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We present numerical studies of conduction in graphene nanoribbons with different types of disorder. We
find that even when defect scattering depresses the conductance to values two orders of magnitude lower than
2e2 /h, equally spaced conductance plateaus occur at moderately low temperatures due to enhanced electron
backscattering near subband edge energies if bulk vacancies are present in the ribbon. This work accounts
quantitatively for the surprising conductance quantization observed by Lin et al. �Phys. Rev. B 78, 161409�R�
�2008�� in ribbons with such low conductances.
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Graphene nanoribbons �NRs� are attracting much
experimental1,3,4 and theoretical5–12 interest due to their
unique properties stemming from the linear massless Dirac-
like spectrum of the underlying honeycomb lattice. In com-
mon with other quasi-one-dimensional �1D� ballistic nano-
structures, ideal NRs are expected to exhibit conductances
quantized in integer multiples of the conductance quantum
2e2 /h due to electron transmission via subbands that arise
from lateral confinement of electronic states in the NR. Re-
cently Lin et al.1 reported the first experimental observation
of conductance quantization in NRs. However, surprisingly,
the conductance steps that they observed were orders of
magnitude smaller than 2e2 /h. They decreased in height with
increasing NR length and were present only at moderately
low temperatures 10 K�T�80 K. Lin et al.1 suggested
that the quantized conductance steps that they observed may
be due to different numbers of subbands in their NRs, be-
coming populated with electrons as the back gate voltage
was varied. They attributed the low values of the quantized
conductances ��2e2 /h� and their dependence on the length
of the NR to low electron transmission probabilities through
their device due primarily to scattering by defects. However,
the quantum transport calculations reported to date7,9–11

found conductance quantization to be destroyed by disorder
even for NRs with much higher conductances �i.e., much less
disorder� than those of the NRs studied by Lin et al.1 Still, it
should be noted that the theoretical work was for narrower
NRs than those studied by Lin et al.1 and transport should be
more sensitive to disorder in narrower NRs. Furthermore, the
possibility of quantized conductances in strongly disordered
NRs has not been the subject of systematic theoretical inves-
tigations. Thus, the origin of the quantized conductances ob-
served by Lin et al.1 has remained an open question.

The purpose of this Rapid Communication is to investi-
gate theoretically how different scattering mechanisms affect
electron transport in wide disordered NRs such as those of
Lin et al.1 and to clarify under which conditions quantized
conductances much smaller than 2e2 /h can occur in such
systems. We find that electron scattering by carbon atom va-
cancies at moderately low temperatures �in the presence of
edge disorder� can account quantitatively for the quantized
conductances observed by Lin et al.1 The underlying mecha-
nism that we identify is the modulation of the NR conduc-
tance by enhanced electron backscattering by vacancies

whenever a subband edge crosses the Fermi level.
We concentrate on three disorder types, namely, bulk va-

cancies, edge imperfections, and long-range potentials due to
charged impurities. Other disorder types, such as weak short-
range potentials due to neutral impurities,14 and lattice
distortions,4,7 may be present, but the three disorder cases to
be discussed here have the strongest impact on transport
through NRs and thus are more relevant to the strong con-
ductance suppression reported in Ref. 1. Among the three,
only bulk vacancies scale the heights of different conduc-
tance steps uniformly. Thus, their presence appears crucial
for the observation of conductance quantization in NRs with
strong disorder. Note that effect similar to vacancies might
be realized due to some adsorbates, e.g., H+ ions.

We describe NRs by the standard tight-binding Hamil-
tonian on a honeycomb lattice,

H = �
i

�iai
†ai − �

�i,j�
tij�ai

†aj + H.c.� , �1�

where �i is the on-site energy and tij = t=2.7 eV is the matrix
element between nearest-neighbor atoms. This Hamiltonian
is known to describe the � band dispersion of graphene well
at low energies.15 Spin and electron interaction effects are
outside of the scope of our study. Bulk vacancies and edge
disorder are introduced by randomly removing carbon atoms
and setting appropriate hopping elements tij to zero. It is
assumed that atoms at the edges are always attached to two
other carbon atoms and passivated by a neutral chemical
ligand such as hydrogen. The bulk and edge disorder are
characterized by the probability of the carbon atoms being
removed, pb and pe, respectively. pb is normalized relative to
the whole sample, while pe is defined relative to an
edge only. The long-range potential due to charged
impurities is approximated by a Gaussian form9,11 of range
d :�i=�r0

V0 exp�−�ri−r0�2 /d2�, where both the amplitude
V0 and coordinate r0 are generated randomly.

In the linear-response regime, the conductance of the NR
is given by the Landauer formula2

G = −
2e2

h
	

0

�

dE�T�E��
� fFD�E� − E�

�E�
. �2�

T�E� is the total transmission coefficient and fFD�E�
is the Fermi-Dirac function. T�E� is calculated by the
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recursive Green’s function method �see Ref. 12 for details�.
Fluctuations of the conductance are defined by rms�G�
= ��G2�− �G�2�1/2, where � � denotes averaging over an en-
semble of samples with different realizations of disorder. For
the results presented below, averaging was carried out over
ten realizations for each disorder type.

To investigate the transport properties of disordered NRs,
we choose geometries similar to ones studied
experimentally.1 The disorder is assumed to exist in a finite
ribbon of width W and length L. This ribbon is attached at its
two ends to semi-infinite leads represented by ideal NRs of
width W. The edge �host� configuration is taken as armchair
in the following. Representative disorder geometries are
shown in the insets in Figs. 1�a�–1�c�.

Figure 1 shows the effect of different disorder types on
conduction in NRs. For each disorder type, we keep the de-
fect concentration and strength and the ribbon width fixed
�W=30 nm� and vary its length L. As L increases and the
number of scattering centers grows, the conductance decays
and quantization steps are destroyed.

For bulk vacancy disorder, even a small concentration of
the defects affects the conductance strongly �see Figs. 1�a�
and 1�d��. Apart from reduced conductances, the disorder
results in sample-specific conductance fluctuations �Figs.

1�a� and 1�g��, whose amplitude is of order e2 /h, indepen-
dent of energy or NR length. This is a quantum interference
effect similar to the universal conductance fluctuations
�UCFs� of mesoscopic metals.17 The particular value of the
conductance depends sensitively on the electron energy, rib-
bon length, and locations of the vacancies. Since the vacan-
cies are distributed over the whole sample, intrasubband
scattering predominates. Thus, the conductance in Figs. 1�a�
and 1�d� scales uniformly with NR length L, i.e., in a similar
way for all subbands. This resembles bulk island scattering
in conventional quantum wires.16

By contrast, for edge disorder in Figs. 1�b� and 1�e�, the
conductance scales nonuniformly: Defects at the boundaries
scatter electrons equally into all subbands resulting in stron-
ger suppression of the conductance at higher energies E,
where more subbands are available �see, e.g., L=1000 nm
ribbon in Figs. 1�b� and 1�e��.

Potential inhomogeneities due to charged impurities lead
to the appearance of electron and hole puddles in NRs.18

Scattering by the potential inhomogeneities results in sub-
band mixing that smears conductance steps �Figs. 1�c� and
1�f��. As the subband number increases, intervalley scattering
becomes more effective with stronger backscattering of
higher subband states in long ribbons. The first subband,
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FIG. 1. �Color online� ��a�–�c�� Conductance, ��d�–�f�� average conductance, and ��g�–�i�� conductance fluctuations as a function of
energy for the graphene ribbon of width W=30 nm and different lengths L=10. . .1000 nm. Left panel corresponds to bulk vacancies,
middle panel is for edge disorder, while right one shows the effect of long-range potential. Parameters of disorder with representative
illustrations are given in the plots �a�–�c�. The dotted lines in �a�–�f� show the conductance quantization for the ideal ribbon. The gray filled
areas in �d�–�f� denote DOS for the ideal ribbon. The dashed lines in �g�–�i� mark the universal value of the conductance fluctuations for
quasi-1D systems �Ref. 17�. Temperature T=0. t=2.7 eV; a=0.142 nm.
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however, is not affected by the long-range potential because
of internal phase structures of its wave function that make
the scattering amplitude vanish.11 The conductance fluctua-
tions are roughly twice as strong as for bulk vacancy and
edge disorder �Figs. 1�g�–1�i��. This may be due to weaker
intervalley scattering for which particles at K and K� Dirac
points contribute independently to the UCFs.5,10 The fluctua-
tion amplitudes agree reasonably well with the value for
UCFs in quasi-1D systems17 0.729 e2

h .
A prominent effect of all disorder types is the formation

of a conductance dip when the Fermi level crosses a subband
edge. This is most obvious in the averaged conductance �G�
�Figs. 1�d�–1�f��. The origin is the strong intersubband scat-
tering caused by defects, where an electron in a state �nk�
scatters into another state �n�k��. It can be understood physi-
cally by considering the Fermi Golden rule expression for
the scattering time � �Ref. 13�

1

�
=

2�

�
�
n�

��nk�H��n�k���2�n��E� . �3�

Here H� is the perturbation due to defects and �n��E� is the
density of states of the n�th subband. Assuming that
��nk�H��n�k���2 is independent of the band index n�, the scat-
tering rate 1 /� is seen to be proportional to the total density
of states of the ribbon ��E�=�n��n��E�. For a perfect ribbon,
the dispersion relation can be approximated by a parabolic
function if k is small and �n�	1.6 Therefore, ��E� diverges at
subband thresholds En� as �E−En��

1/2. This agrees with the
numerically calculated density of states for the tight-binding
Hamiltonian �1� �see the gray areas in Figs. 1�d�–1�f��. Thus,
the scattering time � is strongly reduced when the Fermi
energy approaches a subband threshold En� and the transmis-
sion of electrons in the nth subband is strongly suppressed
due to the scattering into the other n� subbands. As a result,
the conductance shows dips at the subband edges.

As the temperature increases, the conductance fluctua-
tions are smeared out and the dips in the conductance asso-
ciated with enhanced electron backscattering, when the
Fermi level crosses subband edges, become clearly visible
for temperatures T not greatly exceeding the subband energy
separation 4�kBT

E=En+1−En. For graphene ribbons 30
nm wide 
E
0.02t=54 meV �see Fig. 1� that corresponds
to T
 
E

4�kB
=50 K. Above this temperature, the conductance

dips become gradually smeared, but well below it the con-
ductance may be dominated by UCFs of the disordered rib-
bon. This estimate is in good agreement with calculations
presented in Fig. 2, where ribbons with different disorder
types are subjected to T=0,80,300 K. The conductance
dips at subband edges manifest as the smooth conductance
oscillations that are clearly visible for T=80 K. They are
very regular and are superimposed on a smoothly rising
background for the case of the bulk vacancies but appear
very distorted when the edge disorder or long-range potential
introduced, except for the first two or three oscillations for
the case of the edge disorder. Since the effects of long-range
disorder are similar to those of edge disorder �see Figs. 1�e�
and 1�f��, we shall not consider the long-range disorder fur-
ther here.

The conductances of the NRs measured by Lin et al.1

were 65–260 times smaller than the conductance quantum
and also much smaller than the conductances of the model
systems studied above in Figs. 1 and 2. However, the ideas
developed above apply equally well to the lower conduc-
tance regime, in which the experiments were carried out and
are able to account quantitatively for the conductance quan-
tization that Lin et al.1 observed. We demonstrate this next
by presenting simulations for NRs with the same sizes as in
the experiments1 and with defect concentrations chosen to
yield low conductances similar to those measured by
Lin et al.1

Figure 3 shows the calculated conductances �G� of the
disordered ribbons along with the experimental data from
Ref. 1. The features in the theoretical plots that match the
experimental conductance plateaus are the conductance dips
that are due to enhanced electron backscattering at the ener-
gies of the subband edges of the nanoribbon that we have
already discussed in connection with Figs. 1 and 2. The
agreement between theory and experiment is remarkable es-
pecially for the heights of the conductance plateaus. From
the theoretical point of view, there are several detailed sce-
narios that might result in this behavior. Unfortunately, it is
not possible to rule out any of them because the experiment
gives no information regarding which disorder type is actu-
ally realized. Therefore, we propose that the dominant scat-
tering mechanism might be either due to bulk vacancies
alone or a combination of rough edges with a lower concen-
tration of bulk vacancies. The presence of the latter is crucial
because they equalize the differences between the conduc-
tances of the different plateaus making them equidistant. In
particular, we found that pb=4�10−4 bulk vacancies are
enough to reduce the conductances of the quantized plateaus
by a factor of 65 relative to the conductance quantum 2e2

h , in
accord with the experiment1 �see the solid red line in Fig.
3�a��. This means that one in 2500 carbon atoms is removed,
which seems plausible. The other scenario consists of dis-
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FIG. 2. �Color online� Conductance through disordered
ribbons as a function of the Fermi energy for temperatures
T=0,80,300 K. The ribbons have width W=30 nm and length
L=1000 nm; parameters of disorder are listed in Fig. 1. Thin solid
vertical lines correspond to energies when number of subbands
changes by one. For the sake of clarity, the curves for long-range
potential are shifted upward by 2e2 /h.

CONDUCTANCE QUANTIZATION IN STRONGLY… PHYSICAL REVIEW B 80, 201407�R� �2009�

RAPID COMMUNICATIONS

201407-3



torted edges with two rows of carbon atoms removed on
average along the boundaries and also one in 10 000 bulk
carbons removed, pe=2 and pe=10−4 �see the dashed green
line in Fig. 3�a��. For the longer L=1700 nm ribbon, the
height of conductance steps drops to a factor 260 lower than
the conductance quantum �Fig. 3�b��. This implies defect

concentrations twice those of the shorter L=850 nm experi-
mental ribbon. The lower temperature in Fig. 3�b� results in
stronger conductance fluctuations than in Fig. 3�a�; the fourth
plateau, being not discernible in the experimental data1 in
Fig. 3�b�, may also be due in part to a particular disorder
configuration. However, all visible conductance plateaus are
due to the subband formation associated with particle motion
quantized in the transverse direction. At much lower tem-
peratures in our simulations, these conductance plateaus are
not discernible due to UCFs and they also disappear com-
pletely at room temperature, behavior similar to that in Fig.
2, and completely consistent with the data of Lin et al.1 It is
worth finally noting that the localization lengths in Lin’s et
al. samples1 are comparable to the ribbon lengths and, there-
fore, their samples are not in the hopping regime.

In conclusion, our quantum transport calculations have
shown that equally spaced quantized conductance plateaus
should be observable in disordered graphene nanoribbons
even for conductance values much smaller than the conduc-
tance quantum 2e2 /h at temperatures comparable to subband
energy spacings. The plateaus are due to enhanced electron
backscattering by defects at energies near subband edges.
Deviations from equal spacing of the conductance plateaus
can occur, depending on the defect configurations in particu-
lar experimental samples. These findings provide a micro-
scopic explanation of the conductance quantization of
graphene nanoribbons observed by Lin et al.1 and suggest
that the observed conductance quantization can be regarded
as a signature of subband formation.
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FIG. 3. �Color online� Comparison of theoretical and experi-
mental data for the ribbons of W=30 nm and L=850,1700 nm.
Experimental data are adopted from Ref. 1. Theoretical calculations
are performed for two disorder cases: �a� only bulk vacancies
pb=4�10−4 �solid red curve�, and combination of edge pe=2 and
bulk pb=10−4 disorder �dotted green curve�; �b� pb=8�10−4, and
combination of pe=3.5 and pb=2�10−4. The gate voltage Vg is
scaled to produce better fit; note that E��Vg as discussed in
Ref. 19.
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