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Opening of a gap in the low-energy excitations spectrum affects the power-law singularity in the photon
absorption spectrum A���. In the normal state, the singularity, A���� �D / ��−�th���, is characterized by an
interaction-dependent exponent �. On the contrary, in the superconducting state the divergence, A���
� �D /�����−�̃th�−1/2, is interaction independent, while threshold is shifted, �̃th=�th+�; the “normal-metal”

form of A��� resumes at ��−�̃th��� exp�1 /��. If the core hole is magnetic, it creates in-gap states; these
states transform drastically the absorption edge. In addition, processes of scattering off the magnetic core hole
involving spin-flip give rise to inelastic absorption with one or several real excited pairs in the final state,
yielding a structure of peaks in A��� at multiples of 2� above the threshold frequency. The above conclusions
apply to a broad class of systems, e.g., Mott insulators, where a gap opens at the Fermi level due to the
interactions.
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I. INTRODUCTION

It was demonstrated more than 40 years ago1–3 that elec-
tron x-ray absorption coefficient in metal, A���, is strongly
modified by attraction to the localized hole left behind. The
threshold behavior of absorption coefficient was found to be

A��� = A0�D

�
��

. �1�

In Eq. �1� and thereafter, �=�−�th stands for the difference
between the photon energy and the core-hole energy mea-
sured from the Fermi level, and D is the bandwidth. Prefac-
tor, A0, contains the square of the dipole matrix element
between the level and the conduction band. In the simplest
case of a weak short-range attraction, V�r��0, of electron to
the hole the expression for the exponent �	1 has a form

� = 2
0�� drV�r�� , �2�

where 
0 is the density of states at the Fermi level �we ne-
glect the correction, −�2 /4, originating from the Anderson
orthogonality catastrophe,2�. Since the diverging absorption
Eq. �1� comes from all energy scales between � and D, it is
quite robust. In a finite system, the threshold behavior de-
pends on additional energy scale, the level spacing.4

Interest to the singular behavior of A��� near the thresh-
old got a boost after it was predicted5 that this behavior
manifests itself in the resonant-tunneling current-voltage
characteristics. This prediction was later confirmed in numer-
ous experiments.6–12 Enhancement of absorption Eq. �1� was
derived under the assumption that the density of states, 
���,
is constant 
���=
0 within the entire frequency interval,
�−D ,D�. If there is a gap, 2�, at the Fermi level the thresh-
old behavior of A��� is singular even without interaction
with a hole:

A��� � 
��� = 
0
�

��2 − �2�1/2 , �3�

and diverges near the edge of the gap. For small � it could be
expected13 that this strong bare singularity is weakly affected
by the excitonic effects.1 Indeed, the low energy, �2�,
many-body processes across the gap, responsible for Mahan
singularity, are suppressed. This reasoning suggests the form
of the absorption in superconductor

A��� = A0�D

�
��
���


0
. �4�

Equation �4� crosses over to the conventional behavior Eq.
�1� at high frequencies, �, such that � ln�� /��	1; in this
frequency domain the effect of superconductivity is negli-
gible, since ���.

Even stronger modification of the absorption spectrum
takes place, when the core hole possesses a spin, so that the
interaction with excited electron includes exchange. In this
case, two physical mechanisms come into play. First, a core
hole creates in-gap states14 with binding energy �0	�2�
measured from the edges. These states, in turn, affect dra-
matically the elastic scattering of excited electron transform-
ing the near-gap absorption into

A��� =
A0


2
�D

�
�� ���� − ���1/2

�� − �� + �0
, �5�

see Fig. 1. The absorption is zero at the threshold and re-
sumes ��−��−1/2 falloff only for ��−����0. As a “compen-
sation” of the suppressed absorption, a -peak

A��� =
A0


2
�D

�
��


��0�� − � + �0� , �6�

emerges at the position of the bound state.
There is another many-body feature in A���, which is

specific for the exchange interaction with core hole. This
feature originates from the fact that exchange interaction of
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electron with localized magnetic impurity in metal can be
accompanied by creation of an electron-hole pair.15 The un-
derlying reason is that localized spin emerges as a result of
the on-site Hubbard repulsion of two electrons. On the other
hand, with electron-electron interaction, two electrons can be
excited by a single photon.16,17 In the presence of a rigid
superconducting gap, this process starts from the threshold18

�=�1=3�, which corresponds to inelastic absorption with
electron and additional pair in the final state. This process is
schematically illustrated in Fig. 2�b�. More additional pairs
in the final state give rise to anomalies at �=�n= �2n+1��,
which have the form

A���
A�n��

	 �2n�� − �n�n−1/2��� − �n� . �7�

II. DERIVATION OF EQ. (4)

A. Time dependent superconducting Green functions

An efficient way2 to derive Eq. �1� is to consider scatter-
ing of excited electron by a transient potential, V�r���t�, and

perform calculation in the time representation. In this repre-
sentation, the Green function of the normal metal G0�t�
=�d�ei�t�q1 / ��−�q� i0� �+ or − depending on sgn��q�� has
the form G0�t�=−
0�t− iD−1 sgn�t��−1, where D is the band-
width. Generalization of the scattering approach to supercon-
ductor requires the time representation of the superconduct-
ing single-particle Green function

Ĝ��,q� =
�̂+�q�

� − �q + i0
+

�̂−�q�
� + �q − i0

, �8�

where �q=
�q
2+�2 is the spectrum of superconductor; �q

=vFq with q= �k−kF� being the momentum measured from
the Fermi momentum, kF, and vF is the Fermi velocity. The

projection operators �̂��q� are 2�2 matrices

�̂��q� =
1

21 �
�q


�q
2 + �2

�
�


�q
2 + �2

�
�


�q
2 + �2

1 �
�q


�q
2 + �2

� , �9�

with following properties: �̂�
2 �q�= �̂��q� and �̂+�q�+ �̂−�q�

=1. In the basis of eigenfunctions of the Bogoliubov-de
Gennes Hamiltonian, interaction with the short-range poten-
tial is described by the diagonal matrix

Vq = −
�

2
0
V̂; V̂ = �1 0

0 − 1
� . �10�

Note that time-dependent 2�2 Green function of a super-
conductor, obtained as a result of integration d�ei�t of Eq.
�8�, and subsequent summation over momentum, q, can be
conveniently expressed in terms of zeroth and first-order
Bessel functions, namely

Ĝ�t� = �G�t� F�t�
F�t� G�t�

� , �11�

where the normal and anomalous Green functions, G�t� and
F�t�, are given by

G�t��Dt�1 =
��
0

2
sgn�t��iJ1���t�� + Y1���t��� , �12�

F�t��Dt�1 = − i
��
0

2
�iJ0���t�� + Y0���t��� . �13�

In the limit �→0 the normal-metal Green function, G0�t�, is
recovered from Eq. �12� by using the small-t asymptote
Y1��t��−2 / ���t�, while F�t�→0.

B. Shape of the absorption edge

In superconductor, we generalize the response function to

a 2�2 matrix, L̂�t�, so that the absorption coefficient is
given by the diagonal matrix element

FIG. 1. �Color online� Absorption spectrum near the threshold
for spinless �green �gray�� and spinful �red �black�� core hole.

∋

−

∋

+

0

ω

(b)

∋

(a)

∆
∆

FIG. 2. �Color online� �a� Schematic illustration of elastic ab-
sorption, and �b� inelastic absorption. Blue �gray� lines illustrate
creation and annihilation of a virtual pair that participates in elastic
absorption. Final state of inelastic absorption is electron with en-
ergy � and a real pair, ��+ ,�−�. Brown lines in �b� �thin arrowed
lines on the right�: since inelastic absorption is possible only for a
spinful core hole, in-gap states created by this hole �Ref. 14� can
also participate in absorption.
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A��� =
A0

�
0
Re�

−�

0

dt exp�− i�t��L̂�t��11. �14�

As a result of matrix generalization, the expansion of the
response function in powers of �,

L̂�t� = �
n
�−

�

2
0
�n

L̂n�t� , �15�

has the 2�2 coefficients, L̂n�t�, which are given by the fol-
lowing n-fold integrals2,5 of the single-particle Green func-

tion, Ĝ�t�,

L̂n�t� = i�
t

0

dt1 · · �
t

0

dtnĜ�− t1�V̂Ĝ�t1 − t2�V̂ · · V̂Ĝ�tn − t� .

�16�

In the normal metal, evaluation of A��� is based on exact
analytical result2 for the infinite sum

�
n=0

� �−
�

2
0
�n�

t

0

dt1 ¯ �
t

0

dtnG0�� − t1� ¯ G0�tn − ���

= G0�� − ���� �t − ����

�t − �� + iD−1��� + iD−1���/2

. �17�

To arrive to Eq. �1� one has to set �=0 and ��= t, after which
the square bracket in Eq. �17� reduces to �−iDt��, and inte-
grate dt exp�−i�t�. Characteristic times ti in the relation Eq.
�17� are arranged unevenly as illustrated in Fig. 3. The cen-
tral interval is �t, so that ti are located in the close proxim-
ity, �1 or �2 �see Fig. 3� either to 0 or to t. It is important that
in superconducting case the arrangement remains the same,
and moreover, as we will see, ��1 and ��2 are always 	1.

This means that Ĝ�ti− ti+1� can be replaced by G0�ti− ti+1�
times the unit matrix. As a result, the matrix structure of V̂
drops out. The only Green function that retains the matrix

structure is Ĝ��1+�2− t�, Fig. 3. However, in the component

L̂11, the anomalous Green function drops out, so that

L̂11�t� � i�iD���2 �
0

�1+�2��t�

�t�

d�1d�2

��1�2�1−�/2G�− �1 − �2 − t� ,

�18�

where G�t� is defined by Eq. �12�. Equation �4� immediately
follows from Eqs. �18� and Eq. �14�. The Green’s function G
in Eq. �18� generates the density of states, 
���, in Eq. �4�.
One point should be clarified with regard to the validity of
the above result Eq. �18�. We used the normal-metal solution
Eq. �17�. This is justified since integrals over �1, �2 in Eq.
�18� come from �1 ,�2	�−1 exp�−1 /��. This also validates
the assumption ��1 ,��2	1, which we used to disregard the

matrix structure of Ĝ�ti− ti+1�.

C. Unconventional arrangements of times

There still remains a question whether or not the matrix
structure of the superconducting Green functions, which be-
comes important near the threshold ��−��	�, gives rise to
the contributions to A���, caused by “unconventional” ar-
rangements of times, ti, ��ti���−1�, as shown in Figs. 4�a�
and 4�b�; these arrangements are not relevant in the normal-
metal case. For example, the simplest such “unconventional”
arrangement, Fig. 4�a�, manifests itself as an extra combina-
tion

�
t

0

dtkĜ�tk−1 − tk�V̂Ĝ�tk − tk+1� �19�

in the integrand Eq. �16�. Since the arguments of Ĝ in Eq.
�19� are large, one can use the long-time asymptote

Ĝ�t����t��1 � GS�t�� 1 − sgn�t�
− sgn�t� 1

� , �20�

where the GS�t� is the �t�1 asymptote of Eq. �12�

5 tn t1t2t4 t

1

t

03t

τ1

0

1

FIG. 3. �Color online� Conventional arrangement of times �Ref.
2� in n-fold integral Eq. �16� describing contribution to the response
function due to n successive scatterings by the core hole. Time
intervals, �ti− ti+1�, are distributed unevenly; central interval corre-
sponding to line 1 is only slightly smaller than �t�. Remaining inter-
vals contained in the boundary ellipses are 	�t�. Inset: blowup of
the right end of the line 1.

t k

t k t k+1

(b)

(c)
t 0

t 0
(a)

t 0

FIG. 4. �Color online� Examples of “unconventional” time do-
mains in the integrand of Eq. �16�; �a�: Position of the point, t1, such

that �t1���−1, �t− t1���−1, does not contribute to L̂n by virtue of
Eq. �22�; �b�: As long as �t1���−1, �t− t1���−1, and �t2���−1, �t
− t2���−1, contribution of the arrangement of times vanishes upon
integration over t1 or t2, see Eq. �26�; �c�: For the same reason,
“long” ���−1� intervals in the general “unconventional” arrange-

ment yield vanishing contribution to L̂n, and thus, to the absorption
at the threshold, ��−��	�.
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GS�t� = 
0 sgn�t����

2�t� �
1/2

ie−i��t�+3�i/4. �21�

Note however, that the matrix structure in the integrand of
Eq. �19� is

� 1 − 1

− 1 1
��1 0

0 − 1
�� 1 − 1

− 1 1
� = 0. �22�

Thus, we turn to the next possible arrangement of times Fig.
4�b�; the corresponding combination in Eq. �16� coming
from this arrangement reads

�
t

0

dtk�
t

0

dtk+1Ĝ�tk−1 − tk�V̂Ĝ�tk − tk+1�V̂Ĝ�tk+1 − tk+2� .

�23�

To integrate over tk, we perform multiplication of the first
three matrices and obtain

GS�tk−1 − tk�� 1 − 1

− 1 1
��1 0

0 − 1
��G�tk − tk+1� F�tk − tk+1�

F�tk − tk+1� G�tk − tk+1�
�

= GS�tk−1 − tk��G�tk − tk+1� + F�tk − tk+1��� 1 1

− 1 − 1
� . �24�

Then the integration over tk in Eq. �23� reduces to

�
tk+2−tk+1

tk−1−tk+1

d��G��� + F����GS�tk−1 − tk+1 − �� , �25�

where we introduced a variable �= tk− tk+1. Typical distance
between the points, �tk−1− tk+1� and �tk+1− tk+2�, is ��−1,
which suggests that the limits of integration can be extended
to ��. Upon this extension we get

ei��tk+1−tk−1�


�tk+1 − tk−1�
�

−�

�

d��G��� + F����ei��, �26�

which is identical zero. The same reasoning rules out19 the
more complex “unconventional” arrangements of times at
the threshold, such as the ones shown in Fig. 4�c�. These
arrangements, however, become essential in the case of ex-
change interaction with core hole, to which we now turn.

III. EXCHANGE INTERACTION WITH CORE
HOLE

Exchange interaction with core hole corresponds to re-
placement

V�r� → J�r��S · �� , �27�

where S is a localized spin, and � is electron spin operator.
To illustrate the dramatic impact which the exchange inter-
action has on the near-threshold absorption, we return to Fig.
4�a� and corresponding expression Eq. �19�. For potential
interaction with core hole, this expression was identical zero
by virtue of relation Eq. �22�. Recall now that in the station-
ary problem the diagonal part of the exchange interaction,

V�r�Sz�z, creates two in-gap bound states:14 one below the
upper edge by

�0 =
�2�2�

8
, �28�

and one above the lower edge by �0. The reason behind this

effect is that Sz�z effectively transforms the operator V̂ in Eq.
�10� into the unity matrix. An immediate consequence of this
transformation for our calculation is that the contribution Eq.
�19� becomes finite. Subsequently, the contribution Fig. 4�b�
and all higher-order “unconventional” contributions illus-
trated in Fig. 5�a� are also finite. Within our formalism, the
in-gap bound states emerge as poles, 1 / ��� ��−�0��, of the
Green function upon summation20 of infinite series of dia-
grams.

In deriving Eq. �5� for A��� near the threshold, we in fact
repeat all the steps which would render the stationary in-gap
states. Namely, we notice that the phase ��k�tk+1− tk� of the
integrand in Eq. �16� is large, which insures that the domi-
nant contribution to Ln�t� comes from the domain 0� t1
� t2¯ � t, see Fig. 5�a�, when the net phase is �t; contribu-
tions from the domains where tm are not ordered are sup-
pressed by oscillations of the integrand. Thus we conclude
that the integral Eq. �16� is dominated by tm	 t�m /n�. For
the asymptote Eq. �21� to be applicable in this domain, the
condition �tm+1− tm�	 t /n��−1 must be met. With tm or-
dered, the n-fold integration in Eq. �16� can be carried out
with the help of the identity

�
a

b dx

�x − a��b − x�

= � . �29�

Depending on the parity of n, the remaining integration,
upon introducing the variables zi= ti / t, reduces to

�
0

1

dz1�
z1

1

dz2 ¯ �
z�n−3�/2

1

dz�n−1�/2 =
1

�� n+1
2 � �30�

for odd n, or to

�
0

1

dz1�
z1

1

dz2 ¯ �
zn/2−1

1

dzn/2�1 − zn/2�−1/2 =

�

�� n+1
2 � �31�

for even n. Finally we get

tn−1 t2 t1tn tn−2t 0

FIG. 5. For exchange interaction with the core hole, “unconven-
tional” arrangement of times, �ti− ti+1���−1, dominates the near-
threshold, ��−��	� absorption. Odd n describes the absorption
peak at �=�−�0.
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�L̂n�t��11 = �− 1�n��2
0
2�

2
�n+1/2 �− it�n−1/2

��n + 1

2
� ei�t. �32�

The product, �nL̂n�t�, has a sharp maximum at n	�2�t, so
that �t /n	1 /�2 is large, which justifies the above assump-
tion �tm+1− tm���−1.

The sum over even n, L̂even�t�=�even�� /2
0�nL̂n�t�, leads
to the result Eq. �5�. Most conveniently it can be seen by
transforming to the frequency domain, since the expansion of
Eq. �5� in powers of �2 has a form

A��� = A0��

2
�1/2

�
p=0

� ��2�2�

8
�p �− 1�p

�� − ��p+1/2 . �33�

This expansion coincides term by term with the sum,

A0�
p
�−

�

2
0
�2p�

−�

0

dt�L̂2p�t��11exp�− i�t� , �34�

with L̂2p�t� given by Eq. �32�. The sum over odd terms re-
sults in a simple exponent,

L̂odd�t� = �
odd

�−
�

2
0
�n

L̂n�t� � exp�i�� − �0�t� . �35�

This exponent gives rise to the -peak, Eq. �6�, in the absorp-
tion spectrum.

IV. INELASTIC ABSORPTION

Up to now we neglected the spin-flip part,

J�r��S+�− + S−�+� , �36�

of the exchange interaction. As it was mentioned in the In-
troduction, this spin-flip part of interaction between electron
and core hole creates an effective electron-electron
scattering.15 This explains the possibility of inelastic pro-
cesses with three quasiparticles in the final state, as illus-
trated in Fig. 2�b�. The threshold of inelastic process is �
=3�. Here, we will restrict ourselves only to the behavior of
inelastic absorption away from the threshold, ��−3����0,
and follow the calculation in Ref. 18. A great simplification
away from threshold is that a “golden-rule”-based calcula-
tion is sufficient. The rate of the process depicted in Fig. 2�b�
is given by the following sum over the quasiparticle states
with energies, �, �+, and �−,

W��� = 2� �
�,�+,�−

� �sf

� − �
�2

�� − � − �+ + �−� , �37�

where the first factor is the square of the amplitude, which is
nonzero since the process involves a spin-flip,15 and the di-
mensionless spin-flip coupling constant is

�sf = J
0

S�S + 1� . �38�

Near the threshold, �=3�, we have ���, �+��, and �−
�−�. The matrix element near the threshold is approxi-
mately constant. This simplifies the summation in Eq. �37� to

W��� =
��sf

2

2�2

��
�

�

d�
����
�

�

d�+
��+��
−�

−�

d�−
��−��� − � − �+ + �−�,

=
�2�sf

2

2
�� − 3�

2�
�1/2

. �39�

Note that in the close vicinity of the threshold, ��−3��
��0, in-gap states created by the spinful core hole partici-
pate in the absorption, as illustrated in Fig. 2�b�. Namely, a
pair of quasiparticles in the final state can consist, e.g., of
one quasiparticle excited above the gap and empty lower
in-gap state.

V. DISCUSSION

Our results Eqs. �4� and �5� establish the threshold behav-
ior of A��� for a general situation when the density of states
is strongly modified near the Fermi level but assumes a con-
stant value away from the Fermi level. A notable example is
a one-dimensional �1D� interacting system. The shape of the
Fermi-edge singularity in 1D interacting electron gas in the
Luttinger-liquid regime has been studied in21 using the
bosonization technique. Backscattering plays an important
role in the exponent of the absorption. When backscattering
opens a gap, the physics described in the present paper
comes into play. The case of 1D Mott insulator near half
filling makes the behavior of A��� even richer, since the
doping shifts the threshold. A related example is the Peierls
insulator, when the charge density wave and ensuing gap at
the Fermi level are due to electron-phonon interactions.
Note, that in the latter case the gap is orders of magnitude
larger than in superconductor.

Speaking about conventional setting for Fermi-edge ab-
sorption in metals, singularity in A��� is smeared due to the
finite lifetime, �, of the core hole. In our consideration we
assumed that the gap, 2�, exceeds �. In most experiments in
metals the smearing of the edge is a fraction of eV, i.e., much
bigger than a typical 2�-value. However, the origin of this
smearing is not a natural core hole lifetime broadening but
rather a finite instrumental resolution.22 The fact that ob-
served absorption shape is a convolution of the singular
A���, a Gaussian, which is measurement-related, and a
Lorentzian, describing natural core hole lifetime, allows to
separate the two contributions to the edge smearing. Early
attempts23 of such separation yielded �=40 meV for 2p core
hole. In the other experiment24 involving core hole four
times shallower than in Ref. 23, the natural width was found
to be four times smaller, �=10 meV. In later experiment,25

where the full broadening, 29 meV, was very small, analysis
of the data for the same absorption line as in Ref. 24 revealed
even smaller value of the core hole width in simple metals,
�=4 meV.

As a final remark, the relevance of the exchange interac-
tion of electron with the core hole was first pointed out in
Ref. 26.
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