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Higher-order elasticity theories have recently been used to predict the dispersion characteristics of flexural
waves in carbon nanotubes (CNTs). In particular, nonlocal elasticity and gradient elasticity (with unstable
strain gradients) have been employed within the framework of classical Euler-Bernoulli or improved Timosh-
enko beam theory to capture the dynamical behavior of CNTs. Qualitative agreement with the predictions of
related molecular-dynamics (MD) simulations was observed, whereas the MD results departed significantly
from those obtained with classical elasticity calculations. The present contribution aims to alert that the
aforementioned higher-order models may yield questionable results for the higher wave numbers. As an
alternative, gradient elasticity (with stable strain gradients), by also incorporating inertia gradients for dynami-
cal applications, is used in combination with both Euler-Bernoulli and Timoshenko beam theories and shown
to describe flexural wave dispersion in CNTs realistically for the small-to-medium range of wave numbers, i.e.,

the range for which MD results are available.
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I. INTRODUCTION

The modeling of flexural waves in carbon nanotubes
(CNTs) must account, among other phenomena, for the dis-
persive behavior that is caused by their inherent nanoscale
heterogeneity, in accordance with related molecular-
dynamics (MD) simulations. Classical elasticity in conjunc-
tion with beam and shell theory has been remarkably suc-
cessful, and in line with MD simulations, to model certain
nanoscale stationary and time-dependent configurations.'-
However, heterogeneity effects due to a pre-existing or inho-
mogeneously evolving nanostructure may not be accounted
for by classical elasticity and, thus, a modified elasticity
theory incorporating nonlocal and/or gradient effects is more
appropriate to use.>”’ In fact, some recent studies have ad-
dressed this issue, using certain types of nonlocality or long-
range interaction as an extension of the classical equations of
elasticity. In particular gradient elasticity, where the standard
constitutive equations of elasticity are generalized by incor-
porating the Laplacian of stress and/or strain, has been used
to model deformation processes in very small volumes,®? to
capture size effects'®!! and, of particular relevance to the
present paper, to describe the dynamic behavior of
CNTs.!>16

Various formats of gradient elasticity are used in the stud-
ies mentioned above. In this paper we review these different
formulations and compare their behavior for CNTs in Sec. II,
focusing on the stability or otherwise of the various types of
gradients used. In Sec. III, beam theories will be formulated
based on stable gradient elasticity formulations. We will em-
ploy Euler-Bernoulli theory as well as Timoshenko theory,
and formulate these beam theories in terms of gradient elas-
ticity with stress gradients as well as gradient elasticity with
combined strain/inertia gradients. In Sec. IV we review the
work of Wang and Hu on CNTs, who used an unstable vari-
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ant of gradient elasticity. Even though this theory has been
used by several researchers as being directly motivated from
atomistic interactions, it does not ensure uniqueness of solu-
tion in related boundary-value problems. Its general use
should thus be restricted, despite of the fact that dispersive
wave propagation results are consistent with lattice dynamics
in the Brillouin zone. Nevertheless, the theory can be re-
trieved from one of the more general theories of Sec. III
through a particular parameter choice. An overall compari-
son of the various gradient elasticity models will be given in
Sec. V and the capacity of each model to simulate the dis-
persion of flexural waves in CNTs will then be verified.

II. GRADIENT ELASTICITY THEORIES RELEVANT
FOR WAVE DISPERSION

Starting with the work of Aifantis,® higher-order gradient
and nonlocal elasticity theories of the type advocated by
Mindlin,'” Kroner,'® and Eringen'® have been revisited by
adopting simpler and more robust formats for solving
boundary-value problems to address, among others, elimina-
tion of singularities from crack tips’*?? and dislocation
lines,?3?* size effects,””!! and wave dispersion.”>¢ At first
glance, Aifantis’ format of gradient elasticity may be ob-
tained from Mindlin’s format through a specific choice of
parameters, thereby reducing the number of length scale pa-
rameters from five to one. However, the physical motivation
of this particular choice of parameter reduction was not
obvious?’ as other choices for parameter reduction would not
lead to similar robust models. Moreover, the two approaches
differ in scope and application; Mindlin’s approach has been
used mainly for wave propagation studies but not for size
effects and the elimination of elastic singularities. A simpli-
fied version of gradient elasticity accounting for gradient ef-
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fects of both Mindlin’s and Eringen’s type has been dis-
cussed by Gutkin and Aifantis,”®>! based on earlier
unpublished work by Ru and Aifantis,?” for static problems
by incorporating both stress and strain gradients. It reads as

2 2
g~ €lo.ij,mm = Cijk](akl - €28kl,mm) (1)

where o;; and g;; are stress and strain tensors, C;j,; contains
the elastic moduli, while €| and €, denote internal length
scales to be determined by experiment or microscopic mod-
els such as MD simulations. As already mentioned, the above
form of gradient elasticity is quite sufficient for static prob-
lems and it has been successfully tested for eliminating elas-
tic singularities at crack tips and dislocation lines, thus pro-
viding estimates for the size of the fracture process zone and
dislocation cores.>> When ¢, =0 the theory is a special form
of Mindlin’s strain gradient elasticity and when €,=0 the
theory reduces to Eringen’s 1983 stress gradient elasticity
theory (which itself was obtained from Eringen’s earlier in-
tegral nonlocal elasticity theory by assuming a particular
nonlocal kernel).

A difference between Eringen’s 1983 theory and Eq. (1)
concerns how the balance of momentum is formulated: Erin-
gen uses the divergence of o;; whereas Gutkin and Aifantis
use the divergence of the right-hand side of Eq. (1). This
difference implies an interchange of the roles of stress and
strain and it becomes significant in dynamics: Eringen’s
theory predicts a phase velocity that is monotonically de-
creasing with the wave number, whereas the phase velocity
would be monotonically increasing in the theory of Gutkin
and Aifantis. However, the latter theory was formulated for
use in statics, and for dynamic applications additional
considerations involving inertia gradients need to be
considered.?>?03334 Since the present study is concerned
with the dynamical behavior of CNTs by using gradient elas-
ticity, the dynamical extension of the aforementioned stress/
strain gradient theory is discussed here along somewhat dif-
ferent lines than in the aforementioned papers, and we will
link this particular theory of gradient elasticity to other for-
mats that have been proposed to describe dispersive wave
propagation, such as-3

O-ij = Cijkl(akl + €28kl,mm) . (2)

The derivation of such models from related discrete models
(consisting of masses and springs, e.g.) is straightforward,
which simplifies the identification of the internal length scale
€. For the small-to-medium range wave numbers improved
accuracy of the phase velocity and the angular frequency is
obtained. However, beyond a certain cutoff wave number,
imaginary phase velocities are found which are destabilizing.
Equation (2) was used by Wang and Hu'? to describe wave
dispersion in CNTs.

The unstable strain gradients format of Eq. (2) can be
replaced by stable stress gradients format via a simple math-
ematical manipulation. Multiplying the Laplacian of Eq. (2)
with €2 and subtracting the result from Eq. (2) yields

2 —
;=0 um = Cijuign (3)

where terms of order O(¢*) have been ignored. As already
mentioned, this model was first derived from an integral non-
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local model by Eringen,'” and the corresponding strain en-
ergy of this model is positive definite.’” The model was also
used to describe wave dispersion in CNTs.!>-1® A similar
manipulation of Eq. (2) can be used to arrive at a gradient
elasticity theory with inertia gradients. First, the equation of
motion corresponding to Eq. (2) is considered, that is,

pii; = Cyjur 1 + Ctty jim) 4)

where p is the mass density and u; denotes displacement. The
Laplacian of Eq. (4) is multiplied with £ and the result is
subtracted from Eq. (4) by which33

Pl = €l ) = Cijrat j1- (5)

The kinetic energy of such a model is positive definite, there-
fore the unstable strain gradients of Eq. (2) are replaced by
stable inertia gradients.

In Eq. (2), the length scale € can be related to the inter-
particle spacing d of an associated discrete model via
€?=35d%, as has been used by Wang and Hu for CNTs.'? By
implication, the same relation between € and d holds in Egs.
(3) and (5). For such strictly periodic materials the unit-cell
size can also be considered to be the size of the Representa-
tive Volume Element (RVE). A generalization of this point of
view was given recently by Gitman et al.*® who showed that
the relation between the length scale € of gradient elasticity
and the RVE size holds for random materials as well. In fact,
these authors derived a gradient elasticity formulation for
dynamics as

plii; = € i ) = Ciinua jy = €?uk,jlmm) (6)

where the length scales €,, and €, are related to inertia gra-
dients and strain gradients, respectively. As indicated above,
the strain gradient length scale €, is related to the RVE size
in elastostatics and should for periodic microstructures (such
as CNTs) be taken as €f=%d2 where d is the unit-cell size.
On the other hand, the inertia gradient length scale €,, is
related to the RVE size for elastodynamics, which tends to be
larger than the RVE size for elastostatics. The inclusion of
the additional material parameter €,, allows a more accurate
modeling of a wider range of phenomena exhibiting wave
dispersion, while MD simulations can be used to provide
quantitative estimates for €,,—both suggestions will be dem-
onstrated in Sec. V. The model of Eq. (6) may, again, for-
mally be considered as a special case of Mindlin’s theory,
although without a clear physical motivation. It has also been
derived directly from a discrete model of masses and
springs.>4!

III. BEAM THEORIES BASED ON
GRADIENT ELASTICITY

In this section, we will formulate Euler-Bernoulli beam
(EBB) and Timoshenko beam (TB) beam theories combined
with stress gradients as well as combined strain/inertia gra-
dients to model dispersion of flexural waves in CNTs. The
gradient elasticity formulation with unstable strain gradients
can be retrieved from Eq. (6) by setting ¢2=0 and ¢>=—¢2,
whereas the formulation with inertia gradients is found from
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Eq. (6) by setting ¢2=¢2 and ¢?=0. A related dynamical
problem based on these considerations for the free transverse
vibrations of double-walled CNTs has also been considered

recently.’

A. Preliminaries

The formulation of gradient-enriched EBB theories is
straightforward and will be explained in passing. Conversely,
the formulation of gradient-enriched TB theory has been sub-
ject to some debate on certain assumptions. First, the effects
of rotational inertia were ignored by some!? but included by
others.'>!* Second, Wang and Wang argued that in TB theory
no gradient enrichment should be used in the shear constitu-
tive relation.'> The same assumption was made in other stud-
ies of these authors'>!* and was motivated as follows: “no
nonlocal effect is injected into the shear constitutive relation
because the adopted form of Eringen’s nonlocal [i.e.
gradient-enriched] constitutive model (...) is not valid for
the z direction.”'* In contrast, Wang and Hu used shear strain
gradients in the axial direction of the beam.'?> We follow the
latter assumption as we wish to preserve the effects of axial
heterogeneity for all stress components. Below, we will for-
mulate TB theory with rotational inertia as well as axial gra-
dient enrichment in the shear constitutive relation.

Throughout, we will use an xy-coordinate system
whereby the x-axis is aligned with the beam axis. Sign con-
ventions for the bending moment M and the shear force QO
follow from the standard sign conventions for the stresses via

M:f yodA (7)
A

and

sz 7dA =ABT (8)
A

where o= o, and 7= o,. Typical beam bending parameters
are the cross sectional area A, second moment of area I,
shear modulus G and shape factor 8 that accounts for shear
in the TB theory. For thin-walled circular cross sections A
=27Rt and I=mR> where R and t are the tube radius and
wall thickness, respectively. We will also use the elastic bar
velocity ¢,=VE/p to normalize the results where appropriate.

B. EBB theory with stress gradients
The axial equivalent of Eq. (3) reads as

o-0*c, =Ee 9)
where ¢ is the axial normal strain. With Eq. (7) we obtain
M—-0M = f zEedA =—Elw .. (10)
A
From the standard equation of motion
PAW =M ., (11)

we can derive that
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pA (W - €2W,xx) = M,xx - €2M,xxxx == EIW,xxxx- (12)

We use a general solution w(x,t)=w exp[ik(x—ct)] where Ww
is the amplitude, k is the wave number and c is the phase
velocity. Substituting this general solution into Eq. (12)
yields

I 1
- = 75 (13)
c; A l1+€k
C. EBB theory with strain gradients
and inertia gradients
The axial stress underlying Eq. (6) is written as
0'=E(8—€?8,Xx)+p€i§ (14)
by which
M=- EI(W,)(X - eiw,xxxx) - plepznwxx (15)
and the equation of motion is found as
pAW = M,xx == EI(W,xxxx - €52~W,xxxxxx) - p1€3nw,xxxx'
(16)

Substituting w(x,t)=w exp(ik(x—ct)) into Eq. (16) then re-
sults in

1+ 022

2 Ik2
= o (17)

2 = 2
c Ik

¢ 1+ v i
D. TB theory with stress gradients

For reasons explained in Sec. III A we will not only adopt
Eq. (9) but also its counterpart in shear, that is,

- ?7,.=Gy (18)

where y=1y,, is the shear strain. The rotation of the cross
section ¢ is related to the slope of the deflection w , and the
shear deformation y as ¢=—7y+w _,. We can therefore write

M—-0*M, . =-El¢, (19)
and
Q- €70 =GAB(w,~ ¢). (20)
From the standard equation of motion pAw=Q , we obtain
A = €2 ) = 0 = €20 e = GAB(W o= b) (21)

whereas the rotational equation of motion pl$p=0-M
yields

Pl(d) - gzé{),xx) = Q - €2Q,xx - M,x + ezM,xxx
= GA:B(W,)C - d)) + Eld),x,v (22)

The substitution of w(x,)=w exp[ik(x—ct)] and ¢(x,?)
= ¢ explik(x—ct)] renders

[c2k2pA(1 + €%k) — GABK*]w = ikGABd (23)

and
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[22pI(1 + €*k%) — GAB - EIK]ikp = GABK W (24)
which, after elimination of  and ¢, yields
4 2 2
¢t ccalkt+a+ 1 a
a2 : 222 + 2222=O (25)
c, ¢, 1+k (1+€°k7)

where a;=GAB/EI=B/(1+v)R? and a,=GB/E=/2(1+).
The solution in terms of ¢? reads as

Cz al/k2+a2+ 1+ \e"(al/k2+a2+ 1)2—4a2 (26)
2 2(1 + €% '

Note that this result differs somewhat from the result re-
ported by Wang,'? since the latter study ignores rotational
inertia and gradient enrichment of the shear constitutive re-
lation.

E. TB theory with strain gradients and inertia gradients

Finally, TB theory is formulated using the gradient elas-
ticity formulation with strain gradients and inertia gradients.
We employ Eq. (14) as well as its counterpart in shear,

7=Gly= 7. + ply . (27)
Thus,
M==E,~€:¢,) - pl0,, (28)
and
Q=GABW = = Cw it C1¢.0) + PABL, (7.~ D).
(29)
The standard equation of motion reads as
pPAW =0 ,
= GABW = o= €30+ 11
+PABCLY 1~ 6. (30)
and the rotational equation of motion is written as
plp=0-M,
= GABW. = b= W+ €.0) + pABC, (7 = &)
+ ELb = b i) + LD (31)
Simultaneous  solutions  w(x,f)=Ww exp[ik(x—ct)] and

(x,1)= exp[ik(x—ct)] yield
[k2pA(1 + BE2K?) — GABK*(1 + €2k%) W

m

=[GAB(1 + €2k?) — kP pABE: Tik (32)

m

and

[*k*(pl + pABL2 + pl€2 k) — GAB(1 + €2k)

—IPEI(1 + €213)Jik = [RPGAB(1 + €2) — 2k pABCE T .
(33)

The two amplitudes w and ¢ are eliminated and after some
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tedious but straightforward algebra, a dimensionless quartic
in terms of the phase velocity c is found as

c* 2,2 10y, A 0o
| (T+ €,k (1 + BE,k7) + I?,Bemk

e

| GAB 2,0, GB 212 2,2
_cf[EIkz +1+ B0k + E (14+€,k7) |(1+€;k%)
G
+f(1+egk2y:o, (34)

which can be solved for ¢Z and, subsequently, for c.

IV. DISCUSSION OF THE WORK OF WANG AND HU (2005)

Wang and Hu'? studied the propagation of flexural waves
in CNTs. They compare molecular-dynamics simulations
with several beam theories, including EBB and TB theories,
as well as classical and gradient-enriched theories. In par-
ticular, they use a gradient enrichment with unstable strain
gradients, see Eq. (1) in the paper by Wang and Hu.'? Their
results can be found from the results of Sec. III by taking
€ fn=0 and ¢ f:—{? 2 in the gradient elasticity theory with strain
gradients and inertia gradients. Thus, for the EBB theory
Wang and Hu obtain

(1-€k%) (35)

for the phase velocity, which is a special case of Eq. (17).
Similarly, for the TB theory the phase velocity is retrieved as
a special case from Eq. (34), i.e.,

C4 a C2
G- k—; +ay+1](1 —€2k2)?+a2(1 - %32 =0

e

(36)

with again a,=GAB/EI=B/(1+v)R*> and a,=GB/E

=B/2(1+v). This yields

) 2
¢t 1fa a 272
Soalgreers (Bone ] snfu-ce

(37)

which looks very similar to Eq. (26), the only difference
being the effect of the gradient enrichment. The lower branch
of Eq. (37) is of relevance for flexural waves. The discrimi-
nant in Eq. (37) can be rewritten as

a

k2

ap
p?
(38)

ag 2 2
ﬁ+a2+l —da,=(a,-1)"+ +2a,+2

which is non-negative since a; >0 and a,> 0. It then follows
that the phase velocities of both Egs. (35) and (37) are real
provided that €k=1. Conversely, imaginary phase velocities
are found if €k>1 for both the EBB and the TB theories.
Imaginary phase velocities lead to an unbounded growth of
the response in time without the need for external work, and
they are therefore destabilizing.
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- EBB/ classical
1.8 | —EBB/ gradient
- - -TB/classical
1.6 |- - TB / gradient

e

dimensionless phase velocity c/c
-
.

-3 25 -2 -5 -1 -0.5 0 0.5 1
dimensionless wave number log, | (Ik)

FIG. 1. Normalized phase velocity c/c, versus logarithm of nor-
malized wave number log;(€k) for classical and gradient-enriched
versions of EBB and TB theories according to Wang and Hu (2005).

Figure 1 shows the dispersion curves for the two beam
theories in their classical and gradient-enriched variants,
whereby logarithmic scaling of the horizontal axis was used
to facilitate comparison with Figs. 2 and 3 in the paper by
Wang and Hu.!? These curves were obtained by assuming a
ratio of tube radius R over length scale € as R/{=5, a Pois-
son ratio »=0.2 and a shape factor ,8=%. A larger range of
wave numbers was plotted than used in Figs. 2 and 3 of the
paper by Wang and Hu,'? which clearly reveals that both
gradient-enriched theories render imaginary (hence, destabi-
lizing) phase velocities for log;o(€k) >0.

Wang and Hu compare the predictions of the four beam
theories with molecular-dynamics simulations and they con-
clude that “the traditional [i.e. classical] Timoshenko beam is
able to offer a much better prediction than the traditional
Euler beam and the nonlocal [i.e. gradient-enriched] elastic
Euler beam.”!> We agree that the two EBB theories are un-
suitable: in classical EBB theory the phase velocity becomes
unbounded for larger wave numbers, whereas in gradient-
enriched EBB theory the phase velocity is imaginary (and
therefore destabilizing) for larger wave numbers. We also
agree that the classical TB theory is more suited than either
of the two EBB theories, since in classical TB theory the
phase velocities are bounded and real for all wave numbers.

Wang and Hu continued to conclude that for very large
wave numbers, when the microstructure of CNTs becomes
relevant, only the gradient-enriched TB theory is suitable.!?
An important criterion in this comparison is given as fol-
lows: “only the nonlocal [i.e. gradient-enriched] elastic Ti-
moshenko beam is able to predict the decrease of phase ve-
locity [our italics] when the wave number is so large that the
microstructure of carbon nanotubes has a significant influ-
ence on the flexural wave dispersion.”!> We agree that cer-
tain parts of the dispersion curves may exhibit decreasing
phase velocities, but we do not agree that the Timoshenko
beam theory combined with unstable strain gradients is an
appropriate model to capture this phenomenon. The gradient-
enriched TB theory of Wang and Hu predicts imaginary
(hence, destabilizing) phase velocities for wave numbers k
>1/4¢ and is therefore not suitable. This is merely a conse-
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quence of the type of gradient enrichment that is chosen by
Wang and Hu. In the next section, we will demonstrate that
this is easily amended by adopting a stable gradient enrich-
ment.

V. NUMERICAL RESULTS

The gradient elasticity beam theories formulated above
have been used in the prediction of dispersion curves for
CNTs. We have followed the work of Wang and Hu (who
provide MD simulations in their paper for validation),
whereby the mass density is taken as p=2237 kg/m?>. For
a (5,5 armchair CNT, we set the Young’s modulus
E=0.46 X 10" N/m? and the Poisson’s ratio v=0.22, while
for a (10,10) armchair CNT we set E=0.47 X 10> N/m? and
v=0.20. The length scale was taken as €=0.0355 X 107 m,
which follows directly from the axial distance between two
rings of carbon atoms;!? this is also the value that will be
adopted for € in the model with combined strain/inertia gra-
dients. Furthermore, in the TB theory we have taken the
shear shape factor S= %, which is appropriate for thin-walled
tubes.

In comparing the performance of the various models, we
will adopt the following terminology: wave numbers are in-
dicated as small in case €k<<1, they are indicated as mid-
range for €k=O(1) and as large for €k>1.

A. EBB theories

First, the performance of gradient-enriched EBB theories
is studied. Figures 2 and 3 show the phase velocity versus
(logarithm of) wave-number dispersion curves of the various
gradient-enriched beam theories for the (5,5) armchair CNT.
As a reference and in order to facilitate cross comparison
between the figures, the MD simulations taken from Wang
and Hu'? are plotted as well—these MD results are only
available for small and mid-range wave numbers. Note that
the scale of the vertical axes in the two figures differs by
more than a factor of 10. The corresponding results for the

x10°

unstable strain gradients
9 | —— stress gradients

- - inertia gradients

8[| o MD (Wang and Hu, 2005)

phase velocity ¢
&

) . i .
7 8 9 10 11 12
wave number Iog10 (k)

FIG. 2. Phase velocity ¢ versus logarithm of wave number
log,o(k) for various gradient-enriched EBB theories—(5,5) arm-
chair CNT.
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8000

- - -strain and inertia gradients
7000 |_°© MD (Wang and Hu, 2005)

6000+ S

phase velocity ¢
N
o
o
o

7 8 9 10 11 12
wave number Iog10 (k)
FIG. 3. Phase velocity ¢ versus logarithm of wave number

logo(k) for EBB theory enriched with strain gradients and inertia
gradients—(5,5) armchair CNT.

(10,10) armchair CNT are plotted in Figs. 4 and 5. The plot-
ted results were obtained with €,,/€,=15 for the (5,5) CNT
and ¢,,/€,=35 for the (10,10) CNT.

The gradient-enriched EBB theories show a wide range of
predicted phase velocities. In gradient elasticity with stress
gradients, the phase velocity is monotonically increasing and
it attains a horizontal asymptote which is much larger than
any of the values observed in the other gradient-enriched
EBB models. The format with unstable strain gradients, as
commented upon already in Sec. IV, predicts destabilizing
phase velocities for k>1/€. The two formats with inertia
gradients behave qualitatively the same, although there are
major quantitative differences that are governed by the value
of the inertia gradient length scale €,,. Both theories predict
increasing phase velocities for small-to-medium wave num-
bers, while the phase velocity is decreasing for medium to
large wave numbers. The format with inertia gradients only
(i.e., no strain gradients) approaches zero phase velocity for
the larger wave numbers, whereas the format with inertia and
strain gradients has a nonzero asymptote. The most impor-
tant difference, however, is that the format with only inertia

5
2 X 10
unstable strain gradients
1.8 | — stress gradients
- - inertia gradients
1.6/| o MD (Wang and Hu, 2005)

phase velocity ¢
© o o - =
r O ©®©® = N

0.2F

L L ©®© o L - i ]
7 8 9 10 11 12
wave number Iog10 (k)

FIG. 4. Phase velocity c¢ versus logarithm of wave number
logo(k) for various gradient-enriched EBB theories—(10,10) arm-
chair CNT.
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80001

- - -strain and inertia gradients
7000 © MD (Wang and Hu, 2005)

6000+

phase velocity ¢
(] B o
o o o
o o o
o o o

T

kel

o

20001 / \

1000}

wave number Iog10 (k)

FIG. 5. Phase velocity ¢ versus logarithm of wave number
log,o(k) for EBB theory enriched with strain gradients and inertia
gradients—(10,10) armchair CNT.

gradients gives results that are quite far removed from the
MD simulations, whereas the format with strain gradients
and inertia gradients allows a reasonable qualitative fit of the
MD results for small-to-mid-range wave numbers.

The quality of this fit is of course related to the adopted
value for €,,. In this work, we have not carried out sophisti-
cated curve-fitting procedures, as this would interfere with
the values for the other material parameters which we have
taken directly from the study of Wang and Hu.'? However,
even with such a preliminary estimate of €,,, the performance
of the EBB theory with strain gradients and inertia gradients
is an enormous improvement over EBB theories with other
types of gradient enrichment.

B. TB theories

Figures 6 and 7 show the results for the gradient-enriched
TB theories. In contrast to the EBB results, the various
curves obtained with gradient-enriched TB theories are much

8000
unstable strain gradients
— stress gradients
70001 | _ _inertia gradients
- — —strain and inertia gradients
6000F| © MD (Wang and Hu, 2005) Pl
o
> 5000
©
ke]
Q 40001
[
7]
2 30001
S
2000+
1000+
0 . . . . )
7 8 9 10 11 12

wave number Iog10 (k)

FIG. 6. Phase velocity ¢ versus logarithm of wave number
log,o(k) for various gradient-enriched TB theories—(5,5) armchair
CNT.
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8000+
unstable strain gradients
— stress gradients
70001} - - inertia gradients
- — —strain and inertia gradients o
6000L_© MD (Wang and Hu, 2005) N
[$)
> 5000
©
k]
Q 4000
[
7]
2 3000+
[=%
2000+
1000
0 . . . . )
7 8 9 10 11 12

wave number Iog10 (k)

FIG. 7. Phase velocity c¢ versus logarithm of wave number
log;o(k) for various gradient-enriched TB theories—(10,10) arm-
chair CNT.

closer in range. As discussed in Sec. IV, the formulation with
unstable strain gradients predicts destabilizing phase veloci-
ties for k>1/€. Such instabilities are avoided altogether
when stress gradients, inertia gradients, or a combination of
strain gradients and inertia gradients is used. In contrast to
the EBB results of Figs. 2 and 4, there is just a small devia-
tion between the results obtained with stress gradients and
inertia gradients: both are first increasing and then decreas-
ing, they predict a maximum phase velocity for more or less
the same wave number, and they predict zero phase veloci-
ties for infinitely large wave numbers. The formulation with
strain gradients as well as inertia gradients differs in that a
nonzero horizontal asymptote is predicted for the larger wave
numbers; this asymptote is set through the parameter €,,. All
three stable gradient elasticity formulations (i) capture the
increasing phase velocity for small-to-medium wave num-
bers that is predicted by MD simulations,'? and (ii) predict a
decreasing phase velocity for medium to large wave num-
bers, which again is in accordance with the MD simulations.
However, there are some quantitative difference between the
MD results and the gradient theories with stress gradients
and with inertia gradients, especially for the (10,10) armchair
CNT shown in Fig. 7. Conversely, with an appropriate choice
for the length scale parameter €,, a good fit of the MD
results can be obtained when the model with strain gradients
and inertia gradients is used. The adopted values for €,, are
{,/€,=3 for the (5,5) CNT and ¢,,/{,=8 for the (10,10)
CNT.

The values of €,, in the EBB simulations are significantly
larger than the values of €,, in the TB results. This may
suggest that the dynamic RVE size is larger in EBB theory
than in TB theory. It is, however, interesting that the value of
€,, seems to scale more or less linearly with the radius of the
CNT, a trend which is observed both in EBB and TB theo-
ries. This observation warrants further verification and study.
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VI. CONCLUSIONS

In this paper, we have discussed the dispersion of flexural
waves in carbon nanotubes (CNTSs). The wave dispersion due
to heterogeneity of the material is modeled via gradient en-
richments of the elastic continuum equations. A number of
gradient elasticity formulations were discussed, including
theories with unstable strain gradients, stable stress gradi-
ents, stable inertia gradients, or a combination of stable strain
gradient and stable inertia gradients. Beam theories were for-
mulated with the various gradient enrichments, using either
the Euler-Bernoulli or the Timoshenko assumptions.

We discussed a recent study by Wang and Hu in which
unstable strain gradients were employed; the resulting beam
theories predict imaginary (and, hence, destabilizing) phase
velocities for the larger wave numbers. Next, an overall com-
parison was made between the various types of gradient en-
richment. Regarding the gradient-enriched Euler-Bernoulli
theories, it was found that the theories with stress gradients
and with inertia gradients could not provide a satisfactory
prediction of the dispersive characteristics of CNTs. Reason-
ably accurate results, as compared to molecular-dynamics
simulations, were obtained using the gradient theory with
strain gradients and inertia gradients.

In contrast, Timoshenko theory in combination with either
stress gradients or inertia gradients leads to results that re-
produce the basic trends of the molecular-dynamics simula-
tions reported by Wang and Hu.!> The best results by far
were obtained when Timoshenko’s beam theory assumptions
are coupled to gradient elasticity with combined strain/inertia
gradients. This particular gradient-enriched beam theory al-
lows for an excellent fit of the molecular-dynamics results
for the entire small-to-medium range of wave numbers—it is
emphasized that no MD results were available as yet for the
large wave numbers.

An issue that has been discussed briefly, but not explored
in detail, is the inertia-related length scale €,,, which is re-
lated to the size of the material’s Representative Volume El-
ement in elastodynamics. It was found that this length scale
is significantly larger in Euler-Bernoulli theory than in Ti-
moshenko theory, and it scales with the radius of the CNT.
Another issue that warrants further study is the application of
gradient elasticity to CNTs of chiralities other than the arm-
chair type, in particular the effect that this would have on the
validation and/or identification of the various length scale
parameters.
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