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We present a theory for Bloch wave propagation in damped elastic media. We expand the eigenvalue
problem governing the dispersion relation using a set of Bloch mode eigenvectors at each wave-vector point.
With the assumption of Rayleigh damping, this decomposition allows us to derive the band structure in the
Brillouin zone. The damping ratio corresponding to each Bloch mode is also generated. We show that damping
qualitatively alters the shape of the dispersion curves. Damping also results in a branch-overtaking phenom-
enon that has a significant effect on band gaps. As the damping is increased, a band-gap size can drop abruptly.
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Periodic elastic materials, such as phononic crystals, can
be designed, via band engineering, to classically control the
propagation of sound and/or elastic waves in a predeter-
mined manner within solids, or within solid-fluid systems. In
doing so, these modern materials have opened up a techno-
logical frontier in acoustic and elastic devices.1,2 In many
cases, one or more of the constituent materials are damped
�i.e., dissipative�, a good example is viscoelastic materials
which are often used to form the matrix phase in phononic
crystal composites. Another example is the presence of
damping in the supports of periodic engineering structures.3

The presence of damping results in temporal attenuation of
the elastic waves as they freely “progress” through the peri-
odic media.3 Such damped free wave-propagation character-
istics can be of high importance if, for example, a structure
composed of a viscoelastic phononic crystal is subjected to
continuous forcing �i.e., a sustained source of energy input�.
The short-timed response to a shock load is also influenced
by the level of damping. Mead3 presented an early study of
damping in infinite periodic structures. Focusing on one-
dimensional �1D� discrete mass-spring models, he dealt with
structural �velocity independent� damping as well as with a
hypothetical type of damping associated with what was re-
ferred to as “damped forced modes.” Viscous damping was
treated later on with various types of dissipative constitutive
models. Mukherjee and Lee4 provided a 1D dispersion rela-
tion using a complex elastic modulus to model viscoelastic-
ity. However, no wave-number-dependent relation was avail-
able for the damping. In other studies, often the focus has
been on finite structures or there was little consideration of
the broad effects on the band-structure characteristics �e.g.,
Refs. 5 and 6�. Some studies explicitly investigated the band
structure but only using viscoelastic damping models that
were either limited to a fixed frequency7,8 or to low
frequencies.9 Wang et al.10 analytically studied dispersion in
1D viscoelastic lattices with a valid frequency-dependent
model. Merheb et al.11 also provided a study that was not
limited to certain frequencies, using the finite-difference
time-domain method in addition to experiments. Yet both
these studies did not provide a detailed analysis of the broad
effects of damping on the dispersion band structure. In Ref.
11, the conclusions were focused on the attenuation/decay
effects.

In this paper, we provide a theory for analyzing
frequency-dependent viscously damped periodic media and

give a detailed analysis on the effects of damping on the
frequency band structure, and associated phase and group-
velocity dispersion curves. We consider continuous media
governed by � ·�=�ü, where � is the stress tensor, u is the
displacement field, � is the density, and a superposed dot
denotes differentiation with respect to time. The constitutive
behavior is treated phenomenologically assuming linear and
isotropic elastic response and Rayleigh-type damping. A
Rayleigh damping model assumes that the viscous damping
operator in the governing equation is proportional to the
mass and stiffness operators with predetermined constants of
proportionality, p̄ and q̄, respectively.12 The material-to-
material interfaces are assumed to be ideal. Upon spatial dis-
cretization, for example, using the finite element method, and
assuming no external forcing, the following matrix equation
is obtained:

MÜ + CU̇ + KU = 0 , �1�

where U is the displacement vector and M, C, and K denote
the mass, damping, and stiffness matrices, respectively. Fol-
lowing the Rayleigh model, the C matrix has the form
C= p̄M+ q̄K.

Applying Bloch theory on a unit cell yields a free plane-
wave solution of the form

U�x,k;t� = Ũ�x,k�ei�kTx−�t�, �2�

where x= ��x ,y ,z�� is the position vector, k= ��kx ,ky ,kz�� is
the wave vector, i=�−1, and � and t denote frequency and

time, respectively. In Eq. �2�, Ũ is the displacement Bloch
vector which is periodic within the unit-cell domain. Using
Eq. �2�, the following Bloch matrix equation is obtained

− �2MŨ − i�C�k�Ũ + K�k�Ũ = 0 . �3�

The presence of the second term in the left-hand side of Eq.
�3� prevents us from generating an eigenvalue problem in the
usual way for calculating the band structure. We therefore
employ the concept of Bloch mode expansion13 which allows
us to linearly transform the model to a set of generalized

coordinates, Ṽ, i.e.,
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Ũ�n�1� = ��k��n�m�Ṽ�m�1�, �4�

where ��k� is a Bloch modal matrix. In Eq. �4�, n and m,
respectively, denote the total number of degrees of freedom
and the total number of Bloch modes retained in the expan-
sion. Unlike in Ref. 13 in which the aim was model reduc-
tion, here the matrix ��k� is formed using a set of Bloch
vectors obtained by solving the standard undamped eigen-
value problem �Eq. �3� with C=0� at the current point k in
the reciprocal-lattice space.14 Utilizing the orthogonality
condition that the Bloch vectors exhibit with respect to M
and K, we use this expansion to uncouple the equations in
Eq. �3�. This is done by substituting Eq. �4� into Eq. �3� and
premultiplying all terms by ��, where the asterisk denotes
the complex transpose operation. Returning to Eq. �4�, only
as many Bloch modes, m, need to be incorporated in the
expansion as the number of branches of interest in the
damped band diagram that is to be generated. The result is a

set of m uncoupled equations −�2Ṽj − i�2� j
��k�� j�k�Ṽj

+� j�k�Ṽj =0, j=1, . . . ,m, where Ṽj is the jth generalized co-
ordinate, � j�k� is the eigenvalue of the jth branch of the
undamped band structure at point k and � j�k� is the fre-
quency, i.e., � j�k�=�� j�k�. Of special interest now is � j

��k�,
which is the damping ratio of the jth branch of the damped
band structure at point k and has the form

� j
��k� =

p̄ + q̄� j�k�
2� j�k�

. �5�

We can now write the Bloch solution in generalized coordi-

nates as Vj = Ṽje
i�kTx−�t�. From this solution and its time de-

rivatives, we can extract the following ordinary differential
equation describing the temporal response Vj corresponding
to each of the generalized coordinates

V̈j + 2� j
��k�� j�k�V̇j + � j�k�Vj = 0, j = 1, . . . ,m . �6�

Equation �6� can be solved by assuming a position- and
wave-vector-dependent harmonic solution in time, Vj

=Aj�x ,k�e�j�k�t, where Aj�x ,k�= Ṽje
ikTx denotes amplitude of

oscillation, yielding the following expression for the roots:
� j�k�=−� j

��k�� j 	� j
�� j

��k�2−1. For the undamped case
�� j

��k�=0�, the frequency of the jth branch of the original

undamped band structure is recovered. For � j
��k�
1, the me-

dium is underdamped at k and propagating waves exhibit
temporal decay. Subsequently the wave-vector-dependent
frequency of damped oscillation can be identified as

�dj
�k� = � j�k��1 − � j

��k� , �7�

which is essentially the frequency of the jth branch of the
damped band structure at point k. For � j

��k��1, the medium
is overdamped at k and temporal oscillations cannot exist.
The medium is critically damped at k when � j

��k�=1. It is
noteworthy that this theory is analogous to the well-
established modal-decomposition theory for proportionally
damped finite structures.15

We now examine the behavior of proportionally damped
periodic media such as phononic crystals. We use the finite
element method to first solve Eq. �3� with C=0, then proceed
to calculating � j

��k� and �dj
�k� by simply post-processing the

resulting undamped band-structure data using Eqs. �5� and
�7�, respectively. The above formulation is applicable to
three-dimensional models. However, for ease of exposition
we present results for a two-dimensional model under plane
strain conditions. In our example model, a square lattice is
considered with a bi-material unit cell consisting of a cen-
trally located square inclusion. The filling ratio is 0.3086.
The material phase for the matrix �denoted by subscript “1”�
is chosen to be compliant and light while the phase for the
inclusion �denoted by subscript “2”� is stiff and dense. In
particular, a ratio of Young’s moduli of E2 /E1=20 and a ratio
of densities of �2 /�1=2 are chosen. A Poisson ratio of 0.34 is
assumed for both phases. The unit-cell finite-element mesh
consists of 18�18 uniformly sized four-node bilinear quad-
rilateral elements. The path along the symmetry points,

�̄→ X̄→M̄→ �̄, bordering the irreducible Brillouin zone is
sampled into ninety seven k-point steps. In the results, we
refer to the degree of damping using the scaled parameters
p and q, defined as p= p̄�1 /�1 /a and q= q̄a /�1 /�1, re-
spectively, were a denotes the unit-cell side length �set to
unity� and 1 denote the shear Lamé constant for material
phase 1.

Figure 1 shows the band structure and density of states for
the undamped case, where q=0, and for two damped cases
corresponding to q=0.05 and q=0.15. The frequency is de-
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FIG. 1. �Color online� �a� Frequency band structure, �b� density of states, and �c� damping-ratio band structure for undamped �q=0� and
damped �q=0.05 and q=0.15� phononic crystals.
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fined as �=�da /�1 /�1. The damping ratio corresponding
to each mode at each branch, as a function of k, is also
shown. We see that the location of the branches in the fre-
quency domain drop with damping and do so at an increas-
ing rate as the damping ratio increases. The damping ratio
band structure resembles the frequency band structure in
shape with the locations of the curves rising with increase in
q. We also studied the case where p�0 and q=0 �not

shown�. Here, the frequency band structure away from the �̄

point experiences very small shifts whereas at and near the �̄
point the downward shift in frequencies is dramatic and this
is due to sharp increases in � j

� within this neighborhood. In
fact with a small increase in p, the value of the damping ratio

at and near the �̄ point exceeds unity, i.e., exceeds the critical
damping level beyond which there is no temporal oscilla-
tions. We therefore focus on varying q while keeping p=0.
Figure 2 shows the phase and group-velocity dispersion

curves in the �̄→ X̄ segment. We note that the group velocity
changes from positive to negative as a result of damping for
some branches, e.g., the fourth branch. The shapes of the
group-velocity curves are also dramatically altered as damp-
ing is increased, especially the higher branches. These
damping-related dispersive effects bear significant conse-
quences as the direction and manner by which information

and energy flow are altered. It is noteworthy that damping is
shown to transform a nondispersive homogeneous medium
to one that is dispersive �as illustrated in the inset of Fig.

2�a��. In Fig. 3 we focus on the X̄→M̄ segment to highlight
that with sufficient damping, higher branches drop at rates
higher than lower branches thus enabling branch overtaking.
We observe that the fourth branch completely overtakes the
third in its downward shift as q is increased. It also surpasses
the second and first branches near the M point. This remark-
able branch-overtaking phenomenon is also evident in the
velocity dispersion curves in Fig. 2. This phenomenon is
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FIG. 2. �Color online� �a� Phase and �b� group-velocity disper-
sion curves for undamped �q=0� and damped �q=0.175 and q

=0.225� phononic crystals along the �̄→ X̄ path. The inset in �a�
shows the dispersion curves for an undamped �q=0� and a damped
�q=0.225� homogenous material.
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FIG. 3. �Color online� A focus on the band structure along the

X̄→M̄ path for undamped �q=0� and damped �q=0.05 and q
=0.2� phononic crystals, demonstrating the phenomenon of branch
overtaking. The inset shows the downward progression, and change
of trend, of the fourth branch as the damping parameter q is gradu-
ally increased.
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FIG. 4. �Color online� Relative size of band gap as a function of
Rayleigh damping parameter q. An abrupt drop is observed at q
�0.15 due to the branch-overtaking phenomenon brought about by
the presence of viscous damping. The insets monitor the progres-
sion of the sixth branch as the damping is increased. At
q=01525, this branch has lower values than the fourth branch near

the �̄ point leading to an abrupt drop in the band-gap size. The
dashed line in the main plot projects the original reduction in
�� /�C until the next overtaking in which the seventh branch sur-
passes the fourth.
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particularly important when considering band gaps and their
dependency on damping. From Fig. 1, we note that the unit
cell considered exhibits a band gap between the third and
fourth branches, in its undamped form. Figure 4 presents the
relative size of this band gap �width �� divided by central

frequency �c� as a function of q. We observe clearly an
abrupt drop in the band-gap size and this is due to the fast-
falling sixth branch overtaking the fourth when the level of
damping reaches q�0.15. Viscous damping induces phase
changes which cause the observed shifts in the frequencies.
However with these shifts, each Bloch mode along each
branch still retains its character �i.e., mode shape� even when
branch overtaking occurs. Finally, we look at a finite struc-
ture composed of an array of the same unit cell studied in
order to confirm the validity of our damped band-structure
theory and all the previous results. The finite structure we
consider consists of 4�4 cells and is fixed at all edges and
corners. Using the same finite-element model parameters as
for the Bloch unit-cell analysis, we calculate the natural fre-
quencies for the undamped and damped cases considered in
Fig. 1. We find from the results, presented in Fig. 5, that the
“gaps” in the finite-structure natural frequencies correlate
perfectly with the band gaps marked in Fig. 1 for the infinite
structure. This is a key comparison considering that the cal-
culation of natural frequencies of finite structures is well
established.15 These results therefore support the validity of
our theory. Conversely, the Bloch unit cell analysis results
explain why natural frequency gaps in finite periodic struc-
tures alter abruptly with damping. While we focused on
phononic crystals, the presented Bloch modal analysis theory
is also relevant to the study of dissipation in other types of
periodic media such as photonic crystals.16
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FIG. 5. �Color online� Vibration natural frequency as a function
of mode number m for finite 4�4 unit cell phononic crystal with
the same parameters as the infinite case. Results are shown for the
undamped case �q=0� and the same damped cases as in Fig. 1 �q
=0.05 and q=0.15�. The horizontal lines indicate the band-gap lo-
cations based on the infinite phononic crystal band structure.
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