
with damping factor q2 and effective mass me

�. The sum over
n is limited to 2�l−1� which corresponds to the extremal
trajectory. Indeed, for an orbit with effective mass me�l�, the
quasiparticle visits a maximum of �l−1� successive electron
and hole pockets outside the first initial electron pocket be-
fore going back, l−1 being also the maximal linear extension
of the path. This implies that all the ni are zero for this case
�see Fig. 5�. The factor 1 /n takes into account of the orbit
symmetry by circular permutation of the coordinates 	xi
.
Finally, the sum over the set 	ni ,	i
 is constrained by the
boundary conditions x0=x2n and by the facts that the fre-
quency is set to F0 and the effective mass is lme

�+ �l−1�mh
�.

This implies the following conditions on 	ni ,	i
,

l = �
j=0

n−1

n2j +
n

2
+ �

j=0

n−1
1 − 	2j+1

4
, �11�

l − 1 = �
j=0

n−1

n2j+1 +
n

2
+ �

j=1

n
1 − 	2j

4
. �12�

The details of the first-harmonic calculation, Eq. �10�, in-
cluding the previous constraints, Eqs. �11� and �12�, are
given in Appendix. We found that A1 is given by the follow-
ing infinite sum, which takes into account all the possible
orbits

A1
LK�e� =

q2R�me
��

me
� + �

l�2

R�me�l��
me�l�

� �
n=1

2�l−1�

�− 1�np2nq4l−2n−2S�l,n� , �13�

where we defined the combinatorial quantities

S�l,n� =
2

n
�
i=0

n/2

�
j=0

i

�
k=0

n/2−j
�− 1� j

22k �n

2i
��i

j
��n − 2j

2k
��2k

k
�

��l + k − 1

l − n + j + k
��l + k − 2

l − n + j + k − 1
� . �14�

These positive integers S�l ,n� count the number of non-
equivalent orbits with a given mass me�h��l� and for which the
quasiparticle is visiting 2n successive pockets. In Table I we
have reported, for information, the first numbers for increas-
ing values of l from 2 up to 7, using relation �14�. For a
given l, n is taken from 1 to its maximum value 2�l−1�.

Finally, the total amplitude for the first harmonic is given
by the sum of hole and electron contributions with an overall
factor F0 /�,

A1
LK =

F0

�
�A1

LK�e� + A1
LK�h�� . �15�

The first-harmonic amplitude is determined by the set of
Eqs. �13�–�15�. Examples are given in Fig. 6 �solid lines� and

TABLE I. First values of coefficients S�l ,n� representing the
number of nonequivalent orbits for a given mass me�h��l� with 2n
magnetic breakdowns, 1�n�2�l−1�.

n

l

2 3 4 5 6 7

1 2 2 2 2 2 2

2 1 9 23 43 69 101

3 8 68 264 720 1600

4 1 63 610 3080 10925

5 18 584 6132 36980

6 1 228 5950 66374

7 32 2800 64952

8 1 600 34550

9 50 9650

10 1 1305

11 72

12 1
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compared to the numerical resolution of the Fourier spec-
trum of the magnetization taken from Eq. �6� �solid symbols�
and for different q values. Since the q value is fixed, these
data can be regarded as temperature-dependent amplitudes at
a given field. An excellent agreement between numerical re-
sults and Eqs. �13�–�15� is observed, even at high magnetic
field. Dashed lines in this figure are the contributions of the
first-order terms �Eq. �15� reduces to A1

LK=q2F0�R�me
�� /me

�

+R�mh
�� /mh

�� /� within this approximation�. These terms,
which only takes into account the basic orbits with the low-
est effective masses �me

� and mh
�� are strongly dominant since

only a small difference �less than 10%� is observed in the
high b / t range. However, as discussed below, the high-order
terms with higher effective masses can have a significant
influence on the evaluation of the effective masses from ex-
perimental data.

In the case of real experimental data collected on
quasi-2D compensated metals, an effective mass m� is de-
duced from the temperature dependence of the amplitude of
the first harmonic A1 at a fixed magnetic field. In such a case,
it is implicitly assumed that either the effective mass of elec-
tron and hole orbits is the same or, oppositely, that only one
orbit contributes to the considered Fourier component be-
cause the other has a much larger effective mass. In addition,
the contribution of high-order orbits �l�1� is neglected. Tak-
ing into account the Dingle damping factor �see Eq. �8��, we
can rewrite the Lifshits-Kosevich formula as,

y � RMB
e−2�2m�t�/b

sinh�2�2m�t/b�
, �16�

where y=A1b / t, RMB is the relevant magnetic breakdown
damping factor and t� is the reduced Dingle temperature. If
the magnetic field is fixed, Eq. �16� reduces to y
�1 /sinh�2�2m�t /b�. Therefore, the effective mass can be ex-
tracted by considering the following combination of deriva-
tives

�2�2m��2 = 2
1

y

�y

��t/b��2

−
1

y

�2y

�2�t/b�
. �17�

Figure 7 displays the b / t dependence of m� corresponding
to the data in Fig. 6 which stands for a perfect crystal �t�

=0�. For a given q value, the results are scaled as
m� /min�me

� ,mh
��. For q=1, data analysis based on Eq. �17�

yields m�=min�me
� ,mh

�� and �me
�mh

� in the low and high b / t
limit, respectively. This point is further supported by consid-
ering the mass plot in Fig. 8 which yields a straight line at
high t /b.

For q�1, a strongly nonmonotonic b / t dependence of m�

is observed in Fig. 7. This behavior is linked to the high-
order terms �l�1 in Eqs. �13� and �14��. The q dependence
of this behavior is also strongly nonmonotonic since numer-
ous zeroes can arise in the coefficients involved in Eq. �13�
as q varies. Nevertheless, the effective mass variations are
damped for real crystals with finite Dingle temperature, as
demonstrated in Fig. 9 for q=0.6 where it is assumed that
te
�= th

� for simplicity. Assuming a fixed magnetic field of 30 T
�which yields a breakdown field B0=30.6 T for q=0.6�,
t� /b=0.01 stand for a good crystal with a Dingle temperature
TD=0.4 K. Oppositely, t� /b=1, for which m� is always close
to min�me

� ,mh
�� corresponds to an extremely bad crystal for

which �c�=b /2�m�t� �where the cyclotron frequency �c

FIG. 6. �Color online� b / t dependence of the first-harmonic am-
plitude. Solid symbols are deduced from the numerical resolution of
Eq. �6�. Solid lines correspond to the Lifshits-Kosevich approxima-
tion given by Eqs. �13�–�15�. Dashed lines correspond to the first-
order term �l=1 in Eq. �13��. The effective masses are me=1 and
mh=2.5.

FIG. 7. �Color online� b / t dependence of the effective mass
deduced from Eq. �17� with the parameters relevant to data in
Fig. 6.

FIG. 8. �Color online� t /b dependence of y=A1b / t deduced
from Eqs. �13�–�15� for me

�=1, mh
�=2.5, and q=1 �solid symbols�

and best fits of Eq. �17� to this data in the low �red solid line� and
high �blue solid line� t /b range. The inset displays the low t /b
range.
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=2��b /m0m�A0 in reduced units� is much lower than 1 at
experimentally accessible fields.

IV. PROPERTIES OF THE SECOND HARMONIC IN THE
CANONICAL ENSEMBLE

In this section, we study the t /b dependence of the second
harmonic. Even though an analytical expression is difficult to
derive for q�1, it is nevertheless possible to obtain some
information in the limiting case q=1, which has already been
considered in a previous study.21 In particular, we have seen
that, within this limit, the free energy �F, for a compensated
metal, is given by the difference between the grand potentials
of the electron and hole bands, respectively,

�F = �e − �h � − me
��2

2
− mh

� �� − ��2

2

+
b2

2me
� �

n=1

�
�− 1�n

�2n2 R�nme
��cos�2�nme

��

b
�

+
b2

2mh
� �

n=1

�
�− 1�n

�2n2 R�nmh
��cos�2�nmh

�� − �

b
� . �18�

The chemical potential � satisfies the self-consistent
equation ��F /��=0 given by

� = �0 +
b

me
� + mh

� �
n=1

�
�− 1�n

�n

R�nmh

��sin�2�nmh
�� − �

b
�

− R�nme
��sin�2�nme

��

b
�� . �19�

In the case where the chemical potential is fixed ��
=�0�, we can obtain directly the Lifshits-Kosevich expres-
sion for A2=A2

LK by computing the magnetization −��F /�b
at fixed � and extracting the second harmonic,

A2
LK = −

F0

�

R�2me

��
2me

� +
R�2mh

��
2mh

� � . �20�

Otherwise, as discussed above, it is important to keep in
mind that the oscillations of the chemical potential are
strongly damped in the case where me

� and mh
� have close

values. Indeed if we approximate � by �0 at first order in b
in the sum terms of Eq. �19�, each amplitude of harmonics
nF0 is proportional to R�nmh

��−R�nme
�� which vanishes when

me
�=mh

�. It has to be pointed out that in this case, �=�0 is
even the exact solution of the previous Eq. �19�, and not
simply an approximation.

Since q=1, the linear chain is composed of independent
and successive electron and hole pockets. We can therefore
follow the appendix B of Ref. 21 and the detailed part III of
Ref. 12 to extract analytically �for small field values� the
amplitude of the second harmonic from Eqs. �18� and �19�.
The oscillatory part of the magnetization is given by Mosc=
−��F /�b=x2��F /�x �we remind that x=1 /b�. We then in-
troduce the periodic function

G�x� = �
n=1

�
�− 1�n

�n
�R�nmh

�� − R�nme
���sin�2�nF0x� �21�

so that the chemical potential, Eq. �19�, can be expressed
as �=�0+bG�x� / �me

�+mh
��, and the magnetization

Mosc � −
1

�me
� + mh

��
G�x�G��x�

+
1

2�
n=1

�
�− 1�n

�2n2 R�R�nme
��

me
�

�

�x
exp�2i�nF0x

+ 2i�nweG�x�� +
R�nmh

��
mh

�

�

�x
exp�2i�nF0x�

− 2i�nwhG�x�� �22�

with we�h�=me�h�
� / �me

�+mh
��. We make the further approxi-

mation in the exponential parts of Eq. �22�, and which is
valid at low temperature, that G�x� can be truncated to the
first term G�x���R�me

��−R�mh
���sin�2�F0x� /� so that

e2i�nwe�h�G�x� = �
m=−�

�

Jm�n�e�h��exp�2i�mF0x� , �23�

where �e�h�=2me�h��R�me
��−R�mh

��� / �me
�+mh

�� and Jm are
the Bessel functions of integer order. Putting expression �23�
into expression �22�, we then select, in order to isolate the
second harmonics, integers such that n+m= 
2 and n−m
= 
2 for the electron and hole contributions, respectively.
Expanding the magnetization in terms of Fourier components
Mosc=−A1 sin�2�F0�+A2 sin�4�F0�+¯, we find that the
coefficient A2 satisfies the relation

FIG. 9. �Color online� b / t dependence of the effective mass
deduced from Eq. �17� for me

�=1, mh
�=2.5, q=0.6 and various val-

ues of the Dingle temperature �t�� indicated on the curves.
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�A2

2F0
= −

�R�mh
�� − R�me

���2

2�me
� + mh

��
+ �

n�1

	R��n + 2�mh
�� − R��n + 2�me

��
�R�nmh
�� − R�nme

���
n�n + 2��me

� + mh
��

− �
n�1

1

n2�R�nme
��

me
� �Jn−2�n�e� − Jn+2�n�e�� +

R�nmh
��

mh
� �Jn−2�n�h� − Jn+2�n�h��� . �24�

This expression is quite different from Eq. �20� relevant to
the Lifshits-Kosevich model, except in the case where the
two masses are equal. In Fig. 10 are plotted the t /b depen-
dence of A2 deduced from Eq. �20�, with the same param-
eters as in Fig. 6, and Eq. �24� together with the numerical
results obtained by solving directly the spectrum, Eq. �2�,
and extracting the second-harmonic amplitude for different
values of q �see Sec. II�.

For q=1, taking into account the oscillations of the
chemical potential, Eq. �24� agrees well with numerical re-
sults within a large domain of t /b. Remarkably, as evidenced
in Fig. 10, whatever the q value is, the amplitude vanishes at
the same t /b value depending on the ratio of the two effec-
tive masses only �see the inset of Fig. 10. This behavior is
strikingly different from that of A1, considered in previous
section, for which no singularity is observed. This reflects
the fact that the deviation from the Lifshits-Kosevich ap-
proximation appears only in the second harmonic.

V. SUMMARY AND CONCLUSION

The spectrum for one-dimensional chain of compensated
orbits has been calculated. As it is the case for two isolated
orbits, the field-dependent oscillations of the chemical poten-
tial are weaker than in the case of two electron-type orbits

�see the inset of Fig. 4�, especially when the two effective
masses have close values. It appears from the analysis of the
numerical resolution of Landau levels, including the
electron-hole band interaction, that the Lifshits-Kosevich
semiclassical formalism can be applied for the first har-
monic, provided magnetic breakdown orbits, although with
higher effective masses, are taken into account. The resulting
high-order terms �l�1 in Eqs. �13� and �14�� can lead to
apparent temperature-dependent effective mass for clean
crystals in the high b / t limit in the case where only one
effective mass is considered for the data analysis, as it is
usually done. On the contrary, strong deviation from the
Lifshits-Kosevich behavior is observed for the second har-
monic. The main feature of this latter component being the
zero amplitude occurring at a t /b value depending only on
the effective-mass ratio mh

� /me
�. As seen in the inset of Fig.

10, the larger this value is, the closer the two masses are.
This feature could provide a straightforward method for de-
termining the effective-mass ratio since the heaviest mass
contribution to the first-harmonic amplitude is generally hid-
den by the amplitude of the lightest one, at least at low b / t
value. The strong deviations of the second harmonic from the
Lifshits-Kosevich behavior are reminiscent of data reported
for systems whose Fermi surface is composed of an electron
pocket with a one-dimensional reservoir,15 or in the direct
observation24 of spin-zero anomaly in the organic conductor

�-�BEDT-TTF�2SF5CH2CF2SO3 where an accurate treat-
ment of the second harmonic, similar to the previous section
calculation and which includes the oscillating potential ef-
fect, solves the discrepancy between experimental data and
the fit by Lifshits-Kosevich formula. Finally, it can be re-
marked that the studied 1D chain does not yield frequency
combinations. Only harmonics of the fundamental frequency
are observed. In a next step, it is planned to consider 2D
networks of compensated orbits which account for the Fermi
surface of many organic metals and are known to give rise to
such phenomenon.

APPENDIX

In this appendix we derive in details the computation of
the first harmonic A1 from Eq. �10� in Sec. III, within the
Lifshits-Kosevich and Falicov-Stachowiak theory frame-
work. The constrained sums, Eqs. �11� and �12�, can be
transformed using two Kronecker integrals around the com-
plex unit circle

F
o
u
ri
er

am
p
li
tu

d
e

10-5

10-4

10-3

10-2

10-1

100100

t/b
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.25

mh /me

FIG. 10. �Color online� t /b dependence of the second-harmonic
amplitude A2 for various q values. Solid symbols and solid line
correspond to the numerical resolution of Eq. �6� and to the solution
of approximation, Eq. �24�, for q=1, respectively. Here me

�=1 and
mh

�=5 /2. Dotted line corresponds to the LK approximation formula
for the second harmonic �see Eq. �20�� and for q=1. In the insert is
plotted the critical value of t /b at which A2 vanishes as function of
the ratio mh

� /me
�.
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A1
LK�e� =

q2R�me
��

me
� + �

l�2

R�me�l��
me�l�

� �
n=1

2�l−1�
�− 1�n

n
�

	ni,	i

p2nqneK�j=1

2n 	j� dz

2i�z
� dz�

2i�z�

� q2�j=0
n−1n2jz−l+�j=0

n−1n2j+n/2+�j=0
n−11−	2j+1/4

� q2�j=0
n−1n2j+1z�−l+1+�j=0

n−1n2j+1+n/2+�j=1
n 1−	2j/4. �A1�

The sums over the 	ni=0, . . . ,�
 can be performed ex-
actly since q is less than unity. We obtain

A1
LK�e� =

q2R�me
��

me
� + �

l�2

R�me�l��
me�l�

� �
n=1

2�l−1�
�− 1�n

n
�
		i


p2nqneK�i=1
2n 	i� dz

2i�z
� dz�

2i�z�

�
z−l+3n/4

�1 − q2z�n

1

z�j=0
n−1	2j+1/4

z�−l+1+3n/4

�1 − q2z��n

1

z��j=1
n 	2j/4

.

�A2�

The condition for a closed path is given by � j=1
2n yj =0, with

the periodic conditions y0=y2n, which imposes in the previ-
ous sum the introduction of another Kronecker function. The
previous quantities depending on 	i=yiyi−1 can be rewritten
in term of the yi’s only. Using the fact that eK=1 /�q, the sum
over the terms involving these variables is given by the
quantity

Z0 = �
	yi=
1


�
0

2� d�

2�
ei��j=1

2n yj

� �
j=0

n−1

�zq2�−y2jy2j+1/4�z�q2�−y2j+1y2j+2/4. �A3�

This is the partition function for a one-dimensional peri-
odic Ising model with an imaginary field and alternate com-
plex coupling. Setting the 2�2 transfer matrices Pyy�
= �zq2�−yy�/4ei��y+y��/2 and Pyy�

� = �z�q2�−yy�/4ei��y+y��/2, Z0 can
be written as a trace over the product of operators �PP��n,

Z0 = Tr�PP��n = �+
n + �−

n , �A4�

where �
 are the eigenvalues of the matrix PP�. The ampli-
tude can then be written as

A1
LK�e� =

q2R�me
��

me
� + �

l�2

R�me�l��
me�l�

� �
n=1

2�l−1�
�− 1�n

n
p2nqn� dz

2i�z
� dz�

2i�z�

�
z−l+3n/4

�1 − q2z�n

z�−l+1+3n/4

�1 − q2z��nZ0. �A5�

It is useful to express complex vectors z=ei� and z�=ei��

by their angles � and ��. Also, setting �=�qei�/4, ��

=�qei��/4, �̄=1 /�, and �̄�=1 /��, we can express the eigenval-
ues as

�
 = ���,��,�� 
 ��2 + ���,��� ,

���,��,�� = �̄�̄� cos�2�� + ���,

���,��� = − ��2 − �̄2����2 − �̄�2�

= − �1 − q2z��1 − q2z��/�q2�zz�� . �A6�

Then

Z0 = 2�
i=0

n/2

�
j=0

i � n

2i
�� i

j
��n−2j� j

= 2�
i=0

n/2

�
j=0

i

�
k=0

n−2j � n

2i
�� i

j
��n − 2j

k
������n−2j−2k� j cosk�2�� ,

�A7�

where we introduced binomial coefficients � n
k �=n ! /k ! �n

−k�!. In the last line, we can perform the integral over � of
the integrand cosk�2��. The resulting integral is not zero only
for k even

�
0

2� d�

2�
cos2k�2�� =

1

22k�2k

k
� . �A8�

We finally obtain

Z0 = 2�
i=0

n/2

�
j=0

i

�
k=0

n/2−j � n

2i
�� i

j
��n − 2j

2k
��2k

k
� �����n−2j−4k� j

22k .

The amplitude A1
LK can be rearranged using the previous

results like

A1
LK�e� =

q2R�me
��

me
� + �

l�2

R�me�l��
me�l�

� �
n=1

2�l−1�

2
�− 1�n

n
p2n�

i=0

n/2

�
j=0

i

�
k=0

n/2−j � n

2i
�� i

j
��n − 2j

2k
�

��2k

k
� �− 1� j

22k �� dz

2i�z
� dz�

2i�z�

�
z−l+n−j−k

�1 − q2z�n−j

z�−l+1+n−j−k

�1 − q2z��n−j q
2n−4j−4k. �A9�

To compute the last two complex integrals, we use the
relation for any positive integers �� ,
�

� dz

2i�z

z−�

�1 − q2z�
 = �
 + � − 1

�
�q2�. �A10�

Then we obtain the main result, Eq. �13�, with the com-
binatorial integer coefficients given in Eq. �14�.
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