Prediction of the stability of the $M_{n+1}AX_n$ phases from first principles

V. J. Keast, S. Harris, and D. K. Smith

School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia

(Received 15 June 2009; revised manuscript received 12 November 2009; published 18 December 2009)

One of the unusual features of the $M_{n+1}AX_n$ phases (where *M* is a transition metal, *A* is a group A element, *X* is carbon or nitrogen, and n=1,2,3...) is that for a given *M*-A-X system, only certain values of *n* are found to occur and there is no systematic behavior between the different systems. Density-functional theory was used to verify the stability of the different phases by comparing their total energy to that of the appropriate competing phases. Five systems (Ti-Al-C, Ti-Si-C, Ti-Al-N, Ti-Si-N, and Cr-Al-C) were studied for n=1-4. Complete agreement with observed occurrences of these phases was found. Very small energy differences suggest that it may be possible to fabricate Ti₂SiC, Ti₂SiN, and Ti₃AlN₂ as metastable phases. None of the M_5AX_4 phases were predicted to occur and in all cases the α phases were found to be more energetically favorable than the β phases.

DOI: 10.1103/PhysRevB.80.214113

PACS number(s): 61.50.Lt, 61.66.Dk

I. INTRODUCTION

The existence of the so-called $M_{n+1}AX_n$ phases (where M is a transition metal, A is a group A element, X is carbon or nitrogen, and n=1,2,3...) has been known for decades. The development of methods for phase-pure fabrication in both the bulk^{1,2} and thin-film forms³ has resulted in these materials receiving increased attention in recent years. Their unique combination of metallic and ceramic properties makes them of interest for possible applications in a variety of hightemperature applications or in other extreme environments. The usual compromise between high stiffness and good machinability does not need to be made for these materials. In addition the beneficial mechanical properties are maintained at high temperatures and the oxidation resistance is high. Some of the possible applications include but are not limited to: replacement in high-temperature applications for the Nibased superalloys; wear and corrosion protection; heat exchangers; kiln components; and wear-resistant electrical contacts.4

This combination of metallic and ceramic properties arises from the crystal structure of these materials where ceramiclike M-X atomic layers with strong bonds are interleaved with A layers which are weakly bonded to M. As nincreases, the number of M-X layers between the A layers increases as shown in Fig. 1. The space group is $P6_3/mmc$ and the atoms are located at the positions given in Table I. There is evidence that the M_3AX_2 and M_4AX_3 structures can occur with a different stacking of the layers—the α and β phases.^{5–9} In addition, a mixture of alternating M_3AX_2 and M_4AX_3 or M_2AX layers have been observed in some samples.^{10–15} No observations of M_5AX_4 structures have yet been reported and the stacking sequence, should it occur, is not known. The structure used in this paper is given in Table I which is consistent with the layer stacking found in the α phases, which are predominant.

One of the fascinating but rarely discussed aspects of this set of alloys is that, for a given M-A-X system, only certain values of n have been reported. For example, in the Ti-Si-C system, Ti₃SiC₂ is observed and Ti₂SiC is not whereas the opposite occurs in the Ti-Al-N system: Ti₂AlN is observed

but Ti_3AlN_2 is not. There does not appear to be an obvious pattern or systematic behavior (see Table II) and this behavior has not yet been explained. It is not immediately clear why the insertion or removal of a transition-metal carbide or nitride layer should or should not be preferred in any particular system.

FIG. 1. Crystal Structures of the $M_{n+1}AX_n$ phases.

M_2AX	$M(\frac{1}{3},\frac{2}{3},u)4f$		
	$A(\frac{2}{3},\frac{1}{3},\frac{1}{4})2d$		
	X (0,0,0) 2a		
α - M_3AX_2	<i>M</i> 1 (0,0,0) 2a	$\beta - M_3 A X_2$	<i>M</i> 1 (0,0,0) 2a
	$M2(\frac{2}{3},\frac{1}{3},v)4f$		$M2(\frac{2}{3},\frac{1}{3},v)4f$
	$A(0,0,\frac{1}{4})2b$		$A(\frac{1}{3},\frac{2}{3},\frac{1}{4})2b$
	$X(\frac{1}{3},\frac{2}{3},u)4f$		$X(\frac{1}{3},\frac{2}{3},u)4f$
α - M_4AX_3	$M1(\frac{1}{3},\frac{2}{3},u)4f$	$\beta - M_4 A X_3$	$M1(\frac{1}{3},\frac{2}{3},u)4f$
	M2(0,0,w)4e		M2(0,0,w)4f
	$A(\frac{1}{3},\frac{2}{3},\frac{1}{4})2c$		$A(\frac{2}{3},\frac{1}{3},\frac{1}{4})2c$
	X1 (0,0,0) 2a		<i>X</i> 1 (0,0,0) 2a
	$X2(\frac{2}{3},\frac{1}{3},v)4f$		$X2(\frac{2}{3},\frac{1}{3},v)4f$
M_5AX_4	<i>M</i> 1 (0,0,0) 2a		0.0
	$M2(\frac{2}{3},\frac{1}{3},v)4f$		
	$M3(\frac{1}{3},\frac{2}{3},x)4f$		
	$A(\frac{2}{3},\frac{1}{3},\frac{1}{4})2d$		
	$X1(\frac{1}{3},\frac{2}{3},u)4f$		
	X2(0, 0.w)4e		

TABLE I. Atom positions (Wyckoff sites) for the $M_{n+1}AX_n$ phases.

Density-functional theory (DFT) has been used extensively to study the $M_{n+1}AX_n$ phases. These studies have included predictions of the structural parameters, formation energies, electronic structure, and elastic constants.^{8,9,11,13,16–48} In general, good agreement with the available experimental data is observed; lattice parameters, elastic constants, and the electronic structure are well described. The DFT calculations have played an important role in understanding the origin of their unique physical properties. Despite the extensive number of calculations on this system of alloys, surprisingly little has been done to address the question of which of the possible phases can be expected to occur. The formation energy (the total energy minus the energy of the constituent elements) is usually found to be negative, favoring phase formation. However, this information alone is insufficient to predict the actual occurrence of the compounds. In order to answer this question, the calculated total energy must be compared to that of the competing phases as determined from the ternary phase diagrams. This process is necessary because, although a particular $M_{n+1}AX_n$ phase might be energetically favorable when compared to the starting ele-

TABLE II. Reported occurrences of some of the $M_{n+1}AX_n$ phases (Ref. 4).

	M_2AX	M_3AX_2	M_4AX_3
Ti-Si-N	×	×	×
Ti-Al-N	1	×	1
Ti-Si-C	×	1	✓a
Ti-Al-C	1	1	×
Cr-Al-C	1	×	×

^aPrepared using thin-film epitaxial growth (Ref. 13).

ments, the phase will not be observed to occur if it is more energetically favorable to instead form two or more different compounds. The ternary phase diagrams can be used to identify which compounds may be observed instead. The few studies so far that have taken this approach have only had limited success when compared to the experimental observations.^{13,18,49}

This paper uses DFT to calculate the energy of the $M_{n+1}AX_n$ phases of Table II and compares them to the energies of the appropriate competing phases as obtained from the ternary phase diagrams. Both the α and β structures are considered as are the M_5AX_4 structures.

II. COMPUTATIONAL METHODS

In order to calculate the phase stability for each of the $M_{n+1}AX_n$ alloys the competing phases involved must be identified. This was achieved through the use of the experimentally determined ternary phase diagrams in the literature.^{50–53} The position of the $M_{n+1}AX_n$ alloys in the ternary diagram was determined and the competing phases identified from the nearby stable points on the diagram. The stoichiometry of the competing phases and the $M_{n+1}AX_n$ alloys was then used to derive the balance equations. In some cases there was some ambiguity about which set of competing phases to choose and so different combinations were considered. Some of these alternative combinations have been included in the results.

The DFT calculations were performed using the (linearized) augmented plane wave plus local orbitals method (L/APW+lo) within the WIEN2K software package.⁵⁴ The generalized gradient approximation (GGA) (Ref. 55) was used for the exchange-correlation potential. The plane-wave cutoff, defined by the product of the smallest atomic sphere radius times the magnitude of the largest reciprocal-lattice vector $R_{MT}K_{max}$, was set to 7.0 and a G_{max} (magnitude of the largest vector in the charge-density Fourier expansion) of 12 was used for all calculations. The atomic sphere radii (in Bohr) were taken as: Ti, Cr=1.9; Al, Si=1.8; and C=1.3; and N=1.5. They were kept constant for all calculations to ensure comparisons of total energy between different structures remained valid. The number of k points in the irreducible Brillouin zone was in the range of 80-150, depending on the size of the crystal cell. The number of k points was tested for convergence. Spin polarization was not included. The Ti-based systems are nonmagnetic and so spin polarization is unlikely to be significant. In the Cr-based systems the energy differences found here are quite large and the outcome in terms of phase stability is also unlikely to be influenced by the inclusion of spin polarization.

Structural optimizations were performed for all structures, including lattice parameters and internal coordinates (where applicable). Experimental structural parameters are available for many of the compounds in the calculations but not all. Calculated values must be used in order to ensure consistency between the results for all structures. Where optimization of several parameters was required, the optimization was cycled through the parameters until the changes in the total energy with optimization were too small to have any influence on the determination of phase stability. Usually two or three cycles were sufficient. The numerical value for the convergence criteria for both the structural parameters and the *k* points was usually better than 1–2 meV. This condition was slightly relaxed in some instances when the energy differences between the $M_{n+1}AX_n$ phase and the competing phases were on the order of 0.5 eV or greater.

III. RESULTS

Tables III and IV show the results for structural parameters and total energies of the competing phases and the $M_{n+1}AX_n$ phases, respectively. In all cases the structural parameters are in agreement with experimental data or previous calculations within the expected limits of accuracy of DFT. Table V shows the balance equations determined from the ternary phase diagrams for the systems of interest. The calculated energy difference ΔE between the $M_{n+1}AX_n$ phase (E_{MAX}) and the competing phases (E_{CP}) is derived from the results in Tables III and IV and is given in eV. Theoretical formation of a stable $M_{n+1}AX_n$ phase occurs when $\Delta E < 0$. With the exception of Ti₄SiC₃, the observed occurrences of the $M_{n+1}AX_n$ phases, as given in Table II, are confirmed by the calculations. In all cases the α structures are preferred over the β structures and no M_5AX_4 structures are predicted to occur.

IV. DISCUSSION

The calculations have had quite remarkable success in verifying the occurrences of the $M_{n+1}AX_n$ phases considered here. The success of the calculations is arguably greater than we might have anticipated, given that there are significant approximations in these kinds of DFT calculations. Firstly, the calculations are performed at 0 K and zero pressure: vibrational, entropy, and pressure effects are neglected. Secondly, kinetic effects are expected to play a significant role in whether a compound will occur. For example, it has been observed that intermediate phases are important in the bulk fabrication Ti_3SiC_2 .^{56,57} Finally, the calculations are unable to easily include the effect of vacancies, solid solutions, and nonstoichiometric alloys. It is possible that in some instances there will be a set of competing phases with a lower energy than those used. The V-Al-C system would be particularly challenging to study as the likely competing phases include a solid solution of Al in V up to 22% and a disordered ξ -VC_{1-x}.

The single exception to the success of the calculations is the result that Ti_4SiC_3 phase would not occur even though it has been observed in thin films. However, as it has not been observed by bulk fabrication methods, it is likely that the observed thin film Ti_4SiC_3 is a metastable phase. In this instance, our theoretical result is not in contradiction with the observation but serves to further emphasize the role that kinetic effects can sometimes play in experimental fabrication.

The phase stability in the Ti-Si-C system of $M_{n+1}AX_n$ phases has previously been studied by DFT.¹³ In that work both the Ti₂SiC (ΔE =-0.008 eV/atom) and Ti₄SiC₃ (ΔE = -0.029 eV/atom) were calculated to occur. The main difference between their calculations and those presented here is that we have included Ti₅Si₃C as a competing phase. Here, we have found that Ti₂SiC would not occur, in agreement with experimental observation. Consistent with a previous study, β -Ti₃SiC₂ is not predicted to form.⁹ We have also confirmed that the β - $M_{n+1}AX_n$ structures are not energetically preferred for any of the systems investigated here.

It should be noted that the differences in energy between the $M_{n+1}AX_n$ phases and the competing phases are sometimes very small and are close to the expected level of accuracy of the calculations. The very small theoretical energy differences for phase formation in some alloys and the experimental observation of a metastable Ti₄SiC₃ suggest the possibility that a number of phases, not previously observed, could also be fabricated as metastable phases. On the basis of our calculations, the phases that may warrant further efforts at thin-film fabrication are Ti₂SiC, Ti₂SiN, and Ti₃AlN₂.

The results suggest that the dominant contribution to the phase stability is the total electronic energy. It has not been necessary to include the effect of temperature to obtain agreement with the experimental occurrences of these phases. At first this might seem very surprising, given that fabrication of the alloys usually occurs at high temperature. However, the $M_{n+1}AX_n$ phases, once formed, are stable and do not decompose if they are slowly cooled. This supports the finding here that the role of temperature in the equilibrium phase stability is not large. For the systems considered in this work, the materials are highly ordered. For other systems, where nonstoichiometric and disordered compounds play a significant role, the temperature dependence of the ordering behavior would add an additional complication in the determination of phase formation.

In has been shown previously that the inclusion of temperature can change the stability from the α to the β phases in Ti_3SiC_2 and Ta_3AlC_2 for temperatures above 1000 K,^{58,59} suggesting that calculations at elevated temperatures are necessary. However it should also be noted that it is the α phase that usually is fabricated. The β phase has been seen in electron microscopy images and is believed to be produced by transformation during sample preparation.⁷ It may be possible to understand why it has not been necessary to include temperature in this work by recognizing that the local atomic arrangements and bonding in the $M_{n+1}AX_n$ phases and the competing phases are very similar (as opposed to the case for the α and β phases). As a consequence, the difference between the temperature dependence of the phonons is anticipated to be very small and so the influence of temperature on phase stability will also be small. Ideally, temperature effects should be included for highest accuracy calculations. However, this additional accuracy is computationally prohibitive for the 40+ compounds studied here. Such calculations may be of interest in the future to explore the decomposition behavior at high temperatures and the role of intermediate phases.

As *n* increases, the overall trend across each of the series studied here is that the formation of the $M_{n+1}AX_n$ phase becomes less energetically favorable. However the widespread validity of this observation remains in doubt. There are the notable exceptions of Ti₃SiC₂ and Ti₄AlN₃. In addition, if it were generally true, then we may expect that more M_3AX_2 than M_4AX_3 phases could be fabricated, in contradiction with

	Space group	Lattice parameters (Å)	Atom positions	Total energy (Ry)
	D	. (57	$T:(0.177 \stackrel{1}{\sim} 0.120)/4$	2297.9154
1151	Pnma	a = 0.57	$11(0.177, \frac{1}{4}, 0.129)4c$ S:(0.044, $\frac{1}{2}$, 0.647)4	-2287.8154
		b = 3.64	$S1(0.044, \frac{1}{4}, 0.047)4c$	
TiSi	Eddd	c = 4.98	$T_{i}(\frac{1}{2},\frac{1}{2},\frac{1}{2})$	2867 8002
11312	гаца	u = 0.29	$\Pi(\overline{8}, \overline{8}, \overline{8}, \overline{8}) \delta d$ S: $(0.462, \frac{1}{2}, \frac{1}{2}) 16a$	-2807.8992
		v = 4.81	$51(0.402, \frac{1}{8}, \frac{1}{8})10e$	
TiN	Fm_3m	a = 4.25	$T_{i}(0, 0, 0) 4_{3}$	-1817 4124
1114	1 m-5m	<i>u</i> =4.25	$N(\frac{1}{2} \ 0 \ 0)4h$	1017.4124
Ti A I	PA / mmm	a = 2.82	$Ti_{(2}, 0, 0) + 0$ $Ti_{(0, 0, 0)} = 1a$	-2193 3292
11/ 11	1 4/ 11/11/11	c = 4.06	$Al(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})1d$	21)3.32)2
TiAl	IA/mmm	a = 3.85	Ti(2, 2, 2) Ti Ti (0, 0, 0) 2a	-3164 6704
111 113	1 (/ ///////	c = 8.57	$A1(0, 0, \frac{1}{2})2h$	5101.0701
		0.57	$A1(0, \frac{1}{2}, \frac{1}{2})4d$	
TiC	Fm-3m	a=434	Ti $(0, 2, 4)$ + a Ti $(0, 0, 0)$ 4a	-1783 9685
ne	1 110 5110	<i>u</i> = 1.0 1	$C(\frac{1}{2}, 0, 0) 4h$	1705.5005
TiaAlC	Pm-3m	a=4.18	$T_{i}(0, \frac{1}{2}, \frac{1}{2})3c$	-5684 9885
113/110	1 111 5111	<i>u</i> = 1.10	Al $(0, 0, 0)$ 1a	5001.5005
			$C(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})1h$	
TiaAIN	Pm-3m	a=4.12	$Ti(0 \frac{1}{2}, \frac{1}{2}, \frac{1}{2})3c$	-5718 4253
1131111	1 111 5111	u = 1.12	A1(0, 2, 2)30	5710.1255
			$N(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})1b$	
Ti ₅ Si ₂ N	$P6_2/mcm$	a=7.43	$Ti1(\frac{1}{2},\frac{2}{2},0)4d$	-10388.6114
1130131	1 03/ 11011	c = 5.16	$Ti2(0.228, 0, \frac{1}{2})6g$	10500.0111
		0-5.10	Si(0 591 0 $\frac{1}{2}$)6g	
			$C_{1}(0,0,0)$ 2b	
Ti ₅ Si ₂ C	$P6_2/mcm$	a = 7.48	$Ti1(\frac{1}{2},\frac{2}{2},0)4d$	-10355.1673
5 5		c = 5.17	$Ti2(0.231.0.\frac{1}{4})6g$	
			$Si(0.593, 0, \frac{1}{4})6g$	
			C(0,0,0) 2b	
С	$P6_3/mmc$	<i>a</i> =2.46	$C1(0,0,\frac{1}{4})2b$	-76.2065
	5	<i>c</i> =6.80	$C2(\frac{1}{2},\frac{2}{2},\frac{1}{4})2c$	
Cr ₂ Al	I4/mmm	<i>a</i> =2.97	Cr(0,0,0) 2a	-4689.2085
2		<i>c</i> =8.51	Al (0,0,0.317) 4e	
Cr_3C_2	Pnma	<i>a</i> =5.50	$Cr1(0.018, \frac{1}{4}, 0.404)4c$	-6457.8084
		<i>b</i> =2.80	$Cr2(0.186, \frac{1}{4}, 0.774)4c$	
		<i>c</i> =11.45	$Cr3(0.867, \frac{1}{4}, 0.931)4c$	
			$C1(0.099, \frac{1}{4}, 0.204)4c$	
			$C2(0.237, \frac{1}{4}, 0.952)4c$	
Al_4C_3	<i>R</i> -3 <i>m</i>	<i>a</i> =3.36	All (0,0,0.294) 6c	-2171.2476
		c=25.10	Al2 (0,0,0.130) 6c	
			C1 (0,0,0) 3a	
			C2 (0,0,0.217) 6c	

TABLE III. Results of the DFT calculations for all competing phases considered in this work. Optimized structural parameters and the total energy (per formula unit) are given.

the current status in these materials. Further theoretical studies across more systems than the five studied here would be needed to decide whether this is a general trend with a few exceptions or not a trend at all. Hug²² has constructed scheme for discussion of likely formation of when n=2. As filling of the *p* states for the *A* atom increases the likelihood of phase formation decreases but with a number of exceptions. One of the most notable excep-

PREDICTION OF THE STABILITY OF THE...

 Ti_2AlC

TABLE IV. Results of the DFT calculations for $M_{n+1}AX_n$ phases considered in this work. Optimised structural parameters and the to

TABLE IV. (Continued.)

total energy (per formula unit) are given.			Lattice parameters Internal (Å) parameters				
	Lattice parameters (Å)	Internal parameters	Total energy (Ry)	α -Ti ₃ AlC ₂	a=3.08	<i>u</i> =0.068	-5761.3155
	· · ·	1			c=18.61	v = 0.127	
Ti ₂ SiN	a=2.99	u = 0.092	-4105.2276	β -Ti ₃ AlC ₂	a=3.07	u = 0.069	-5761.2994
	c = 12.88				c=18.83	v = 0.126	
α -Ti ₃ SiN ₂	a=2.99	u = 0.069	-5922.6369	α -Ti ₄ AlC ₃	a=3.08	u = 0.052	-7545.2811
	c = 17.84	v = 0.136			c=23.51	v = 0.108	
β -Ti ₃ SiN ₂	a = 2.96	u = 0.068	-5922.6214			w = 0.155	
	c=18.09	v = 0.136		β -Ti ₄ AlC ₃	a=3.07	u = 0.051	-7545.2644
α -Ti ₄ SiN ₃	a=3.00	u = 0.055	-7740.0482		c=23.71	v = 0.107	
	c=22.58	v = 0.109				w = 0.153	
		w = 0.160		Ti ₅ AlC ₄	a=3.08	u = 0.044	-9329.2486
β -Ti ₄ SiN ₃	a=2.99	u = 0.055	-7740.0288		c=28.56	v = 0.085	
	c=22.87	v = 0.107				w = 0.132	
		w = 0.159				x = 0.170	
Ti ₅ SiN ₄	a=2.99	u = 0.045	-9557.4561	Cr ₂ AlC	a=2.84	u = 0.085	-4765.4734
	<i>c</i> =27.71	v = 0.089			c = 12.70		
		w = 0.133		α -Cr ₃ AlC ₂	a=2.86	u = 0.070	-6943.4396
		x = 0.176			c = 17.42	v = 0.129	
Ti ₂ AlN	a = 2.99	u = 0.085	-4010.7842	β -Cr ₃ AlC ₂	a=2.86	u = 0.070	-6943.4331
	c=13.64				c=17.51	v = 0.127	
α -Ti ₃ AlN ₂	a=3.00	u = 0.068	-5828.1954	α -Cr ₄ AlC ₃	a=2.89	u = 0.055	-9121.4140
	c=18.49	v = 0.129			c=22.04	v = 0.108	
β -Ti ₃ AlN ₂	a=2.99	u = 0.067	-5828.1832			w = 0.152	
	<i>c</i> =18.67	v = 0.128		β -Cr ₄ AlC ₃	a=2.89	u = 0.055	-9121.4072
α -Ti ₄ AlN ₃	a=3.00	u = 0.054	-7645.6191		c=22.08	v = 0.108	
	<i>c</i> =23.51	v = 0.106				w = 0.151	
		w = 0.154		Cr ₅ AlC ₄	a=2.88	u = 0.044	-11299.3779
β -Ti ₄ AlN ₃	a=2.98	u = 0.054	-7645.6078		c=26.83	v = 0.089	
	<i>c</i> =23.60	v = 0.105				w = 0.134	
		w = 0.154				x = 0.170	
Ti ₅ AlN ₄	a=3.00	u = 0.043	-9463.0186				
	<i>c</i> =28.44	v = 0.087		tions to the	general behavior in	this system of	of allovs is the
		w = 0.130		most widely	studied material of	Ti_3SiC_2 . It is t	he only known
		x = 0.170		$M_{n+1}AX_n$ ph	ase with Si as the A	element. It i	s also the only
Ti ₂ SiC	<i>a</i> =3.06	u = 0.092	-4071.7936	known syste	em where $n > 1$ occu	irs when $n=1$	does not. This
	c = 12.84			suggests that	t Ti ₃ SiC ₂ is unusual	ly and unexpe	ectedly stable.
α -Ti ₃ SiC ₂	<i>a</i> =3.08	u = 0.072	-5855.7713	The calcu	ulation of an energeti	cally favorabl	e phase forma-
	c = 17.74	v = 0.135		tion in a sy	stem of alloys is no	ot in itself an	explanation of
β -Ti ₃ SiC ₂	<i>a</i> =3.05	u = 0.071	-5855.7474	why one set	of compounds is pre	vierred over an	iother. It is rare
	c = 18.09	v = 0.133		ment of at	ome is energeticall	wily ally part	are discussed
α -Ti ₄ SiC ₃	<i>a</i> =3.08	u = 0.053	-7639.7389	Simple met	allic or covalent mod	els are availab	ale but are nor-
	c = 22.70	v = 0.112		mally used	to differentiate betw	een crystal st	ructures of the
		w = 0.160		same compo	osition not to compa	re an alloy w	ith a combina-
β-Ti ₄ SiC ₃	<i>a</i> =3.06	u = 0.053	-7639.7142	tion of com	peting phases. In ad	dition, simple	e and intuitive
	c = 23.06	v = 0.110		models that	can be used for pure	ely covalent of	r purely metal-
	2.00	w = 0.158	0.400 -0.51	lic systems	are difficult to app	ply for the a	nisotropic and
$11_5 S1C_4$	a=3.08	<i>u</i> =0.045	-9423.7051	mixed bond	ling found in the M	$_{n+1}AX_n$ phases	s. The unique-
	c = 27.66	v = 0.088		ness of the	bonding in these ma	aterials gives	them their un-
		w = 0.136		difficult to a	understand in terms	of the conver	ntional models
		x = 0.1/5		unneun io	understand III terms	or the conver	monar models

for describing phase stability. One of the motivations for this work was to see if it were possible to find any underlying principles or trends that could

-3977.3373

u = 0.084

a = 3.07

c = 13.64

TABLE V. Balance equations used to determine the phase stability of the $M_{n+1}AX_n$ alloys and the energy difference, ΔE , between the $M_{n+1}AX_n$ phase (E_{MAX}) and the competing phases (E_{CP}) . $\Delta E < 0$ implies a stable $M_{n+1}AX_n$ phase.

System	Balance equations	$\Delta E = E_{\text{MAX}} - E_{\text{CP}}$ (eV)
Ti-Si-N	$Ti_2SiN \leftrightarrow TiSi + TiN$ or	0.003
	$Ti_2SiN \leftrightarrow \frac{4}{5}TiN + \frac{1}{5}TiSi_2 + \frac{1}{5}Ti_5Si_3N$	0.061
	$Ti_3SiN_2 \leftrightarrow TiSi + 2TiN$ or	0.044
	$Ti_3SiN_2 \leftrightarrow \frac{9}{5}TiN + \frac{1}{5}TiSi_2 + \frac{1}{5}Ti_5Si_3N$	0.102
	$Ti_4SiN_3 \leftrightarrow TiSi + 3TiN$ or	0.061
	$Ti_4SiN_3 \leftrightarrow \frac{13}{5}TiN + \frac{1}{5}TiSi_2 + \frac{1}{5}Ti_5Si_3N$	0.119
	$Ti_5SiN_4 \leftrightarrow TiSi + 4TiN$	0.122
Ti-Al-N	$Ti_2AlN \leftrightarrow TiAl + TiN$ or	-0.580
	$Ti_2AlN \leftrightarrow \frac{2}{5}Ti_3AlN + \frac{1}{5}TiAl_3 + \frac{3}{5}TiN$	-0.443
	$Ti_3AlN_2 \leftrightarrow Ti_2AlN + TiN$ or	0.017
	$Ti_3AlN_2 \leftrightarrow \frac{1}{2}Ti_2AlN + \frac{1}{2}Ti_4AlN_3$	0.085
	$Ti_4AlN_3 \leftrightarrow Ti_2AlN + 2TiN$	-0.136
	$Ti_5AlN_4 \! \leftrightarrow \! Ti_4AlN_3 \! + \! TiN$	0.176
Ti-Si-C	$Ti_2SiC \leftrightarrow \frac{4}{9}Ti_3SiC_2 + \frac{1}{9}TiSi_2 + \frac{1}{9}Ti_5Si_3C$	0.014
	$Ti_3SiC_2 \leftrightarrow \frac{9}{5}TiC + \frac{1}{5}TiSi_2 + \frac{1}{5}Ti_5Si_3C$	-0.202
	$Ti_4SiC_3 \! \leftrightarrow \! Ti_3SiC_2 \! + \! TiC$	0.012
	$Ti_5SiC_4 \!\leftrightarrow\! Ti_3SiC_2 \!+\! 2TiC$	0.043
Ti-Al-C	$Ti_2AlC \leftrightarrow TiAl + TiC$ or	-0.540
	$Ti_2AlC \leftrightarrow \frac{2}{5}Ti_3AlC + \frac{1}{5}TiAl_3 + \frac{3}{5}TiC$	-0.364
	$Ti_{3}AlC_{2} \leftrightarrow Ti_{2}AlC + TiC$	-0.131
	$Ti_4AlC_3 \! \leftrightarrow \! Ti_3AlC_2 \! + \! TiC$	0.039
	$Ti_5AlC_4 \! \leftrightarrow \! Ti_3AlC_2 \! + \! 2TiC$	0.052
Cr-Al-C	$Cr_2AlC \leftrightarrow Cr_2Al+C$ or	-0.795
	$Cr_2AlC \leftrightarrow \frac{8}{25}Cr_3C_2 + \frac{3}{25}Al_4C_3 + \frac{13}{25}Cr_2Al$	-0.498
	$Cr_3AlC_2 \leftrightarrow Cr_2AlC + \frac{1}{3}Cr_3C_2 + \frac{1}{3}C$ or	0.528
	$Cr_3AlC_2 \leftrightarrow \frac{9}{13}Cr_2AlC + \frac{7}{13}Cr_3C_2 + \frac{1}{13}Al_4C_3$	0.474
	$\operatorname{Cr}_{4}\operatorname{AlC}_{3} \leftrightarrow \frac{5}{13}\operatorname{Cr}_{2}\operatorname{AlC} + \frac{42}{39}\operatorname{Cr}_{3}\operatorname{C}_{2} + \frac{2}{13}\operatorname{Al}_{4}\operatorname{C}_{3}$	0.836
	$\operatorname{Cr}_{5}\operatorname{AlC}_{4} \leftrightarrow \frac{1}{13}\operatorname{Cr}_{2}\operatorname{AlC} + \frac{21}{13}\operatorname{Cr}_{3}\operatorname{C}_{2} + \frac{3}{13}\operatorname{Al}_{4}\operatorname{C}_{3}$	1.341

be used to predict phase formation for different value of n. To achieve this aim we have analyzed factors such as the valence charge density, bond distances, charge within the muffin-tin spheres, and the relative energy of features in the density of states. These analyses have, as yet, all failed to reveal any correlations or systematic behavior. In all cases the differences between all of these quantities is very subtle. This would suggest that verification and prediction of phase formation in this set of alloys will always require full DFT calculations. To explore this issue further, it would be desirable to quantitatively calculate bond energies for the different compounds. Unfortunately, the arbitrariness in the exact energy position in the calculations makes this task impossible. Within a calculation, all energies are with reference to a zero point that is defined as the average of the potential in the interstitial region. This does not influence the value of the total energy but makes the comparison of absolute energies between different structures difficult.

However, it may be anticipated that further studies across additional M-A-X series may prove more revealing. Systems based on Nb, Ta, Ga, and Ge are good candidates for further study. Given that this study of just five series required full structural optimization and energy minimization of over 40 compounds, the task ahead is quite challenging. In some cases, where the energy differences are quite small, considerable care and effort needs to be taken with the accuracy of the calculations.

V. CONCLUSION

DFT was used to calculate the total energy of $M_{n+1}AX_n$ phases and their competing phases as established from the ternary phase diagrams. Agreement with the observed stability of these phases was found in all cases. The α phases were found to be preferred over the β phases and M_5AX_4 phases are not expected. The results also suggest that Ti₂SiC, Ti₂SiN, and Ti₃AlN₂ have the potential to be produced as metastable compounds.

- ¹M. W. Barsoum, D. Brodkin, and T. El-Raghy, Scr. Mater. **36**, 535 (1997).
- ²M. W. Barsoum and T. El-Raghy, J. Am. Ceram. Soc. **79**, 1953 (1996).
- ³J.-P. Palmquist, U. Jansson, T. Seppänen, P. O. Å. Persson, J. Birch, L. Hultman, and P. Isberg, Appl. Phys. Lett. **81**, 835 (2002).
- ⁴M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).
- ⁵M. W. Barsoum, L. Farber, I. Levin, A. Procopio, T. El-Raghy, and A. Berner, J. Am. Ceram. Soc. **82**, 2545 (1999).
- ⁶P. Eklund, J.-P. Palmquist, J. Howing, D. Trinh, T. El-Raghy, H. Högberg, and L. Hultman, Acta Mater. **55**, 4723 (2007).
- ⁷L. Farber, I. Levin, M. W. Barsoum, T. El-Raghy, and T. Tzenov, J. Appl. Phys. **86**, 2540 (1999).

- ⁸T. Liao, J. Wang, and Y. Zhou, J. Phys.: Condens. Matter **18**, 6183 (2006).
- ⁹J. Y. Wang and Y. C. Zhou, Phys. Rev. B **69**, 144108 (2004).
- ¹⁰ H. Hogberg, L. Hultman, J. Emmerlich, T. Joelsson, P. Eklund, J. M. Molina-Aldareguia, J.-P. Palmquist, O. Wilhelmsson, and U. Jansson, Surf. Coat. Technol. **193**, 6 (2005).
- ¹¹Z. Lin, M. Zhuo, Y. Zhou, Meishuan Li, and Jingyang Wang, J. Am. Ceram. Soc. **89**, 3765 (2006).
- ¹²Z. J. Lin, M. J. Zhuo, Y. C. Zhou, M. Li, and J. Wang, Acta Mater. 54, 1009 (2006).
- ¹³J.-P. Palmquist, S. Li, P. O. A. Persson, J. Emmerlich, O. Wilhelmsson, H. Högberg, M. I. Katsnelson, B. Johansson, R. Ahuja, O. Eriksson, L. Hultman, and U. Jansson, Phys. Rev. B **70**, 165401 (2004).

- ¹⁴O. Wilhelmsson, J.-P. Palmquist, E. Lewin, J. Emmerlich, P. Eklund, P. O. Å. Persson, H. Högberg, S. Li, R. Ahuja, O. Eriksson, L. Hultman, and U. Jansson, J. Cryst. Growth **291**, 290 (2006).
- ¹⁵Y. Zhou, F. Meng, and J. Zhang, J. Am. Ceram. Soc. **91**, 1357 (2008).
- ¹⁶R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, Appl. Phys. Lett. **76**, 2226 (2000).
- ¹⁷A. Bouhemadou, Physica B (Amsterdam) **403**, 2707 (2008).
- ¹⁸C. M. Fang, R. Ahuja, and O. Eriksson, J. Appl. Phys. **101**, 013511 (2007).
- ¹⁹C. M. Fang, R. Ahuja, O. Eriksson, S. Li, U. Jansson, O. Wilhelmsson, and L. Hultman, Phys. Rev. B 74, 054106 (2006).
- ²⁰B. Holm, R. Ahuja, and B. Johanssen, Appl. Phys. Lett. **79**, 1450 (2001).
- ²¹B. Holm, R. Ahuja, S. Li, and Börje Johansson, J. Appl. Phys. 91, 9874 (2002).
- ²²G. Hug, Phys. Rev. B 74, 184113 (2006).
- ²³G. Hug and E. Fries, Phys. Rev. B **65**, 113104 (2002).
- ²⁴G. Hug, M. Jaouen, and M. W. Barsoum, Phys. Rev. B 71, 024105 (2005).
- ²⁵T. Liao, J. Wang, and Y. Zhou, Phys. Rev. B 73, 214109 (2006).
- ²⁶S. E. Lofland, J. D. Hettinger, K. Harrell, P. Finkel, S. Gupta, M. W. Barsoum, and G. Hug, Appl. Phys. Lett. **84**, 508 (2004).
- ²⁷ M. Magnuson, M. Mattesini, O. Wilhelmsson, J. Emmerlich, J. P. Palmquist, S. Li, R. Ahuja, L. Hultman, O. Eriksson, and U. Jansson, Phys. Rev. B **74**, 205102 (2006).
- ²⁸ M. Magnuson, J.-P. Palmquist, M. Mattesini, S. Li, R. Ahuja, O. Eriksson, J. Emmerlich, O. Wilhelmsson, P. Eklund, H. Högberg, L. Hultman, and U. Jansson, Phys. Rev. B **72**, 245101 (2005).
- ²⁹M. Magnuson, O. Wilhelmsson, J.-P. Palmquist, U. Jansson, M. Mattesini, S. Li, R. Ahuja, and O. Eriksson, Phys Rev. B 74, 195108 (2006).
- ³⁰N. I. Medvedeva, D. L. Novikov, A. L. Ivanovsky, M. V. Kuznetsov, and A. J. Freeman, Phys. Rev. B 58, 16042 (1998).
- ³¹D. Music, Z. Sun, R. Ahuja, and J. M. Schneider, Phys. Rev. B 73, 134117 (2006).
- ³²D. Music, Z. Sun, and J. M. Schneider, Phys. Rev. B 71, 092102 (2005).
- ³³D. Music, Z. Sun, and J. M. Schneider, Solid State Commun. 133, 381 (2005).
- ³⁴D. Music, Z. Sun, and J. M. Schneider, Solid State Commun. 137, 306 (2006).
- ³⁵D. Music, Z. Sun, A. A. Voevodin, and Jochen M. Schneider, J. Phys.: Condens. Matter 18, 4389 (2006).
- ³⁶D. Music, Z. Sun, A. A. Voevodin, and Jochen M. Schneider, Solid State Commun. **139**, 139 (2006).

- ³⁷J. M. Schneider, R. Mertens, and D. Music, J. Appl. Phys. **99**, 013501 (2006).
- ³⁸J. M. Schneider, Z. Sun, R. Mertens, Fatih Uestel, and Rajeev Ahuja, Solid State Commun. **130**, 445 (2004).
- ³⁹Z. Sun, R. Ahuja, S. Li, and Jochen M. Schneider, Appl. Phys. Lett. 83, 899 (2003).
- ⁴⁰Z. Sun, S. Li, R. Ahuja, and Jochen M. Schneider, Solid State Commun. **129**, 589 (2004).
- ⁴¹Z. Sun, D. Music, R. Ahuja, S. Li, and J. M. Schneider, Phys. Rev. B **70**, 092102 (2004).
- ⁴²Z. Sun, D. Music, R. Ahuja, and Jochen M. Schneider, J. Phys.: Condens. Matter **17**, 7169 (2005).
- ⁴³Z. Sun, D. Music, R. Ahuja, and J. M. Schneider, Phys. Rev. B 71, 193402 (2005).
- ⁴⁴Z. Sun, D. Music, R. Ahuja, and Jochen M. Schneider, J. Phys.: Condens. Matter **17**, L15 (2005).
- ⁴⁵ J. Wang, J. Wang, Y. Zhou, and C. Hu, Acta Mater. 56, 1511 (2008).
- ⁴⁶J. Wang and Y. Zhou, Phys. Rev. B **69**, 214111 (2004).
- ⁴⁷ J. Y. Wang and Y. C. Zhou, J. Phys.: Condens. Matter **15**, 1983 (2003).
- ⁴⁸J. A. Warner, S. K. R. Patil, S. V. Khare, and K. C. Masiulaniec, Appl. Phys. Lett. **88**, 101911 (2006).
- ⁴⁹A. Grechnev, S. Li, R. Ahuja, O. Eriksson, U. Jansson, and O. Wilhelmsson, Appl. Phys. Lett. **85**, 3071 (2004).
- ⁵⁰Y. S. Han, K. B. Kalmkov, S. F. Dunaev, and A. I. Zaitsev, J. Phase Equilib. Diffus. **25**, 427 (2004).
- ⁵¹X. Ma, C. Li, and W. Zhang, J. Alloys Compd. **394**, 138 (2005).
- ⁵²M. A. Pietzka and J. C. Schuster, J. Phase Equilib. 15, 392 (1994).
- ⁵³W. J. J. Wakelkamp, F. J. J. van Loo, and R. Metselaar, J. Eur. Ceram. Soc. 8, 135 (1991).
- ⁵⁴P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universität Wien, Austria, 2001).
- ⁵⁵ J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- ⁵⁶E. H. Kisi, E. Wu, J. S. Zobec, Jennifer S. Forrester, and Daniel P. Riley, J. Am. Ceram. Soc. **90**, 1912 (2007).
- ⁵⁷D. P. Riley, E. H. Kisi, T. C. Hansen, and Alan W. Hewat, J. Am. Ceram. Soc. **85**, 2417 (2002).
- ⁵⁸D. Music, J. Emmerlich, and J. M. Schneider, J. Phys.: Condens. Matter **19**, 136207 (2007).
- ⁵⁹Z. Sun, J. Zhou, D. Music, R. Ahuja, and J. Schneider, Scr. Mater. **54**, 105 (2006).