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An approach to correlated dynamics of quantum nuclei and electrons both in dynamical interaction with
external environments is presented. This stochastic quantum molecular dynamics rests on a theorem that
establishes a one-to-one correspondence between the total ensemble-averaged current density of interacting
nuclei and electrons and a given external vector potential. The theory allows for a first-principles description of
phenomena previously inaccessible via standard quantum molecular dynamics such as electronic and nuclear
relaxation in photochemistry, dissipative correlated electron-ion dynamics in intense laser fields, nuclear
dephasing, etc. As a demonstration of the approach, we discuss the rotational relaxation of
4-�N,N-dimethylamino�benzonitrile in a uniform bath in the limit of classical nuclei.
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Quantum molecular dynamics �QMD� approaches, as for-
mulated, e.g., in the Born-Oppenheimer, Ehrenfest, or Car-
Parrinello methods, have proved to be extremely useful tools
to study the dynamics of condensed systems.1–3 In these ap-
proaches, the time evolution of the nuclear degrees of free-
dom is described by classical Newton-type equations, and
the forces acting on the nuclei are typically derived from the
electronic wave function at the instantaneous nuclear con-
figuration. By construction, Born-Oppenheimer and Car-
Parinello QMD refer to the electronic ground-state energy,
whereas Ehrenfest QMD also allows to take excited elec-
tronic wave functions into account.

In these approaches, energy dissipation and thermal cou-
pling to the environment are usually described with addi-
tional thermostats coupled directly to the classical nuclear
degrees of freedom. Alternatively, Langevin dynamics can be
employed for the time evolution of the classical nuclei.4

Other routes that take environment effects into account are
provided by the so-called quantum mechanics/molecular me-
chanics �QM/MM� methods or by implicit solvation or con-
tinuum models �see, e.g., Ref. 5�. Here, the system of interest
is treated quantum mechanically �e.g., with one of the above
QMD methods� and the environment is treated explicitly
within classical molecular mechanics or, implicitly, via an
electrostatic continuum model.

However, all of the above approaches share the common
feature that the electronic subsystem is treated always as a
closed one, namely, it cannot exchange energy and momen-
tum with the environment�s�. This is a major limitation since
in many physical situations, electrons, being lighter particles
than nuclei, respond much faster than the latter ones to dy-
namical changes in their surrounding. This can lead to elec-
tronic transitions among excited states �manifested, e.g., in
an effective electron temperature rather different than the
ionic one�,6 which, in turn, may result in different ionic
forces compared to the forces obtained from a closed elec-
tronic quantum system at �typically� zero temperature. An
even more complicated situation may arise �for instance, for
light nuclei in intense laser fields� when the quantum nature
of nuclei correlates with the electron dynamics, with the ex-
ternal environment�s� mediating transitions between
electron-ion correlated states.

In this Brief Report, we propose an approach that allows

to treat both the electronic and �in principle, quantum�
nuclear degrees of freedom, open to one or more environ-
ments. Our approach, which we term stochastic quantum
molecular dynamics �SQMD�, is based on a stochastic cur-
rent density-functional theory for the combined dynamics of
quantum electrons and nuclei. The theorem of stochastic
time-dependent current-density-functional theory for a single
particle species has been proved in Refs. 7 and 8. Here, we
extend it to its nontrivial multispecies case. In the limit of
classical nuclei, this formulation reduces to a molecular dy-
namics scheme which couples the nuclear degrees of free-
dom to an open electronic system that can exchange energy
and momentum with the environment.

In the following, we consider a system of Ne electrons
with coordinates r��r j� and Nn=�sNs,n nuclei, where each
species s comprises Ns,n particles with charges Zs,j, masses
Ms,j, j=1, . . . ,Ns,n, and coordinates R��Rs,j�, respectively.
To simplify the notation we denote with x��R ,r� the com-
bined set of electronic and nuclear coordinates and we use
the combined index �= �s , j� for the nuclear species. Now,
suppose that such a system, subject to a classical electromag-
netic field, whose vector potential is A�t�, is described by the

many-body Hamiltonian ĤS�t�

ĤS�t� = T̂e�r,t� + Ŵee�r� + Ûext,e�r,t� + Ŵen�r,R� + T̂n�R,t�

+ Ŵnn�R� + Ûext,n�R,t� , �1�

where T̂e�t� and T̂n�t� are the kinetic energies of electrons and

ions, with velocities v̂k�t�= �p̂k+eA�r̂k , t�� /m and V̂��t�
= �P̂�−Z�A�R̂� , t�� /M�, respectively. The electron-electron,
electron-nuclear, and nuclear-nuclear interaction terms take
the form

Ŵee�r� =
1

4��0
�
j�k

Ne e2

	r̂ j − r̂k	
� �

j�k

Ne

wee�r̂ j − r̂k� ,

Ŵnn�R� =
1

4��0
�

���

Nn Z�Z�

	R̂� − R̂�	
� �

���

Nn

wnn�R̂� − R̂�� ,
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Ŵen�r,R� = −
1
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�2�
and we also allow for external time-dependent scalar poten-

tials Ûext,e�r , t� and Ûext,n�R , t� that act on electronic and
nuclear degrees of freedom, respectively. We then let our
system interact with one or more environments represented
by a dense spectrum of bosonic degrees of freedom, de-

scribed by the Hamiltonian ĤB�t�. The system and the envi-

ronments are coupled by a bilinear interaction term ĤSB

=� jŜjB̂j. Here Ŝ, B̂, refer to subsystem and bath operators,

respectively.9 The total Hamiltonian Ĥ�t� of system and en-
vironment then takes the form

Ĥ�t� = ĤS�t� + ĤB�t� + �
j

ŜjB̂j . �3�

By projecting out the bath degrees of freedom, one then ob-
tains the reduced dynamics of the system of interest.10 While,
quite generally, we could work with the resulting non-
Markovian dynamics, for the purpose of this Brief Report,
we further make a memory-less approximation for the bath.
This leads us to consider the following stochastic many-body
Schrödinger equation ��=1� �Ref. 11�:

i�t��x,t� = ĤS�t���x,t� −
1

2
iŜ†Ŝ��x,t� + l�t�Ŝ��x,t� , �4�

where, for simplicity, from now on we consider only the

coupling Ŝ to a single bath, which could be position and/or
time dependent. The function l�t� describes a stochastic pro-
cess with zero ensemble average l�t�=0 and
	-autocorrelation l�t�l�t��=	�t− t��. Here, ¯ describes the
statistical average over all members of an ensemble of iden-
tical systems with a common initial state ��x , t=0� �which
need not be pure� evolving under Eq. �4�. Given the set of

potentials Ûext�x , t�= Ûext,e�r , t�+ Ûext,n�R , t� and A�t� one
can always find a gauge transformation 
�x , t� so that the
scalar potentials vanish at all times, and implying that A�t�
�A�x , t�. In the following, we assume that such a gauge
transformation has been performed.

At this stage, we face a large number of choices for the
definition of densities for the construction of a density-
functional description of this problem. In fact, certain group-
ings of nuclear particle and current densities might be better
suited to specific physical situations. To maintain flexibility,
we do not specialize at this point and we prove a theorem for
the total current density of electrons and nuclei. To that end,
we introduce electronic and nuclear current operators in

terms of the velocity fields v̂k�t� and V̂��t�

ĵ�r,t� =
e

2m
�

k

�v̂k�t�,	�r − r̂k�� �5�

Ĵ��R,t� =
Z�

2M�
�
�

Z�=Z�,M�=M�

�V̂��t�,	�R − R̂��� , �6�

where �p̂ , q̂�= p̂q̂+ q̂p̂ denotes the usual anticommutator.
Likewise, the usual charge density operators can be defined

as n̂�r , t�=�k	�r− r̂k� for the electrons and N̂��R , t�
=��;Z�=Z�,M�=M�

	�R− R̂�� for each nuclear species. The total
particle and current density operators of the system can then
be written as N̂�x , t�= n̂�r , t�+��N̂��R , t� and Ĵ�x , t�= ĵ�r , t�
+��Ĵ��R , t�, respectively.

Solutions of the stochastic Schrödinger equation, Eq. �4�,
lead to an ensemble of stochastic quantum trajectories which

have ensemble-averaged total charge N�x , t�= 
N̂�x , t�� and

current densities J�x , t�= 
Ĵ�x , t��. Here, 
¯ � denotes the
quantum mechanical average.

Contrary to the multicomponent formulation of Kreibich
and co-workers12,13 we will not employ a body-fixed frame
for the solution of Eq. �4�. This is motivated by the fact that
for the initial-value problem of Eq. �4� a general initial con-
dition for the state vector and, in addition, a general time-
and space-dependent external vector potential A�x , t� would
break the translational and rotational invariance of the origi-

nal operator ĤS�t�− Ûext�x , t� in Eq. �1�. For our purposes, it
will, therefore, be sufficient to work in the laboratory frame.
We have now collected all ingredients to state the following
result.

Theorem. For a given bath operator Ŝ, many-body initial
state ��x , t=0� and external vector potential A�x , t�, the dy-
namics of the stochastic Schrödinger equation in Eq. �4� gen-
erates ensemble-averaged total particle and current densities
N�x , t� and J�x , t�. Under reasonable physical assumptions,
any other vector potential A��x , t� �but same initial state and
bath operator� that leads to the same ensemble-averaged total
particle and current density, has to coincide, up to a gauge
transformation, with A�x , t�.14

Proof. The strategy for the proof of this statement follows
the technique introduced in Ref. 15 and also employed in
Ref. 7. It is thus sufficient to provide the relevant equation of
motion and summarize the rationale behind the procedure.
The relevant equation of motion is the one for the ensemble-
averaged current density

m
�

�t
j��r,t� + �

�

M�

�

�t
J��R,t�

= N�x,t�
�

�t
A�x,t� − J�x,t���A�x,t��

+ 
F̂ee�x,t�� + 
F̂en�x,t�� + 
F̂nn�x,t�� + m
Ĝ�r,t��

+ �
�

M�
Ĝn,��R,t�� . �7�

Here, we have introduced the electron-electron, electron-
nuclear, and nuclear-nuclear interaction densities

F̂ee�x,t� = − �
i�j

	�r − r j�� jwee�ri − rj�

+ m � · �̂ee

F̂en�x,t� = − �
i�j

	�x − x j�� jwnn�xi − xj�

+ m � · �̂en + �
�

M�� · �̂ne, �8�
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where F̂nn can be obtained from F̂ee with the replacements
r→R, wee→wnn, m� · �̂ee→��M��� · �̂nn. The stress ten-
sors are

�̂ee;i,j = −
1

4�
k

�vi,�v j,	�r − rk���

�̂en;i,j = −
1

4�
k

�vi,�Vj,	�R − Rk��� , �9�

with �̂ne;i,j and �̂nn;i,j obtained by the exchange v↔V. The
remaining terms in Eq. �7� describe the electromagnetic con-
tribution �terms containing A� and the force densities due to
the bath

Ĝ�r,t� = Ŝ† ĵ�r,t�Ŝ −
1

2
�Ŝ†Ŝ, ĵ�r,t��

Ĝ��R,t� = Ŝ†Ĵ��R,t�Ŝ −
1

2
�Ŝ†Ŝ, Ĵ�R,t�� . �10�

We can now consider another �primed� system with different
initial condition, interaction potentials wee� , wnn� , wen� , and ex-

ternal vector potential Â��x , t�. By taking the difference of
the equations of motion for the total current densities J�x , t�
and J��x , t� in the unprimed and primed system, we arrive at
an equation of motion for �A�x , t�=A�x , t�−A��x , t�. The

difference of the vector potentials �A�x , t� can then be
shown to be completely determined by the initial condition
and a series expansion in time about t=0. If the two total
current densities of the primed and unprimed system coin-
cide, then the unique solution—up to a gauge
transformation—is given by �A�x , t�=0, when the initial
conditions and interaction potentials are the same in the two
systems, which proves the theorem.

Discussion. With this theorem we can now set up a Kohn-
Sham �KS� scheme of SQMD where an exchange-correlation
�xc� vector potential Axc �functional of the initial state, bath
operator, and ensemble-averaged current density� acting on
noninteracting species, allows to reproduce the exact
ensemble-averaged density and current densities of the origi-
nal interacting many-body system. The resulting charge and
current densities would thus contain all possible correlations
in the system—if we knew the exact functional. As men-
tioned before, alternative schemes could be constructed
�based on corresponding theorems that could be proved as
the above one� by defining different densities and current
densities �e.g., by lumping all nuclear densities into one
quantity�.12 While this may seem a drawback, it is, in fact, an
advantage: some of those schemes may be more appropriate
for specific physical problems. Irrespective, one would need
to construct xc functionals for the chosen scheme. While this
program is possible, it is beyond the scope of the present
Brief Report. Therefore, as a first practical implementation of
the proposed SQMD, we consider the limit of classical nu-
clei. This is definitely the simplest case, but it is by no means
trivial, and by itself already shows the wealth of physical
problems one can tackle with SQMD and the physics one
can extract from it.

In the limit of classical nuclei, we then solve the stochas-
tic time-dependent KS equations with given KS Hamiltonian
HKS�x , t� for the electronic degrees of freedom, at each
instantaneous set of nuclear coordinates. The result pro-
vides the KS Slater determinant �KS�x , t� from which the
forces on nuclei are computed as F�=−
�KS�x , t�	
��ĤKS�x , t�	�KS�x , t��, for each realization of the stochastic
process. One then has direct access to both the average
dynamics as well as its distribution.16 As application
we consider the rotational relaxation of 4-�N,N-
dimethylamino�benzonitrile �DMABN� in a uniform bath.

The relaxation rate that enters the definition of the operator Ŝ
can be derived in principle from the system-bath interaction

term ĤSB in Eq. �3�.10 In the case of DMABN, relaxation
rates are available from experiment,17 so that we choose 
=100 fs for our simulation which is within the experimen-
tally observed magnitude. We choose as initial state for the
SQMD simulation a rotated dimethyl side-group �	=15°� of
DMABN. In Fig. 1, we show the average angle and the
binned angle distribution of the dihedral angle 	 for 50 sto-
chastic realizations for bath temperatures of 0 and 300 K as a
function of time and compare with the closed system solu-
tion. The angle distributions in the lower panel of Fig. 1
clearly show the temperature-dependent relaxation of the ro-
tational motion in the open system case. Most importantly,
from the transient dynamics of the angle distributions, it is
also apparent that the system is not relaxing uniformly to the
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FIG. 1. �Color online� Upper panel: schematic illustration of
4-�N,N-dimethylamino�benzonitrile and the dihedral angle 	. Cen-
ter panel: comparison between the dihedral angle 	 as a function of
time for a closed quantum system �dashed line� at 0 K and an open
quantum system �solid line� at 0 and 300 K. Lower panel: Distri-
butions of the dihedral angle 	 for 50 members of the stochastic
ensemble for bath temperatures of 0 and 300 K at different times �as
indicated by the dotted connection lines between the center and the
lower panel�.
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equilibrium configuration 	=0. Rather, it approaches equilib-
rium via a series of quasi-bimodal distributions, with the
higher temperature “smoothing” these distributions. We also
emphasize that the damping of the nuclear motion originates
in our simulation exclusively from the forces that are calcu-
lated from the electronic open quantum system wave func-
tions. No additional friction term has been added to the
nuclear equation of motion. It would be thus interesting to
verify such a prediction with available experimental
capabilities.

In summary, we have presented a quantum molecular dy-
namics approach which we term stochastic quantum molecu-
lar dynamics, based on a multispecies theorem of density-
functional theory for open quantum systems. SQMD allows

to treat both the electronic and nuclear degrees of freedom
open to environments, and, in principle, it provides all pos-
sible dynamical correlations in the system. In particular,
SQMD takes into account energy relaxation and dephasing
of the electronic subsystem, a feature lacking in any “stan-
dard” MD approach. This opens up the possibility to study a
wealth of new phenomena such as local ionic and electronic
heating in laser fields, relaxation processes in photochemis-
try, etc.
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