
Temperature dependence of the current-induced domain wall motion
from a modified Landau-Lifshitz-Bloch equation

C. Schieback, D. Hinzke, M. Kläui, U. Nowak,* and P. Nielaba
Fachbereich Physik, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany

�Received 3 September 2009; revised manuscript received 6 November 2009; published 3 December 2009�

We employ the Landau-Lifshitz-Bloch �LLB� equation to investigate current-induced domain wall motion at
finite temperatures by numerical micromagnetic simulations. We extend the LLB equation with spin torque
terms that account for the effect of spin-polarized currents and we find that the velocities depend strongly on
the interplay between adiabatic and nonadiabatic spin torque terms. As a function of temperature, we find
nonmonotonous behavior, which might be useful to determine the relative strengths of the spin torque terms
experimentally.
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I. INTRODUCTION

Magnetic nanostructures in external magnetic fields as
well as under the influence of spin-polarized currents have
become interesting research fields in recent years due to fun-
damental novel effects that occur for geometrically confined
spin structures, such as domain walls.1 Current-induced do-
main wall motion has been suggested as an alternative to the
use of external magnetic fields to induce switching, opening
the possibility of simple device fabrication making field-
generating strip lines redundant. While current-induced do-
main wall motion is experimentally well established,2,3 the
underlying physical mechanisms are not completely under-
stood yet and, in particular, the importance of the adiabatic
and the nonadiabatic spin torque terms as well as domain
wall transformations for high current densities are highly
debated.4–6 Furthermore, the influence of temperature on the
effects has so far been neglected in the 0 K calculations and
so the experimentally found temperature dependence of, for
instance, the critical current densities is so far not
understood.7

To theoretically predict the behavior of a spin texture un-
der current, one can numerically solve the Landau-Lifshitz-
Gilbert �LLG� equation and computer simulations can be
performed using either a micromagnetic model or a classical
atomistic spin model. Spin torque effects can be taken into
account by including the adiabatic and the nonadiabatic
torque terms.5,6,8,9 Due to the computational expense of ato-
mistic simulations, system sizes are restricted to a nanometer
range so that micromagnetic approaches are desirable. How-
ever, conventional micromagnetic calculations for larger sys-
tem sizes lack the correct description of temperature effects
because of the assumption of a constant magnetization
length. An alternative approach that has only recently started
to be used widely to investigate realistic systems sizes in-
cluding temperature effects is to employ the so-called
Landau-Lifshitz-Bloch �LLB� equation.10 This equation
forms the basis for micromagnetic calculations at elevated
temperatures using a macrospin model where longitudinal
relaxation processes are taken into account11 but so far the
LLB equation has only been studied without the spin torque
terms.

In this paper, we extend the LLB equation of motion by
adding the spin torque terms and we study domain wall mo-

tion under the influence of current and at variable tempera-
tures. We determine the domain wall velocities and find that
they exhibit a strong dependence on the temperature. Fur-
thermore, by the interplay between the adiabatic and the
nonadiabatic spin torque the resulting onset of domain wall
transformations �Walker breakdown� is very sensitive to the
temperature.

II. MODEL

A. Landau-Lifshitz-Bloch equation

While in the LLG equation at 0 K the length of the mac-
rospins stays constant, for finite temperatures an equation of
motion for macrospins allowing for longitudinal relaxation
was derived by Garanin10 within mean-field approximation
from the classical Fokker-Planck equation for atomistic spins
interacting with a heat bath. The resulting “Landau-Lifshitz-
Bloch equation” has been shown to be able to describe linear
domain walls, a domain wall type with nonconstant magne-
tization length.12–14 Furthermore, the predictions for the lon-
gitudinal and transverse relaxation times have been success-
fully compared with atomistic simulations15 as well as rapid
heating experiments.16 Therefore, we now employ this equa-
tion to study the thermodynamics as well as the excitations
of macrospins due to currents.

The LLB equation can be written in the form

m�̇ i = − �m� i � H� eff
i −

���

mi
2 m� i � �m� i � H� eff

i � +
���

mi
2 �m� i · H� eff

i �m� i,

�1�

where m� i is the spin polarization normalized to its zero-
temperature value and � the gyromagnetic ratio. The magne-
tization is not assumed to be of constant length and even its
equilibrium value, me, is temperature dependent. Hence, be-
sides the usual precession and relaxation terms, the LLB
equation contains another term which controls longitudinal
relaxation.

The LLB equation is valid for finite temperatures and
even above the Curie temperature TC though the damping
parameters and effective fields are different below and above
TC. �� and �� are dimensionless longitudinal and transverse
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damping parameters. For T�TC they are �� =2�T / �3TC� and
��=��1−T / �3TC��. For T�TC the damping parameters are
equal, ��=�� =2�T / �3TC�. Here, � is a microscopic damp-
ing parameter which characterizes the coupling of the indi-
vidual, atomistic spins to the heat bath. In the limit T→0 the
longitudinal damping parameter �� vanishes and with
��=� the LLB equation evolves into the usual Landau-
Lifshitz �LL� equation.

The effective fields of the LLB equation are the derivative
H� eff

i =− 1
Ms

0
�f

�m� i
of the free-energy density f . The total field is

given by10

H� eff
i = H� A

i + H� ex
i + �

1

2�̃�

�1 −
mi

2

me
2�m� i T � TC

−
1

�̃�

	1 +
2

5

TCmi
2

�T − TC�
m� i T � TC
�

�2�

with the biaxial anisotropy field,

H� A
i = −

1

�̃�

�1

2
my

i e�y + mz
ie�z� , �3�

which makes the x axis the easy axis, the y axis the interme-
diate axis, and the z axis the hard axis of the model. The
exchange field is

H� ex
i =

2A

me
2Ms

0	2�
j

�m� j − m� i� , �4�

where 	 is the lateral size of the discretized cells, A is the
temperature-dependent exchange stiffness, and Ms

0 is the
zero-temperature saturation magnetization. The susceptibili-
ties �̃l are defined by �̃l=�ml /�Bl with l= � ,�. Note that at
low temperatures the perpendicular susceptibility �̃� is re-
lated to the temperature-dependent anisotropy constant K via
�̃�=Ms

0me
2 / �2K�.10 We use functions for �̃l�T�, me�T�, and

A�T� as calculated before for the spin model �for details see
Refs. 11 and 14� but rescaled to reflect a ferromagnetic ma-
terial with a Curie temperature of 1043 K and Ms

0 of
106 A /m. Furthermore, we normalize the perpendicular sus-
ceptibility such that its value at 0 K, �̃��T=0�=Ms

0 /2Kx cor-
responds to an anisotropy of Kx=105 J /m3 and 2Ky=Kx.
These functions are shown in Figs. 1 and 2.

B. Spin torque in the Landau-Lifshitz-Bloch equation

Throughout this paper we will consider a one-dimensional
model of a domain wall. An established approach for the
effect of a spin-polarized current in the x direction on a do-
main wall is presented in Ref. 6. In these studies the inter-
action between electron spins and magnetization has been
treated by additional spin torque terms

T� = − ux
�S�

�x
+ 
S� � ux

�S�

�x
, �5�

where S� is a unit vector representing the direction of the
magnetization. The first contribution to the spin torque is

called the adiabatic term. It can be derived from an addi-
tional term in the magnetic free energy that takes into ac-
count the coupling of the magnetization to the spins of the
electrical current,17 representing an adiabatic transfer of an-
gular momentum to the magnetization. In the adiabatic limit
the spin polarization of the current is always oriented along
the local direction of the magnetization. The second contri-
bution is the nonadiabatic term that reflects the mistracking
of the direction of the conduction-electron spins with respect
to the magnetization. It appears to play a role similar to the
Gilbert damping term. Recent micromagnetic numerical
investigations5,6,18–20 using a modified LLG equation includ-
ing these terms have given a qualitative insight into the roles
played by these two torque terms.

In the case of the current flowing in the x direction, the
magnitude of the effective spin current ux is given by
ux= jx /M, where M is the magnetization and jx the spin cur-
rent density jx=�BPje /e which is proportional to the electri-
cal current density je and to the polarization P. Here, �B is
the Bohr magneton and e the magnitude of the electron
charge. So far, the polarization P and thus the resulting spin
current density jx have been assumed to be temperature in-
dependent. In the following, we extend the model so that a

0 0.25 0.5 0.75 1
T/T

C

0

0.05

0.1

0.15

χ
[1

/T
]

0.25 0.5 0.75
1

2

3

4

5

χ
||

χ⊥~

~

~

FIG. 1. �Color online� Equilibrium parallel and transverse sus-
ceptibility vs temperature determined as explained in the text. The
inset shows the transverse susceptibility vs temperature on a larger
scale.
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FIG. 2. �Color online� Exchange stiffness A and reduced equi-
librium magnetization me vs temperature determined as explained
in the text.
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temperature-dependent spin current jx�T� is taken into ac-
count. Under the assumption that the spin polarization is pro-
portional to the magnetization, P�M�= P0m, and with

M =Ms
0m, ux is ux=

P0je�B

Ms
0e

for all temperatures.
Under these assumptions the spin torque terms can be

expressed in terms of the reduced magnetization m as

T� = − ux
�m�

�x
+




m
m� � ux

�m�

�x
. �6�

Note that the spin torque now is temperature dependent via
the variable m which, within the framework of the LLB
equation, is no longer a unit vector of constant length. For
the same reason, the adiabatic torque term can no longer be
expressed as a double cross product. Instead it is

− ux
�m�

�x
=

ux

m2	m� � �m� �
�m�

�x
� − m� · �m� ·

�m�

�x
�
 , �7�

which means that the adiabatic term, within the LLB equa-
tion, gives rise to an additional longitudinal spin torque term
which vanishes in the LLG equation due to the assumption
of a constant length of the magnetization vector. As pointed
out in Ref. 21 this term corresponds to the spin accumulation
and in the metal systems considered here, it constitutes usu-
ally a small effect.

It is not yet clear whether the spin torque term T� should be
added to the Landau-Lifshitz or the Landau-Lifshitz-Gilbert
form of the equation of motion �for more details see the
discussion in Refs. 22–24�. The same problem arises with the
LLB equation. In the following, we extend the LLB equation
with both forms of the damping, the one after Landau and
Lifshitz as well as the one after Gilbert. The LL form of the
LLB equation �Eq. �1�� is the original one as derived by
Garanin.10 Equation �1� now reads with the additional spin
torque terms from Eq. �6�

m�̇ i = − �m� i � H� eff
i −

���

mi
2 m� i � �m� i � H� eff

i �

+
���

mi
2 �m� i · H� eff

i �m� i − ux
�m� i

�x
+


LL

mi
m� i � ux

�m� i

�x
. �8�

Neglecting terms of the order of �2 the LLB equation can be
transformed into an equation with a damping term following
Gilbert. Adding the same spin torque terms T� to this form of
the LLB equation yields

m�̇ i = − �m� i � H� eff
i +

���

mi
2 m� i � m�̇ i +

���

mi
2 �m� i · H� eff

i �m� i

− ux
�m� i

�x
+


G

mi
m� i � ux

�m� i

�x
. �9�

Note that we use the notation 
G and 
LL for the nonadia-
batic prefactor only for convenience in order to distinguish in
the following between the LL and LLG form of the LLB
equation.

In the next step we transform Eq. �9� into an explicit form
so that we are able to compare it with Eq. �8� and also since
an explicit equation is more convenient for a numerical treat-

ment. This explicit equation can be derived once again ne-
glecting terms of the order of �2 and �
 and it is given by

m�̇ i = − �m� i � H� eff
i −

���

mi
2 m� i � �m� i � H� eff

i �

+
���

mi
2 �m� i · H� eff

i �m� i − ux
�m� i

�x
+ �
G

mi
−

��

mi
2 �m� i � ux

�m� i

�x
.

�10�

The only difference between Eq. �8� assuming Landau-
Lifshitz damping, and Eq. �10� assuming Gilbert damping, is
the prefactor of the last term. Equations �8� and �10� are
mathematically identical for 
LL=
G−�� /mi. Note that at 0
K both equations evolve into the well-established explicit
versions of the LL, respectively, LLG equation with spin
torque terms.22–24

III. ANALYTICAL MODEL

In the following, we present analytical calculations for a
one-dimensional system aligned along the x direction. We
extended well established, analytical 0 K calculations6,18 to
elevated temperatures using the LLB equation as equation of
motion. Note that within the LLB approach domain wall pro-
files change with increasing temperature first from circular to
elliptical and later on to linear.12–14 However, these effects
occur only at higher temperatures close to TC �depending on
the strength of the anisotropy� and are neglected in our ana-
lytical calculations. Hence, we assume a temperature-
independent domain wall type, which here is a transverse
domain wall along the x direction, which does not change its
spin structure dynamically. This assumption is later tested by
comparison with numerical calculations without these ap-
proximations.

In Refs. 13 and 14 it was shown that at finite temperatures
the mathematical form of a transverse wall profile �e.g.,
Bloch type�, which can be described by the usual hyperbolic
functions, is conserved; solely the amplitude and the domain
wall width vary with temperature. The assumed transverse
domain wall profile is

m� = − me�tanh� x

�
�e�x +

cos��

cosh� x

�
� e�y +

sin��

cosh� x

�
� e�z�

�11�

with the temperature-dependent domain wall width

��T,� = 4

Ms
0

A�T��̃��T�
me

2�T�
1

�1 + sin2 �
�12�

and the out-of-plane angle . In the low-temperature
limit this equation has the well-known form,
�=2A / �K�1+sin2 ��.

The equations of motion are calculated as described in
Ref. 9. We assume Gilbert damping first, simply because it is
the more common assumption in connection with spin torque
calculations. For the domain wall profile above the equations
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of motion for the position of the domain wall xG and the
angle  are

xĠ =
me��

4�̃�

sin 2 + ux, �13�

̇ = −
���

4�̃�

sin 2 −
��� − 
Gme�

me

ux

�
. �14�

These equations are calculated based on the original proce-
dure �see Ref. 6 and references therein�. The corresponding
Walker threshold uWalker

G �Ref. 25� can be calculated under
the assumptions that ̇=0 and that the function
��T ,�sin 2 within Eq. �14� reaches its maximum at
�� /4. The Walker threshold is then given by

uWalker
G =

�

4�̃�

�Walker
��me

��� − 
Gme�
�15�

with �Walker=��T ,=� /4� and the average domain wall ve-
locity is

�v�G =

Guxme

��

�
me�Walker�

4�̃�

� ux

uWalker
G �2

− 1 �16�

with the plus sign for ���−
Gme�ux�0 and the minus sign
otherwise. This equation contains a contribution which is
linear in the current �in the nonadiabatic case� and a second
square-root contribution above the Walker threshold. The
temperature dependence is included in the temperature-
dependent parameters A�T�, me�T�, ���T�, and ���T�. At
zero temperature these results are identical to those gained
with the LLG equation.6,18 The longitudinal spin torque does
not affect the analytical results since we assume a constant
domain wall type. Very close to the Curie temperature this
assumption is no longer valid and deviations can be ex-
pected, which are beyond the scope of the current investiga-
tion.

In Fig. 3 the Walker threshold according to Eq. �15� is
shown as a function of the reduced temperature �T /TC�. In
all cases the Walker threshold vanishes at the Curie tempera-
ture. In the adiabatic case �
G=0� and in general for


G��=���T=0� it decreases with increasing temperatures.
For 
G=�=0.02 the Walker threshold diverges approaching
zero temperature. The behavior for 
G�� is similar but here
the Walker threshold diverges at a finite temperature. As we
will see in the following, the understanding of the tempera-
ture dependence of the Walker threshold is the key for un-
derstanding the temperature dependence of the domain wall
velocity.

The equation of motion for Landau-Lifshitz damping �Eq.
�10�� can be calculated and solved in the same way as for the
Gilbert damping with corresponding results for the Walker
threshold and the average domain wall velocity for

LL=
G−�� /me. Note, however, that since this transforma-
tion is temperature dependent, the temperature dependence
of both, Walker threshold and domain wall velocity, are dif-
ferent for Landau-Lifshitz and Gilbert damping, respectively.
The temperature dependence of the Walker threshold assum-
ing Landau-Lifshitz damping is also shown in Fig. 3. The
main difference is that approaching the Curie temperature the
Walker threshold does not vanish but diverges. In the limit of
low temperatures, however, the Walker threshold converges
to the one following Gilbert damping.

IV. NUMERICAL MODEL

By means of computer simulations, temperature-
dependent domain wall velocities were calculated for a one-
dimensional system of 512 nm length, discretized with 1 nm
cell size. The initial magnetization configuration was a pla-
nar domain wall positioned in the middle of the chain with
the temperature-dependent profile and width given by Eqs.
�11� and �12� with =0. For 0 K the domain wall width
varies between �max=20 nm �=0� and �min=14.1 nm
�=� /2� with �Walker=16.3 nm �=� /4�. At the ends of
the system the spins were fixed as boundary conditions in the
x direction and −x direction, respectively. To minimize the
influence of these boundary conditions the domain wall was
only allowed to move within a range of 60 nm from the
center of the system. When the domain wall moved out of
this interval, it was shifted back along the x coordinate and
repositioned at the opposite side of the interval. The domain
wall velocity was calculated from the derivative of the spa-
tially averaged x component of the magnetization versus
time. The numerical time integration of Eqs. �8� and �10� was
carried out using a Heun method26,27 with 1.8 fs time step
size.

V. RESULTS

A. Adiabatic spin torque effect

In the following, first the pure adiabatic spin torque effect
�
G=0� is discussed. For zero temperature, this effect was
already investigated previously based on the LLG
equation.18,19,28,29 It was found that for low effective spin
currents ux the domain wall moves along the wire until it
reaches a maximum displacement where it stops. At the same
time, the magnetization of the domain wall is tilted out of the
easy plane up to a maximum out-of-plane angle. This behav-
ior can be explained by an analysis of the different terms of
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FIG. 3. �Color online� Walker threshold uWalker according to Eq.
�15� vs the reduced temperature T /TC for different values of the
nonadiabatic prefactor 
G as well as 
LL.

SCHIEBACK et al. PHYSICAL REVIEW B 80, 214403 �2009�

214403-4



the extended LLG equation �Eq. �10��: the first spin torque
term which moves the domain wall is balanced by an “inter-
nal” torque due to the anisotropy contribution to the effective
field. The displacement of the domain wall in x direction is
eventually stopped by the precessional term acting in the
opposite direction while the second spin torque term which is
responsible for tilting the magnetization out of the easy plane
is balanced by the damping term.

It was even analytically predicted18,19,28 that the averaged
domain wall velocity as a function of the effective spin cur-
rent remains zero unless the current exceeds a critical value
uc. This predicted critical current was also found in atomistic
simulations at 0 K.29 Below the critical effective spin current
�ux�uc� no continuous domain wall motion is observed
while above the critical current the spin torque term can no
longer be balanced by the anisotropy. Consequently domain
wall motion occurs in addition to a precession of the magne-
tization around the x axis.

We find the same behavior in the extended LLB equation.
This can be seen in Fig. 4 where the averaged domain wall
velocity is shown as a function of the effective spin current
ux for different reduced temperatures T /TC. However, it is

found that the critical effective spin current is temperature
dependent, following the equation

uc =
�me

4�̃�

�Walker �17�

�Eq. �15� for 
G=0�. For larger temperatures the critical cur-
rent decreases since thermodynamically the anisotropy de-
creases. This leads to the fact that domain walls at higher
temperatures are faster than at low temperatures.

Furthermore, in the bottom part of Fig. 4 the averaged
domain wall velocity is shown as a function of the reduced
temperature for different values of the effective spin current.
In the limit of low current a critical temperature T� can be
identified. For T�T� no continuous domain wall motion is
observed while for T�T� domain wall motion occurs. This
critical temperature is shifted to lower values for higher spin
currents. In the limit of high effective spin current T� van-
ishes and domain wall motion can be observed over the
whole temperature range. Here, the spin torque effect is no
longer balanced by the anisotropy and only the terms respon-
sible for the precession of the magnetization around the x
axis affects the domain wall motion.

In both figures, analytical curves and numerical results
agree. This demonstrates clearly that the assumptions made
for the derivation of Eq. �16� are reasonable for the param-
eters used. In particular, it shows that the influence of the
longitudinal spin torque on the domain wall motion is unim-
portant in the range of temperatures under investigation.

Note that the pinning barrier which stops the domain wall
motion can be overcome by thermal fluctuations. The role of
these fluctuations was investigated by Duine et al.30 within
the framework of an extended, stochastic LLG equation.
These fluctuations are relevant in the limit of very thin wires
where by thermal activation the pinning potential can be
overcome on sufficiently long time scales, leading to a finite
domain wall motion even below the critical current. In our
work, however, fluctuations are not considered so that the
results are more relevant for thicker wires where thermal
fluctuations of the domain wall profile can be neglected.

B. Nonadiabatic spin torque effects

In the following, nonadiabatic spin torque is taken into
account and its effect is discussed in more detail. For com-
parison with previous investigations,6,29 the nonadiabatic
prefactor 
G is assumed to be temperature independent and
is investigated in relation to the temperature-independent mi-
croscopic damping constant �. Note, however, that in Ref. 31
nonlocal contributions, which are strongly correlated with
the domain wall width, are predicted, which are neglected for
our wide walls here.

Our results for the case 
G=� are shown in Fig. 5. In the
zero-temperature limit it is m=1 and ��=� so that the last
term of Eq. �10� vanishes and only the first spin torque term
remains finite which is responsible for the displacement of
the domain wall along the x axis. The magnetization is,
hence, not tilted out of the easy plane and no torque occurs
due to the precessional or relaxational part of the LLB equa-
tion. This behavior was already observed in previous numeri-
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FIG. 4. �Color online� The top figure shows the average domain
wall velocity �v�G calculated from the LLB equation with Gilbert
damping vs the effective spin current ux for different temperatures.
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the LLG equations are identical. The bottom figure shows �v�G vs
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lution �Eq. �16�� and the points are from numerical simulations. The
calculations are for the adiabatic case, 
G=0 and �=0.02.
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cal investigations of the LLG equation and is discussed in
more detail in Refs. 6 and 29.

In the case of elevated temperatures, the situation is dif-
ferent due to the fact that the last term of Eq. �10� does not
vanish because of the temperature dependence of m and ��.
This term is responsible for tilting the magnetization out of
the easy plane and it leads to the existence of the Walker
threshold uWalker

G �Eq. �15��. Figure 5 shows that two regimes
can be distinguished: for ux�uWalker

G the velocity �v�G shows
a linear behavior as in the zero-temperature limit while in the
regime ux�uWalker

G the second term in Eq. �16� takes over
and the velocity increases even faster. Here, the last term of
Eq. �10� leads to a continuous rotation of the magnetization
around the x axis. Following Eq. �15� the transition between
these regimes is shifted to lower effective spin currents with
increasing temperature vanishing at 0 K.

The averaged domain wall velocity as a function of tem-
perature for different effective spin current values is shown
in the bottom part of Fig. 5. First, it decreases with increas-
ing temperature until a minimum value is reached, after
which the velocity increases. The minimum can be identified
once again as the Walker threshold. This behavior is found
for all effective velocities although the value of the minimum

of the velocity is shifted to higher temperatures for lower
effective velocities.

Figure 6 shows results for the case 
G��. Here, the term
responsible for tilting the magnetization out of the easy plane
plays a crucial role for all temperatures even at 0 K. As
before, the Walker threshold is shifted to lower effective ve-
locities with increasing temperature. In comparison to the
case 
G=�, the Walker threshold occurs at lower effective
spin currents for the same temperature value so that the pre-
cession of the domain wall sets in earlier.

The averaged domain wall velocity as a function of the
temperature is shown in the bottom part of Fig. 6 for differ-
ent values of the effective spin current. As before a minimum
exists which is shifted to lower temperatures for higher ef-
fective velocities, consistent with the shift of the Walker
threshold discussed above. In comparison to the 
G=� case,
this shift of the minima is more pronounced.

Finally, Fig. 7 shows results for the case 
G��. Here, the
behavior differs from the two cases before. First of all, above
the Walker threshold, the wall velocity increases slower than
linear not faster as before. This is due to the sign change in
Eq. �16�. Also, starting from low temperature the Walker
threshold is first shifted to higher currents. In the effective
spin current range shown in the figure the Walker threshold
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damping vs the effective spin current ux for different temperatures.
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G=�=0.02.
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FIG. 6. �Color online� The top figure shows the average domain
wall velocity �v�G calculated from the LLB equation with Gilbert
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The bottom figure shows �v�G vs the reduced temperature T /TC.
The lines represent the analytic solution �see Eq. �16�� and the
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even disappears due to the fact that it is shifted out of the
range presented. Surprisingly, at temperatures close to TC
another Walker threshold appears at lower effective veloci-
ties above which the averaged wall velocity increases faster
than linear.

This second transition can also be identified from the av-
eraged velocity as a function of temperature as shown in the
bottom part of Fig. 7. For an effective spin current of 600
m/s there are two temperatures where the behavior of the
velocity changes. This corresponds to the fact that the Walker
threshold as shown in Fig. 3 can be crossed twice for

G�� and certain values of the effective current, leading to
this intricate behavior, which could be easily identified if
observed experimentally.

C. Comparison of Gilbert and Landau-Lifshitz damping

In this section the difference between the assumption of
Gilbert damping on the one hand and Landau-Lifshitz damp-
ing on the other hand is discussed for the case 
G��. As
mentioned before the prefactors for the nonadiabatic spin
torque term can be transformed as 
LL=
G−�� /me. This

transformation is temperature dependent so that a qualita-
tively different temperature dependence exists for Landau-
Lifshitz damping in comparison to the Gilbert damping dis-
cussed before. Figure 8 summarizes our results for the
extended LLB equation assuming Landau-Lifshitz damping
�Eq. �8��.

Comparing Figs. 7 and 8 it is found that the curves for 0
K are indeed the same. However, the behavior at elevated
temperatures is completely different: a Walker threshold can
be identified for all temperatures. Below the threshold the
domain wall is moved along the wire with an averaged ve-
locity proportional to the effective spin current. Above the
threshold additionally to this movement the magnetization
precesses around the x axis so that the velocity of the domain
wall is decreasing. The temperature-dependent threshold is
shifted to lower effective velocities for higher temperatures.
Here, the 0 K curve is an upper limit for the averaged do-
main wall velocity.

The behavior of the domain wall velocity as a function of
the temperature is less complicated than in the corresponding
Gilbert case. For low currents the averaged velocity steadily
decreases with increasing temperatures. For slightly larger
currents the domain wall moves with a constant velocity un-
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FIG. 7. �Color online� The top figure shows the average domain
wall velocity �v�G calculated from the LLB equation with Gilbert
damping vs the effective spin current ux for different temperatures.
The bottom figure shows �v�G vs the reduced temperature T /TC.
The lines represent the analytic solution �see Eq. �16�� and the
points are from numerical simulations. For ux=600 m /s two cross-
ings of the Walker threshold are visible �T /TC=0.32 and
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til the Walker threshold is reached. Above this point the ve-
locity is decreasing. Close to the Curie temperature another
transition point is reached where the domain wall velocity
decreases even faster. Here, the Walker threshold is crossed
again �see Fig. 3�. A further increase in the effective spin
current leads to a shift of the first transition point to lower
temperatures and only two regimes can be identified.

VI. CONCLUSIONS

In summary, we combined the LL form of the LLB equa-
tion as well as the Gilbert form of the LLB equation with the
adiabatic and nonadiabatic spin torque terms. We investi-
gated analytically as well as numerically domain wall motion
at various temperatures for the adiabatic and nonadiabatic
cases. The Walker threshold as well as the domain wall ve-
locities show a strong temperature dependence. Furthermore,
we found a different behavior for the temperature-dependent

Walker threshold assuming the Gilbert form of damping or
the LL form. Since the two behaviors can be qualitatively
different, a measurement of the temperature dependence of
the velocity and the Walker threshold could pose a unique
opportunity to identify, whether the Gilbert or the LL formu-
lation are the physically relevant one. This then in turn could
have implications for determining the physically relevant de-
scription of damping, which is one of the key open questions
in magnetization dynamics.
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