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Confirmation of the phononic origin of Cooper pair formation in superconductors came with the demonstra-
tion that the interaction was retarded and that the corresponding energy scales were associated with phonons.
Using cellular dynamical mean-field theory for the two-dimensional Hubbard model, we identify such retar-
dation effects in d-wave pairing and associate the corresponding energy scales with short-range spin fluctua-
tions. We find which frequencies are relevant for pairing as a function of interaction strength and doping and
show that the disappearance of superconductivity on the overdoped side coincides with the disappearance of
the low-energy feature in the antiferromagnetic fluctuations, as observed in neutron-scattering experiments.
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I. INTRODUCTION

In ordinary superconductors, the origin of attraction be-
tween electrons, the “pairing glue,” manifests itself in ob-
servable quantities. Indeed, the characteristic frequencies of
phonons appear directly in the frequency dependence of the
gap function, which in turn enters observables such as the
single-particle density of states �DOS� or the infrared con-
ductivity. Migdal-Eliashberg theory1,2 has been extremely
successful to extract from these experiments the spectral
function of the phonons that provide the glue.

High-temperature superconductors, heavy fermions, and
layered organic superconductors have phase diagrams, where
non-s-wave superconducting order parameters lie in close
proximity to antiferromagnetic phases. In the case of high-
temperature superconductors, much effort has been devoted
to find out whether antiferromagnetic fluctuations could be
the pairing glue.3–7 Even though its assumptions are not gen-
erally valid in that case, Eliashberg theory has been used to
extract the amplitude and frequency dependence of a spectral
function that is found to be similar to that for antiferromag-
netic fluctuations directly measured by neutron scattering.8–11

But understanding the origin of pairing in high-
temperature superconductors requires an approach that does
not rely on the assumptions entering Eliashberg theory and
that takes into account Mott insulating behavior. This seems
to rule out the theories that are based purely on early weak-
coupling ideas of boson exchange.12–14 In fact, Anderson has
argued that the appropriate starting point consistent with
Mott physics is the strong-coupling version of the Hubbard
model, or the t-J model. This point of view is challenged, for
example, by models involving three bands.15,16 But even if
we focus on the one-band Hubbard model, according to
Anderson17 it is an open issue whether interactions leading to
superconductivity are instantaneous,18 as suggested by reso-
nating valence bond mean-field factorization, or whether
they are retarded.7 In this paper, we show that indeed inter-
actions are retarded and that the corresponding spin fluctua-
tions observed in neutron scattering19,20 are relevant all the
way to the overdoped regime. We also stress the qualitative
differences with simple spin-fluctuation ideas.

II. MODEL AND METHOD

We study the Hubbard model Hamiltonian given by

H = − �
i,j,�

tijci,�
† cj,� + U�

i

ni↑ni↓, �1�

where tij and U correspond to the hopping matrix and the
on-site screened Coulomb repulsion, respectively, with ci,�

�†�

being the destruction �creation� operator for an electron at
site i with spin � and ni�=ci,�

† ci,� being the number operator.
The theoretical method that has been most successful to date
to treat the Mott transition starting from the one-band Hub-
bard model is dynamical mean-field theory �DMFT�.21

Cluster generalizations of DMFT �Refs. 22–25� are nec-
essary to study problems in two dimensions, where correla-
tions beyond single site must be taken into account to study,
for example, d-wave superconductivity. They lead to phase
diagrams that have the same features as those observed ex-
perimentally for both electron-doped and hole-doped high-
temperature superconductors26–29 and for organic conductors.
In addition, observable quantities such as the density of
states,28 the angle-resolved photoemission spectroscopy
spectrum,27,28 and the optical conductivity28 have the experi-
mentally observed behavior. The method that we use, cellular
dynamical mean-field theory �CDMFT� with exact diagonal-
ization at T=0, is described in Refs. 23 and 27 and in Ap-
pendix A and has recently been critically reanalyzed in Ref.
30. It is best to access zero-temperature real-frequency data
and to obtain local quantities such as ��, as we do here. We
stress that it does not involve any Eliashberg-type approxi-
mation.

In CDMFT, antiferromagnetism and d-wave superconduc-
tivity coexist over part of the phase diagram. This is seen in
stoichiometric cuprates with intrinsically doped planes31 and
in a few other cases,32,33 but does not appear to be a com-
pletely generic property of the phase diagram. Our work is
thus restricted to showing that spin fluctuations are relevant
for high-temperature superconductivity all the way to the
overdoped regime, leaving open the possibility that addi-
tional types of fluctuations may either contribute to or hinder
superconductivity in the underdoped phase.

III. RETARDATION EFFECTS

The correspondence between the imaginary part of the
anomalous self-energy, �an� , and the imaginary part of the
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local spin susceptibility, ��, is seen in Fig. 1. We take band
parameters appropriate for La2−xSrxCuO4, namely, t�=
−0.17t for nearest-neighbor hopping and t�=0.08t for next-
nearest-neighbor hopping. CDMFT with U=8t then leads to
superconductivity in the doping range observed
experimentally.27 The anomalous self-energy �an� is defined
as minus the off-diagonal part of the inverse Green’s func-
tion in Nambu space. Numerical results are presented in en-
ergy units where t=1. For all different dopings, the positions
of the first two peaks in the spin fluctuations �black dots on
bottom panel� �Ref. 28� are just shifted down with respect to
the corresponding peaks in �an� �black dots on top panel�.

In Eliashberg theory for the electron-phonon interactions,
the first two peaks in the phonon density of states are shifted
down with respect to those in �an� by the BCS gap.7 Simi-
larly, the downshift in peaks in �� seen in Fig. 1�b� increases
as we underdope, like the single-particle gap. For U=12t and
realistic band structure for YBa2Cu3O7−x the shift is very
weakly doping dependent as seen in Appendix B 2.

In Migdal-Eliashberg theory, the real part of the self-
energy �an� multiplied by the quasiparticle renormalization

factor is the gap function. As discussed further in Appendix
B 3, we find that this function has no static contribution, i.e.,
no frequency-independent contribution at high frequency,
contrary to what was found in the t-J model.7,28 To identify
the energy scales relevant for the pairs, we introduce a con-
venient function, the “cumulative spectral weight of the or-
der parameter”

IF��� � − �
0

� d��

�
Im Fij

R���� . �2�

Here FR is the retarded Gork’ov’s function defined in imagi-
nary time by Fij �−�Tci↑���cj↓�0�� with i and j being the
nearest neighbors. The infinite frequency limit of IF��� is
equal to �ci↑cj↓�, which in turn is proportional to the d-wave
order parameter �it changes sign under � /2 rotation�. It was
shown in Ref. 28 that �ci↑cj↓� scales like Tc. For all these
reasons, IF��� is useful to estimate the frequencies relevant
for binding. Its meaning is further illustrated by the d-wave
BCS result in Fig. 2�a�. The function IF��� rises monotoni-
cally until it reaches the sharp BCS cutoff frequency �c
above which no binding occurs. IF��� extracted from the
Eliashberg calculation34 for lead is also displayed in Fig.
2�a�. The maximum is reached at a frequency just above the
largest phonon frequency. Further discussion on IF��� and
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FIG. 1. �Color online� �a� Imaginary part of the anomalous self-
energy Im �an��an� at the Fermi wave vector nearest to the antin-
odal point, for various dopings. �b� Imaginary part of the local spin
susceptibility Im ����. Black dots in �a� and �b� identify peaks.
The position of the peaks of �an� in �a� are reported as pale magenta
dots in �b� at the same height as the corresponding �� to illustrate
the correspondence between the main peaks of the two functions.
The frequency splitting between the peaks decreases with doping,
like the single-particle gap. The red curves are for the normal state.
The lower frequency peak present in the superconducting state dis-
appears and the next peak moves to higher frequency with doping.
In all the figures, the Lorentzian broadening is 0.125t, U=8t, t�=
−0.3t, t�=−0.08t, for La2−xSrxCuO4 and t=1, 	=1.

FIG. 2. �Color online� �a� The solid green line is IF��� for a
d-wave BCS superconductor with a cutoff at �c=0.5. The dashed
magenta line is obtained from Eliashberg theory for Pb in Ref. 34.
Frequencies in that case are measured in units of the transverse
phonon frequency. The two glitches before the maximum corre-
spond to the transverse and longitudinal peaks in the phonon den-
sity of states. The scale of the vertical axis is arbitrary. �b� IF���
calculated for various dopings. The horizontal lines for the asymp-
totes mark the value of the order parameter. �c� The three indepen-
dent Fourier components of �� on a 2
2 plaquette for an under-
doped case. The �� ,�� component dominates at low frequencies.
Further examples appear in Appendix C.
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calculations in special cases can be found Appendix B 4.
IF��� is plotted in Fig. 2�b� for underdoping �=0.04, op-

timal doping �=0.16, and overdoping �=0.26. The
asymptotic large frequency value of IF��� indicated by hori-
zontal lines gives the order parameter that, as a function of
doping, has a dome shape dependence.27 The functions IF���
cross their respective asymptotic values at progressively
lower frequencies as doping increases. The spin fluctuations
that dominate at the lower frequencies come from wave vec-
tors around �� ,��, as illustrated in Fig. 2�c� for an under-
doped case. The maximum of IF��� is more pronounced in
the underdoped regime. The form of IF��� in the overdoped
regime is closer to the BCS limit with just a sharp cutoff.
Our calculations are less precise at high frequencies, but nev-
ertheless they suggest that, in all cases, IF��� undershoots
very slightly its asymptotic value and then recovers at fre-
quencies that are of order U /2, where the upper Hubbard
band opens new scattering channels.7 This has no analog in
ordinary superconductors.

In Fig. 3 we focus on the low-frequency behavior. On the
top panel, IF��� crosses its asymptotic value for the first time
near its maximum. This crossing point shown by vertical
lines follows the first peak in the corresponding �� in the
bottom panel. By studying the cases U=8,12,16 we have
verified that these features scale with J. Clearly, if we wished
to design an approximate mean-field theory35 for this prob-
lem that would play a role analogous to BSC theory as an
approximation of the Migdal-Eliashberg theory, we would
use a frequency cutoff of order J.

Let us now discuss how the properties of the spin fluctua-
tions ����� correlate with those of the d-wave superconduct-
ing state for La2−xSrxCuO4. In Fig. 1�b�, one sees that in the
underdoped regime the low-frequency peak is the most
prominent feature. Optimal doping ���0.16� is reached
when the intensity of the low-frequency peak becomes com-
parable to the next one at higher frequency. More impor-

tantly one sees that, around doping �=0.26, superconductiv-
ity disappears with the low-frequency peak in ����� below �
about J /2=0.25t. That low-frequency peak is the one in-
volved in the dynamics of the pairs. To show this, it suffices
to check the frequencies in ����� 	Fig. 2�b�
 that are below
the intersection of the IF��� function with its asymptotic
value. Indeed, this intersection is a measure of what would
be the cutoff in BCS theory. Note also that the leftover peak
in the normal state, indicated in the lowest five curves in Fig.
1�b�, moves to higher frequencies as we dope. These features
are those found in neutron-scattering experiments19,20 and are
discussed further in Appendix C.

The large tails and monotonic decrease in the weight of
the low-frequency peak in �� as we dope are consistent with
the “glue function” extracted from recent optical conductiv-
ity experiments.11 The position of the low-frequency peak
near 0.2t at optimal doping is consistent with the experimen-
tal value11 if we take t=250 meV. One should recall that
Fig. 1�b�, for the local spin spectral weight ��, gives infor-
mation integrated in wave vector so the properties of the
“neutron resonance” located at �� ,�� have to be found by a
different approach. In a recent calculation with a related clus-
ter method,36 it has been found that the peak located at
�� ,�� in the infinite lattice decreases with frequency in the
underdoped regime. Given the small weight of this neutron
resonance, this does not contradict the fact that ��, whether
local or averaged over one-quarter of the Brillouin zone �BZ�
near �� ,��, has the opposite doping dependence.19,20,37–39

The magnetic resonance itself has small weight.40

We stress that, despite the similarities, the results obtained
in this paper are not identical to those that are obtained in
ordinary superconductors. In particular, in the underdoped
regime the spin fluctuations are strongly pair breaking. The
pair-breaking effect of the pseudogap can be seen from the
fact that in the normal state, the pairing susceptibility de-
creases as one approaches half-filling when vertex correc-
tions are neglected, as discussed in Appendix B 5. Following
the suggestion of Ref. 41, we also checked whether the
pseudogap is pair breaking by computing the ratio
�an�i�n� / �1−�n�i�n� / i�n� at the antinodal Fermi surface
crossing as a function of Matsubara frequency. The ratio is
far from constant, in agreement with the existence of strong
pair-breaking effects in the pseudogap. From a diagrammatic
point of view, spin fluctuations both scatter electrons �self-
energy�, decreasing the density of states at the Fermi surface,
and provide the glue �vertex�. This can lead to the dome
shape of the transition temperature as a function of doping.42

In the underdoped regime, the pair-breaking effect wins over
the glue provided by the vertex, whereas in the overdoped
regime the vertex dominates.

IV. CONCLUSION

We have found that the imaginary part of the anomalous
self-energy has a structure that is correlated with the spec-
trum of local spin fluctuations. This correlation is similar to
the one found with the phonon spectrum in the Migdal-
Eliashberg theory of ordinary superconductors. This suggests
the importance of local spin-one excitations in pair forma-

FIG. 3. �Color online� �a� Low-frequency part of IF��� for three
dopings: underdoped, optimally doped, and overdoped. The vertical
lines indicate the first intersection with the asymptotic value. The
plot of �� in �b� shows that the first peak occurs in the frequency
interval, where IF��� reaches its maximum. These are the main
frequencies that give rise to pair binding.
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tion. Our approach also allows for mutual feedback between
spin fluctuations and pairing.43 The frequencies most rel-
evant for the pair dynamics scale with the Heisenberg
exchange J. Superconductivity disappears for sufficient
overdoping when the first peak in �� below frequencies
about J /2 becomes negligible. There are, however, major
differences with simple spin-fluctuation mechanisms. Even
though the anomalous self-energy increases as we approach
half-filling, the order parameter decreases because of large
self-energy effects in the normal part of the propagator.
These come from Mott Physics at half-filling. The magnetic
fluctuations that we find have the same doping and energy
dependence as that found in optical,9–11 tunneling,8,44 and
neutron experiments.19,20,37–39 Our work leaves open the pos-
sibility that in the underdoped regime there exists other in-
stabilities that compete with antiferromagnetism and d-wave
superconductivity. One should also investigate whether retar-
dation is essential to explain why d-wave pairing occurs de-
spite sizable longer range Coulomb repulsion.

ACKNOWLEDGMENTS

We are grateful to D. J. Scalapino for insights at the origin
of this work, to W. J. L. Buyers, J. Carbotte, M. Civelli, and
T. Maier for discussions, and to M. Greven, G. Kotliar, and
L. Taillefer for careful reading and comments on the manu-
script. This work was supported by NSERC �Canada�, CFI
�Canada�, the Canadian Institute for Advanced Research, and
the Tier I Canada Research chair Program �A.-M.S.T.�. Com-
putations were carried out on clusters of the Réseau québé-
cois de calcul de haute performance �RQCHP� and on the
Elix cluster at Université de Sherbrooke. A.-M.S.T. thanks
the Aspen Center for Physics where this work originated.

APPENDIX A: CELLULAR DYNAMICAL MEAN-FIELD
THEORY

In cellular dynamical mean-field theory �CDMFT� a clus-
ter is embedded in a bath of noninteracting electrons that
simulates the effect of the rest of the infinite lattice by inject-
ing and removing electrons on the cluster with the appropri-
ate single-particle propagator. The bath is determined self-
consistently by requiring that the self-energy of the infinite
system and that of the cluster be the same. To break the
symmetry, frequency-independent source fields are allowed
on bath sites only. More detail can be found in Ref. 27. All
the calculations are done with exact diagonalization at zero
temperature.45

For the case of a 2
2 plaquette, which we shall consider
throughout this work, the Nambu spinor is defined by �d

†

��c1↑
† , . . . ,c4↑

† ,c1↓ , . . . ,c4↓�, and the Greek letters 
 ,�
=1, . . . ,Nc label the degrees of freedom within the cluster.

We compute the cluster propagator Ĝc by solving the cluster
impurity Hamiltonian that will be described shortly. Given

the Ĝ0 on the cluster that results from the presence of the

bath, we extract the cluster self-energy from �̂c= Ĝ0
−1− Ĝc

−1.
Here,

Ĝc��,��� = �Ĝ↑��,��� F̂��,���

F̂†��,��� − Ĝ↓���,��
� �A1�

is an 8
8 matrix, G
�,��−�Tc
����c��
† �0�� and F
��

−�Tc
↑���c�↓�0�� are the imaginary-time-ordered normal and
anomalous Green’s functions, respectively. Using the self-
consistent condition,

Ĝ0
−1�i�n� = � Nc

�2��2� dk̃Ĝ�k̃,i�n��−1

+ �̂c�i�n� , �A2�

with

Ĝ�k̃,i�n� = 	i�n + 
 − t̂�k̃� − �̂c�i�n�
−1, �A3�

we recompute the Weiss field Ĝ0
−1, obtain the corresponding

bath parameters by minimizing a distance function described

below, and iterate till convergence. Here t̂�k̃� is the Fourier
transform of the superlattice hopping matrix with appropriate
sign flip between propagators for up and down spin and the

integral over k̃ being performed over the reduced Brillouin
zone of the superlattice.

A 2
2 plaquette is embedded in a bath of noninteracting
electrons. To solve the cluster impurity problem, we express
it in the form of a Hamiltonian Himp with a discrete number
of bath orbitals coupled to the cluster and use the exact-
diagonalization technique �Lanczos method� �Ref. 45�

Himp � �

��

E
��c
�
† c�� + �

m�

�m�
� am�

†� am�
� + �

m
�

Vm
�
� �am�

†� c
�

+ h.c.� + U�



n
↑n
↓ + �
�

���a1↑
� a2↓

� − a2↑
� a3↓

�

+ a3↑
� a4↓

� − a4↑
� a1↓

� + a2↑
� a1↓

� − a3↑
� a2↓

� + a4↑
� a3↓

� − a1↑
� a4↓

�

+ h.c.� .

Here 
 ,�=1, . . . ,Nc label the sites in the cluster and E
��

represents the hopping and the chemical potential within the
cluster. The energy levels in the bath are grouped into repli-
cas of the cluster �Nc=4� �two replicas in the present case�
with the labels m=1, ¯ ,Nc and �=1,2 such that we have
16 bath energy levels �m�

� coupled to the cluster via the bath-
cluster hybridization matrix Vm
�

� . Using lattice symmetries
we take Vm
�

� �V��m
 and �m�
� ���. The quantity �� repre-

sents the amplitude of superconducting correlations in the
bath. No static mean-field order parameter acts directly on
the cluster sites. The parameters ��, V�, and �� are deter-
mined by imposing the self-consistent condition in Eq. �A2�
using a conjugate gradient minimization algorithm with a
distance function

d = �
�n,
,�


	Ĝ0�
−1�i�n� − Ĝ0

−1�i�n�

�
2 �A4�

that emphasizes the lowest frequencies of the Weiss field by
imposing a sharp cutoff at �c=1.5. �Energies are given in
units of hopping t, and we take 	=1.� The distance function
in Eq. �A4� is computed on the imaginary frequency axis
�effective inverse temperature, �=50� since the Weiss field
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Ĝ0�i�n� is a smooth function on that axis. With the bond
superconducting order parameter defined as

�
� = �c
↑c�↓� , �A5�

we consider d-wave singlet pairing ����12=−�23=�34=
−�41�. The average is taken in the ground state of the cluster.
All quantities depending on the wave vector, including self-
energy, are obtained from the Green’s function periodization
scheme.46

The finite size of the bath in the exact-diagonalization
technique is an additional approximation to the CDMFT
scheme. The accuracy of this approximation can be verified
by comparing the CDMFT solution for the one-band Hub-
bard model with the solution from the Bethe ansatz.30,47 We
have also used this comparison in one dimension as a guide-
line to fix the choice of parameters in the distance function
��c=1.5 and �=50�. These results in one dimension also
compare well with those obtained using the Hirsch-Fye
Quantum Monte Carlo algorithm as an impurity solver where
the bath is not truncated.48 Further, using finite-size scaling
for these low �but finite� temperature calculations,48 it was
shown that, at intermediate to strong coupling, a 2
2 cluster
in a bath accounts for more than 95% of the correlation ef-
fect of the infinite size cluster in the single-particle spectrum.
Because of the finite size of the bath, one also needs to use a
finite linewidth broadening �=0.125 when plotting the fig-
ures.

We can also perform an internal consistency check on the
effect of the finite bath on the accuracy of the calculation.
With an infinite bath, convergence insures that the density
inside the cluster is identical to the density computed from
the lattice Green’s function. In practice, we find that there
can be a difference of �0.02 between the density estimated
from the lattice and that estimated from the cluster. We dis-
play results as a function of cluster density since benchmarks
with the one-dimensional Hubbard model show that, with a
finite bath and the procedure described above, one can repro-
duce quite accurately Bethe ansatz results for n�
� when the
cluster density is used. Nevertheless, we should adopt a con-
servative attitude and keep in mind the error estimate men-
tioned above.

APPENDIX B: ADDITIONAL INFORMATION ON
FIGURES AND FORMULAS

1. Technical comments on Fig. 1

The off-diagonal self-energy �an� is extracted from the pe-
riodized Nambu Green’s function and plotted with �
=0.125. The maxima of the plot are marked with black dots.
The imaginary part of the local spin susceptibility ����� is
calculated on the cluster and plotted with the same value of
�. The dots indicate the maxima in the limit �=0. The vari-
ous densities evaluated on the cluster are plotted for the fol-
lowing values of �
 ,�� starting from the normal state:
�0.25,0.37�, �0.375,0.35�, �0.5,0.33�, �0.625,0.31�,
�0.75,0.29�, �0.875,0.26�, �1.0,0.24�, �1.125,0.22�,
�1.25,0.20�, �1.375,0.18�, �1.5,0.16�, �1.625,0.14�,
�1.75,0.13�, �1.875,0.11�, �2.0,0.10�, �2.125,0.08�,
�2.25,0.07�, �2.375,0.05�, and �2.5,0.04�.

2. Relation between shift in peak position and single-particle
gap

Figure 4 illustrates how the single-particle gap in the su-
perconducting state �sc �not necessarily the superconducting
gap� and the shift d between the position of the peaks in �an�
and �� change with doping.

3. Real part of the anomalous self-energy

In conventional Migdal-Eliashberg theory, the real part of
the self-energy �an� multiplied by the quasiparticle renormal-
ization factor is essentially the gap function. We find that this
function, illustrated in Fig. 5, increases as one approaches
half-filling, consistent with the increase in the single-particle
gap found earlier27 and illustrated in Fig. 4. �an� has weak
frequency dependence near zero frequency only over a range
of order J=4t2 /U for U�8t, as can be seen in Fig. 6. If there
were a “static” piece to the gap, �an� would have a frequency-
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FIG. 4. �Color online� As a function of doping, the shift d �open
circles and blue line� between the first peak in the �� and the first
peak in �an� at the antinodal point. Also shown as a function of
doping, the single-particle gap �sc �triangles and solid red line�
measured from the single-particle DOS. On the left panel, U=8t
and t� / t=0. On the right panel U=12t and the band parameters are
those appropriate for YBa2Cu3O7−�.
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FIG. 5. �Color online� Real part of the anomalous self-energy
�an� for U=8, t�= t�=0 at the antinodal point. Four different dopings
are presented. Negative contributions appear at a frequency of order
J nearly independent of doping.
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independent component at frequencies larger than J, at least
until frequencies of order U. We find that this is not the case.
For the t-J model,7,28 one finds a small instantaneous contri-
bution to �an� , thus making connection with mean-field theo-
ries. Differences with the t-J model are expected at high
frequencies. We show in the main text how mean-field theo-
ries can also be seen as approximations to the present ap-
proach, even though we do not find an instantaneous contri-
bution to pairing.

4. Cumulative spectral function of the order parameter IF(�)

The Lehman representation for the Nambu Green’s func-
tion allows us to find the following result for the T=0 value
of IF���

IF��� = �
m

�0
ci↑
m��m
cj↓
0��	� − �Em − E0�
 , �B1�

with � being the Heaviside step function. Excited states 
m�
that contribute have an energy less than � above the ground
state 
0�.

For BCS s-wave theory, IF��� can be computed analyti-
cally. One obtains, using Fij

R with i= j,

IF
BCS��� = �ci↑ci↓�� sinh−1��/�� − sinh−1�1�

sinh−1��c/�� − sinh−1�1�

 ��� − �����c

− �� + ��� − �c�� . �B2�

The results for the d-wave case in the main text differ from
the above. They were obtained by numerical integration and
a sharp cutoff. In Eliashberg theory, the function IF is

IF��� = N�0��
0

�

Re� �an����
�	Z������
2 − �an����2�d��,

�B3�

where N�0� is the single-particle density of states at the
Fermi level, the square root is in the upper half-plane and

Z��� � 1 −
�11��� + �22���

2�
, �B4�

with �ii��� being the diagonal components of the self-energy
in Nambu space, �22���=−�11�−��, and �an�����12���.
The phase is chosen such that there is no contribution from
the second Pauli matrix in Nambu space.34

The anomalous Green’s function Fij
R��� entering the cal-

culation of IF��� in CDMFT was obtained by Fourier trans-
forming the anomalous lattice Green’s function calculated
with the band Lanczos approach. We used three different
values �=0.24, 0.18, and 0.12 for the small imaginary part
that must be added to the real frequency to obtain the re-
tarded Fij

R���. The final result for IF��� is the extrapolation to
�=0. This is done to smooth the function while preserving as
much as possible the asymptotic large frequency value. It
differs by only a few percent from the value of the order
parameter calculated on the cluster.

5. Effect of the self-energy in decreasing the pairing tendency
as one approaches half-filling

Figure 7 shows that in the normal state, the pairing sus-
ceptibility calculated without vertex corrections decreases as
one approaches half-filling. This is an illustration of the det-
rimental effect of the pseudogap. The self-energy in the
dressed Green’s functions entering the calculation leads to a
decrease in the number of states that can pair near the Fermi
level.

6. Attractive Hubbard model

The cutoff frequency enters very clearly in the integrated
off-diagonal spectral weight Eq. �B2�. Since one expects that
the attractive �instead of repulsive� Hubbard model should
behave more like the BCS model, we checked that IF���
calculated with CDMFT for that model does have the struc-
ture of the BCS result for the s wave. In other words, it

−1 −0.5 0 0.5 1
ω/t

−0.5

0

0.5

1
R

eΣ
an

(π
,0

,ω
)

U/t=8
U/t=12
U/t=16

δ=0.11
t’/t=0

FIG. 6. �Color online� Real part of the anomalous self-energy
�an� as a function of frequency � at the antinodal point for fixed
doping �=0.11 and different values of U=8t ,12t and 16t, t�= t�
=0 represented, respectively, by solid blue line, short-dashed red
line, and long-dashed green line. The nearly flat part near �=0
decreases with J. The range of frequencies where �an� is positive
also decreases as U increases or J decreases.

FIG. 7. �Color online� Pairing susceptibility calculated with the
dressed bubble only, i.e., without vertex corrections. The decrease
near half-filling illustrates the pair-breaking effect of the pseudogap.
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vanishes below the gap, and increases monotonically until a
sharp cutoff frequency that depends somewhat on U but is on
the order of the bandwidth, as expected from the mean-field
solution. There is some structure in the frequency depen-
dence that is probably caused in part by the finiteness of the
bath used in the calculation, but does not change the overall
trend.

APPENDIX C: COMPARISON WITH NEUTRON-
SCATTERING EXPERIMENTS

In this Appendix we provide more detail on the compari-
sons with neutron-scattering experiments. First we recall that
we do not focus on the underdoped regime. There may be
other complications in the real system as demonstrated by
quantum oscillation experiments that suggest Fermi-surface
reconstruction. In the underdoped phases, stripes are often
present as well. We are asking a question of principle, i.e.,
what is the mechanism within the one-band Hubbard model,
mostly in the overdoped regime. Note also that we are con-
sidering the momentum-integrated spin susceptibility, not the
one at �� ,��. Even within our type of calculations, there are
differences between these two cases as we mention in our
paper. While the �� ,�� spin susceptibility has often been
measured, this is not the case for the local spin susceptibility.
Figure 8 shows the spin susceptibility at the three indepen-
dent cluster momenta for two dopings. Even though the
�� ,�� component is still important at large doping, it does
decrease considerably compared with the underdoped case.

The relevant experimental data are for the single-layer
material La2−xSrxCuO4 �LSCO�. We first consider optimal
doping on La1.84Sr0.16CuO4 �16% doping�, where Fig. 3�a� of
Ref. 39 reports the results of neutron scattering for the local
spin susceptibility.

In Fig. 1�b� for our numerical results, the curve for doping
0.16 is shown by an arrow. In the experiment, the peaks are
located around 20 and 50 meV and are of comparable
weight. The two peaks in our results are also of comparable
weight and are located around 0.17t and 0.30t. Setting the
nearest-neighbor hopping to the typical value t=250 meV
would lead to theoretical peaks whose energy is about twice
too big. Detailed fitting is not the objective of this work. We
have checked, however, that increasing U does lead to lower
frequency peaks.

Let us now look at the experimental results for the over-
doped case, which is the regime that we focus on in our
paper. We refer to Fig. 3 of Ref. 20. In this figure, we must
disregard the underdoped LBCO results at 1/8 where there
are stripes. In the superconducting state of LSCO at 25%
doping, the lower energy peak has moved down to energies
around 6 meV, i.e., has decreased by a factor of about three
in energy compared with optimal doping. In our case, it has

decreased by about a factor of two compared with optimal
doping. The higher energy peak in the experiment is around
50 meV, i.e., has not moved much compared with optimal
doping. This is what happens in our calculation as well. Our
calculations show that while there are two main peaks in the
superconducting state, when the system becomes normal at
30% doping only the high-energy peak survives and moves
to slightly higher energy. This is exhibited clearly in the ex-
perimental results of Fig. 3 of Ref. 20.

Experimentally, the intensity of the lowest energy peak in
the overdoped regime also decreases with doping. This is
shown in Fig. 1 of Ref. 19. The same decrease in intensity is
also seen in the numerical results on the first figure of our
paper.

The only other experimental results we are aware of for
the local spin susceptibility of LSCO are in Fig. 3 of Ref. 49
on La1.915Sr0.085CuO4. The dotted line on this figure allows
one to compare the results with those at optimal doping. The
high-frequency peak has not moved much but the low-
frequency structure has moved down a bit and a new peak
has appeared. The new peak and the lowering in frequency
differ from our results, but we repeat that other complica-
tions such as inhomogeneities may exist in the underdoped
regime. We focus on the overdoped case where we showed
above that our results mimic the experiments quite closely.
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FIG. 8. �Color online� Imaginary part of the spin susceptibility
�� for U=8t, t�= t�=0 expressed in cluster momenta for underdop-
ing on the top panel ��=0.05� and for overdoping on the bottom
panel ��=0.2�. Even in the latter case, a sizable �� ,�� component is
left. We recall that the momenta refer to the averages over a quarter
of the BZ.
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