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We evaluate the stopping and image forces on a charged particle moving parallel to a doped sheet of
graphene by using the dielectric-response formalism for graphene’s �-electron bands in the random phase
approximation �RPA�. The forces are presented as functions of the particle speed and the particle distance for
a broad range of charge-carrier densities in graphene. A detailed comparison with the results from a kinetic
equation model reveal the importance of interband single-particle excitations in the RPA model for high
particle speeds. We also consider the effects of a finite gap between graphene and a supporting substrate, as
well as the effects of a finite damping rate that is included through the use of Mermin’s procedure. The
damping rate is estimated from a tentative comparison of the Mermin loss function with a high-resolution
reflection electron energy loss spectroscopy experiment. In the limit of low particle speeds, several analytical
results are obtained for the friction coefficient that show an intricate relationship between the charge-carrier
density, the damping rate, and the particle distance, which may be relevant to surface processes and electro-
chemistry involving graphene.
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I. INTRODUCTION

The interactions of fast-moving charged particles with
various carbon nanostructures have been studied extensively
in the context of electron energy loss spectroscopy �EELS�,
typically using a scanning transmission electron microscope
�STEM� with incident electron energies on the order of 100
keV. This technique has proven to be a powerful tool for
investigating the dynamic response of carbon nanotubes1,2

and, more recently, graphene.3 At such high incident electron
energies, these studies have revealed important properties of
both high-frequency �+� plasmon excitations
��15–30 eV� and low-frequency � plasmon excitations
��5 eV� in isolated single-wall carbon nanotubes2 and in
free-standing undoped graphene.3 While the studies on car-
bon nanotubes typically give plasmon dispersions at large
wavenumbers ��0.1 Å−1� in the axial direction,1,2 the study
on graphene was performed with an electron momentum
transfer close to zero, although it integrated over a significant
in-plane component of the plasmon wave vector.3 In both
cases, experimental data was found to be in good agreement
with ab initio calculations.2–4 In addition to ab initio calcu-
lations, methods employing an empirical dielectric tensor5

and a two-fluid, two-dimensional �2D� hydrodynamic model
for graphene6,7 have also been able to reproduce the basic
features of the �+� and � plasmon excitations in carbon
nanostructures.

For lower-energy external moving charges, recent
progress has been made in measuring the dispersion of low-
frequency plasmon excitations on solid surfaces using high-
resolution reflection EELS �HREELS� with incident electron
energies on the order of 10 eV. Such a measurement was
performed on metallic surface-state electron bands,8 and the

results were interpreted theoretically using a dielectric-
response model within the random phase approximation
�RPA� that took into account the typically parabolic band
structures of the surface states.8–10 Furthermore, Liu et al.11

have used HREELS to compare the low-frequency excitation
spectra of doped graphene on a SiC substrate with the spectra
of a metallic monolayer on a semiconducting Si substrate. At
such low incident electron energies, the authors were able to
measure the � plasmon dispersion in a range of small wave-
numbers ��0.2 Å−1� for a doped sheet of graphene with a
high charge-carrier density.11 This HREELS experiment,
which provides the wavenumber-resolved spectra of low-
frequency excitation modes in graphene with a high sensitiv-
ity to the doping level,11 is more relevant to the parameter
space in the present work than the STEM-EELS experi-
ments.

It is well-appreciated that doping plays an immensely im-
portant role in graphene’s conducting properties, for which
electron scattering on statically screened charged impurities
situated near graphene is one of the most important processes
and is likely responsible for the famed minimum conductiv-
ity in undoped graphene.12–19 In this context, important
progress has been made in the development and use of the
RPA dielectric function for low-energy excitations involving
graphene’s � electron bands in the approximation of linear-
ized electron energy dispersion, which gives rise to the pic-
ture of massless Dirac fermions �MDF�.20–23 This progress
has opened up a range of interesting problems involving the
interaction of graphene with external charges moving suffi-
ciently slow that the MDF-RPA dielectric-response theory
can be applied. While an obvious application of this theory
would be to interpret the HREELS experiment11 on
graphene, another interesting application would be to the
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study of slow, heavy particles moving near graphene. This
latter application of graphene’s MDF-RPA dielectric-
response theory would be relevant to studies of chemisorp-
tion of alkali-metal atoms,24 friction of migrating atoms and
molecules25,26 moving near graphene, and ion transport in
aqueous solutions adjacent to graphene when top-gating with
an electrolyte is implemented.27 Moreover, one could explore
the application of low-energy, ion-surface scattering
techniques28 to graphene and other carbon nanostructures.
There has also been recent interest in the directional effects
of ion interactions with graphene-based materials, such as
low-energy ion channeling through carbon nanotubes29 and
ion interactions with highly oriented pyrolytic graphite, in-
cluding implantation,30 channeling,31 and ion-induced sec-
ondary electron emission from this target.32 If applied to
graphene, most of the scattering configurations in these stud-
ies would involve impacts of slow, heavy particles under
grazing angles of incidence, and many interesting parallels
may be found with Winter’s experiments on the grazing scat-
tering of ions and atoms from solid surfaces.33

We therefore wish to study the application of the MDF-
RPA model to charged particles moving parallel to a single
layer of supported graphene under gating conditions. In the
wavenumber-frequency domain, �q ,��, the MDF-RPA
model is applicable to graphene’s polarization modes if the
conditions q�2kc and ��2�c /� are satisfied, where
kc�a−1 is a high-momentum cutoff �with lattice constant
a�2.46 Å� and �c�1 eV is a high-frequency cutoff vali-
dating the approximation of linearized � electron
bands.19,21,23 For a point charge moving parallel to graphene
at a fixed distance z0 and constant speed v, the former con-
dition will be satisfied only for distances z0�a, and hence
we may neglect both the size of the particle and the size of
the � electron orbitals in graphene. The latter condition can
be transformed into a restriction on the particle speed by
invoking the Bohr’s adiabatic criterion and requiring that
v /z0�2�c /�. It is clear that with a gap on the order of 7 eV
for graphene’s � bands, particles moving at such slow speeds
and large distances cannot excite the high-energy modes in-
volving graphene’s � electrons.

Within the constraints of the MDF-RPA model, the main
focus of this paper is on the stopping force and the dynamic
image force acting on an external charged particle. We note
that the stopping force is equal to the negative of the stop-
ping power, which is defined as the energy loss of the exter-
nal particle per unit length along its trajectory.33 Meanwhile,
the image force is a conservative force34 that can strongly
deflect a particle’s trajectory, especially for low particle
speeds and/or small angles of incidence upon the target’s
surface.33 This was demonstrated not just for electron inter-
actions with solid surfaces,35–37 but also for ion38 and
molecule39 grazing scattering from solid surfaces and ion40,41

and molecule42,43 channeling through carbon nanotubes. For
example, in Ref. 38, it was shown that both the stopping and
image forces must be treated in a self-consistent manner in
order to model ion trajectories and obtain ion energy losses
that agree well with experiment results for the grazing scat-
tering of slow, highly charged ions on various surfaces.44,45 A
discussion of the stopping and image forces in the MDF-RPA
model is therefore relevant to the current literature.

In our previous work,46 we have calculated the stopping
and image forces on charged particles moving above
graphene by assuming a high equilibrium density, n, of
charge carriers in graphene and using a kinetic �Vlasov�
equation to describe the response of graphene’s � bands
within the linearized electron energy dispersion
approximation.46,47 This semiclassical kinetic equation
�SCKE� model gave a relatively simple dielectric function
for graphene that accurately described the thermal effect on
plasmon dispersion47,48 and allowed us to analyze the contri-
butions of plasmon excitations and low-energy intraband
single-particle excitations �SPEs� to the stopping and image
forces.46 However, it remained unclear how large the density
must be to validate the semiclassical model and, more im-
portantly, what effect the interband SPEs that lie beyond the
capability of the SCKE model have. Therefore, the first goal
of this paper is to determine the conditions under which the
SCKE model is applicable at zero temperature by comparing
the stopping and image forces obtained using the SCKE di-
electric function46 with those obtained using the MDF-RPA
dielectric function.21–23 Furthermore, since we have found in
Ref. 46 that a finite gap between graphene and the substrate
strongly affects both forces in the SCKE model, the second
goal of this paper is to examine the effect of a finite gap in
the MDF-RPA model. We note that the issue of a finite gap
has become more important as increasingly diverse dielectric
environments for graphene are studied.49

Although we consider the MDF-RPA dielectric function
to be a basic, parameter-free model that provides an adequate
description of the interband SPEs in graphene, the model
nevertheless has its shortcomings. For example, it ignores
the local-field effects �LFE� due to electron-electron
correlations2,4 and assigns an infinitely long lifetime to the
electron excitations. The latter deficiency is often rectified in
ab initio studies by applying a finite broadening, on the order
of 0.5 eV, to the frequency domain for calculations of the
loss function.3 In a similar way, one can introduce a finite
relaxation time, or decay �damping� rate, �, to the MDF-RPA
dielectric function for graphene using Mermin’s
procedure.50,51 Since there are many scattering processes that
can give rise to a finite lifetime of the excited � electrons in
graphene, an accurate determination of � still presents a
challenge.51,52 Therefore, the third goal of this paper is to
treat � as an empirical parameter and investigate the effects
of a finite damping rate on the stopping and image forces
calculated with a MDF-RPA dielectric function modified by
the Mermin procedure. This dielectric function, hereafter re-
ferred to as the Mermin dielectric function, requires a careful
extension of the MDF-RPA dielectric function derived for
�=0 in Refs. 21 and 22 to finite �. Details of the Mermin
dielectric function are given in the Appendix.

The parameters of primary interest in this study are there-
fore the equilibrium density of charge carriers in graphene, n,
the graphene-substrate gap height, h, and the damping rate,
�. The equilibrium density is particularly important because
it determines the Fermi momentum of graphene’s �-electron
band, kF=��n, and the corresponding Fermi energy,
�F=�vFkF, where vF�c /300 is the Fermi speed of the lin-
earized � band and c is the speed of light in free space. In
the case of intrinsic graphene �n=0�, the Fermi energy coin-
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cides with the Dirac point, �F=0. In this paper, we consider
a wide range of densities n	0, expressed as a multiple of
the base value n0=1011 cm−2, under the conditions kF�kc
and �F��c.

The rest of the paper is outlined as follows. In Sec. II, we
present a theoretical derivation of the interaction of a general
charge distribution with a layer of supported graphene. This
derivation motivates the definition of the stopping and image
forces for a point charge. In Sec. III, we compare the stop-
ping and image forces in the MDF-RPA and SCKE models
for the simple case of free graphene and a vanishing damping
rate to determine the range of densities for which the SCKE
model is valid. We then focus on the MDF-RPA model with
a vanishing damping rate, and in Sec. IV, we investigate the
effects of a finite gap between graphene and a SiO2 substrate.
In the simplified case of a zero gap, we provide analytic
expressions for the stopping and image forces for intrinsic
graphene and low particle speeds. Finally, in Sec. V, we con-
sider the MDF-RPA model with a finite damping rate. After
comparing the MDF-RPA model with experimental data to
estimate the value of the damping rate, we consider the ef-
fects of the damping rate on the stopping and image forces
with a special focus on the stopping force at low particle
speeds. Note that we use Gaussian electrostatic units.

II. BASIC THEORY

We first give a brief generalization of the formalism de-
veloped in Ref. 46 to the case of a charge distribution with
density 
ext�r ,z , t�. We assume that the charge distribution
moves along a classical trajectory in a Cartesian system with
graphene placed in the z=0 plane and with coordinates
r= �x ,y� in the graphene plane. In keeping with the reflection
geometry of ion-surface grazing scattering,33 we assume that
the external charge distribution remains localized in the re-
gion z�0 above graphene while a semi-infinite substrate oc-
cupies the region z�−h below graphene. Following Ref. 46,
we can express the induced potential �ind�r ,z , t� in the re-
gion above graphene using the Fourier transform �r→q and
t→�� as

�̃ind
� �q,z,�� = � 1

��q,��
− 1	�̃ext

0 �q,��e−qz, �1�

where ��q ,�� is the dielectric function of the combined

graphene-substrate system and �̃ext
0 �q ,�� is the Fourier

transform of the external potential evaluated at the graphene
plane, z=0. The dielectric function of the system can be
written as

��q,�� = �bg�q� +
2�e2

q
�q,�� , �2�

where �q ,�� is the polarization function for free graphene
and �bg�q� is the effective background dielectric function,
which is expressed in terms of the substrate dielectric con-
stant �sub as46

�bg�q� =
�sub + 1

2

1 + coth�qh�
�sub + coth�qh�

. �3�

We note that, instead of dielectric constant �sub, one may
use a frequency dependent substrate bulk dielectric function,
�sub���, in order to include the effects of coupling between
graphene’s � electrons and either the surface phonon modes
in a strongly polar insulating substrate or the surface plas-
mon modes in a metallic substrate under the local
approximation.53 In the former case, which includes a sub-
strate with a single transverse optical �TO� phonon mode at
frequency �TO, one may use a dielectric function of the
form54

�sub��� = �� + ��s − ���
�TO

2

�TO
2 − ��� + i�TO�

, �4�

where �s=�sub�0� and ��=lim�→� �sub��� are the static and
high-frequency dielectric constants of the substrate, respec-
tively. In the latter case, which includes the high-frequency
response of a metal, one may use the Drude dielectric func-
tion �sub���=1−�p

2 / 
���+ i�p�� with a plasma frequency �p
and a damping rate �p.

We limit the focus of this work to an insulating substrate
in the static mode with a dielectric constant �sub=�s, but we
allow for an arbitrary gap h between graphene and the sub-
strate. We note, however, that it is common in the literature
to assume a zero gap,16,17,21,22 for which Eq. �3� gives an
effective background dielectric constant �bg

0 = ��s+1� /2. In
this case, a simple description of the screening of electron-
electron interactions in graphene can be quantified by the
Wigner-Seitz radius, rs=e2 / ��bg

0 �vF�,22 and free graphene
can be recovered by setting �s=1, and hence �bg

0 =1. Results
provided for h=0 are therefore slightly more general than
results provided for h→�, which also characterizes free
graphene by yielding �bg=1 in Eq. �3�.

Next, we write �̃ext
0 �q ,��= 2�

q S�q ,��, where the external
charge structure factor S�q ,�� is given by

S�q,�� = �
−�

�

dtei�t� d2re−iq·r�
0

�

dze−qz
ext�r,z,t� . �5�

For a point charge Ze moving parallel to graphene with ve-
locity v and at a fixed distance z0�0, we find that
S�q ,��=2�Ze���−q ·v�e−qz0. In this case, the induced elec-
tric field Eind

� �r ,z , t�=−��ind
� �r ,z , t� can be written as

Eind
� �r,z,t� =

Ze

2�
� d2q�ẑ − iq̂�eiq·�r−vt�e−q�z+z0�

�� 1

��q,q · v�
− 1	 , �6�

where ẑ is a unit vector perpendicular to graphene
and q̂=q /q. For stopping and image forces defined by Fs
=Zev̂ ·Eind

� �r=vt , z=z0 , t� and Fi=Zeẑ ·Eind
� �r=vt , z=z0 , t�,

respectively, where v̂=v /v, one obtains46

Fs =
2

�

Z2e2

v
�

0

�

dqe−2qz0�
0

qv

d�
�

�q2v2 − �2
I� 1

��q,��	 ,

�7�
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Fi =
2

�
Z2e2�

0

�

dqqe−2qz0�
0

qv d�

�q2v2 − �2
R� 1

��q,��
− 1	 .

�8�

Note that we have used the symmetry properties of the
MDF-RPA dielectric function ��q ,�� to simplify Eqs. �7�
and �8�.

For the comparison with the HREELS experiment11 in
Sec. V, we also define the total energy of the external charge
reflected from graphene as

Eloss = − �
−�

�

dt� d2r�
−�

�

dz
ext�r,z,t�
�

�t
�ind�r,z,t�

= �
0

�

d��� d2q

2�2 S�q,��2I� − 1

��q,��	 . �9�

For a point charge Ze moving on a specular-reflection trajec-
tory with 
ext�r ,z , t�=Ze��r−v�t���z−v�t�, where v� and
v� are the components of the particle velocity parallel and
perpendicular to the graphene plane, respectively, the prob-
ability density for exciting the mode with frequency � and
wave vector q is55

P�q,�� =
2

�2

�Ze�2v�
2 q


�� − q · v��2 + �qv��2�2I� − 1

��q,��	 , �10�

where we have set the reflection coefficient to unity.

III. COMPARISON WITH SEMICLASSICAL MODEL

In this section, we present the stopping and image forces
calculated with dielectric functions from the SCKE model46

and the MDF-RPA model21,22 for free graphene ��bg
0 =1� and

a vanishing damping rate ��→0�. The results for both forces
are normalized by F0=Z2e2 / �4z0

2�, the magnitude of the clas-
sical image force on a static point charge a distance z0 from
a perfect conductor, to better reveal differences between the
two models.

Before proceeding, we note that the infinite upper limits
of the q integrals in Eqs. �7� and �8� cause both forces to
diverge as the distance z0 goes to zero. This behavior, which
also occurs in models of solid surfaces,56,57 should not be a
major concern because the restriction z0�a is necessary to
ensure the validity of the MDF approximation. However, if
one would like to extend the results for the stopping and
image forces to include small distances, a standard procedure
to eliminate the divergence at z0 is to adopt a high-
momentum cutoff.56,57 For studies of electronic processes in
graphene with no external charges, it is common to impose a
sharp cutoff at approximately kc.

19,21,23 However, there are
other mathematical methods for imposing a cutoff besides
this sharp truncation of the q integration.57 As discussed in
Ref. 57, the use of an exponential cut-off function e−q/kc in
Eqs. �7� and �8� would simply amount to a shift of the z0
coordinate by a distance on the order of the lattice constant,
which is sometimes referred to as an effective image
plane.34,57 We therefore evaluate the stopping and image
forces using Eqs. �7� and �8� with infinite upper limits in the

q integrals, and if one would like an estimate of the order of
magnitude of these forces at small distances we note that a
suitable shift of the z0 axis may be chosen. It should also be
mentioned that in an RPA model that takes into account the
finite size of graphene’s � electron orbitals, the divergence
of these forces as z0→0 can be removed by the resulting
structure factor, which provides a physically motivated alge-
braic cut-off function.20,57

In Fig. 1, we compare the velocity dependence of the
normalized stopping and image forces on a proton �Z=1�
moving at a distance z0=20 Å above free graphene in the
MDF-RPA model �thick lines� and in the SCKE model �thin
lines� for a broad range of densities. For intrinsic graphene
�n=0�, note that both forces vanish in the SCKE model but
they arise from interband SPEs in the MDF-RPA model. Fur-
thermore, it can be seen that the results from the SCKE
model agree with those from the MDF-RPA model only for
high densities, and that this agreement is better for low par-
ticle speeds �v�vF� than for high particle speeds
�v�vF�. The large difference between the MDF-RPA and
SCKE models at high particle speeds is due to the presence
of a plasmon line given by �=�p�q�,46–48 where �p�q�
=vF�q+qs��q / �q+2qs��qvF and qs�4rskF is the Thomas-
Fermi �TF� inverse screening length.13,22,46 Specifically, the
energy loss for high particle speeds in the SCKE model is
dominated by the undamped plasmon at frequency �p�q�,
while the presence of the interband SPE continuum in the
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FIG. 1. The stopping force �a� and image force �b� normalized
by F0=Z2e2 / �4z0

2� and shown as a function of the reduced speed
v /vF of a proton �Z=1� moving at a distance z0=20 Å above free
graphene �h→�� for several values of the reduced charge-carrier
density n /n0, where n0=1011 cm−2. The thick and thin lines repre-
sent the results from the MDF-RPA and SCKE models with vanish-
ing damping ��=0�, respectively.
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MDF-RPA model for � /vF�max�q ,2kF−q� causes a strong
Landau damping of the plasmon,21,22 thereby producing
much weaker velocity dependencies. However, even for
these high particle speeds it appears that the SCKE model
may be partially applicable under the condition z0kF�1,
which requires heavy doping of graphene in order to reduce
the significance of the interband SPEs.

The difference between the SCKE and MDF-RPA models
at low particle speeds is further analyzed in Fig. 2. Using the
same set of densities as in Fig. 1, we compare the reduced
stopping and image forces on a proton �Z=1� moving at a
speed v=vF /2 above free graphene as a function of the par-
ticle distance, z0. At such low speeds, one can see that the
agreement between the SCKE and MDF-RPA models is bet-
ter for the image force than it is for the stopping force. It
follows from Fig. 2 that the condition z0kF�1 may suffice as
a rough criterion for the application of the SCKE model at
low speeds �v�vF�. This condition is far less restrictive than
z0kF�1, which is required for the application of the SCKE
model at high speeds �v�vF�. We therefore discontinue fur-
ther analysis of the SCKE model at high speeds, and turn our
focus to analyzing various parameters in the MDF-RPA
model alone.

IV. MDF-RPA WITH VANISHING DAMPING

In this section, we use the MDF-RPA dielectric function
with a vanishing damping rate ��→0� to evaluate the stop-

ping and image forces. We first investigate the effects of a
finite graphene-substrate gap, and then discuss two important
cases with a zero gap: intrinsic graphene �n=0� and vanish-
ing particle speeds �v→0�.

A. Effects of a finite gap

We now assume that graphene is supported by a SiO2
substrate ��s�3.9� and explore the effects of a variable gap
height. It should be noted that the mean gap height between
graphene and a SiO2 substrate has been measured as
4.2 Å,58 which is comparable to the equilibrium distance of
3.6 Å found in ab inito calculations between graphene and
the topmost atomic plane of a SiO2 substrate.59 However, we
note that h is defined in Ref. 46 as the position of an effec-
tive substrate surface plane where boundary conditions on
the electrostatic fields are imposed. Thus, while the measured
and theoretically obtained values of the graphene-substrate
gap serve as a guide for the value of h, there is an uncertainty
in h on the same order as the shift of the z axis discussed
earlier. In this subsection, we consider the gap heights
h→� for free graphene, h=4 Å for a realistic value, and
h=0 for the zero gap commonly considered in the literature.

In Fig. 3, we compare the velocity dependence of the
stopping and image forces on a proton moving at a distance
z0=20 Å above graphene for several gap heights and densi-
ties. For low particle speeds �v�vF�, the gap height has a
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proton �Z=1� moving at a reduced speed v /vF=0.5 above free
graphene �h→�� for several values of the reduced charge-carrier
density n /n0, where n0=1011 cm−2. The thick and thin lines repre-
sent the results from the MDF-RPA and SCKE models with vanish-
ing damping ��=0�, respectively.
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relatively small influence on the stopping and image forces
that diminishes as the charge-carrier density increases and
effectively screens out the graphene-substrate gap. The den-
sity, n, is therefore the most important parameter in the low-
speed behavior of both forces. For higher particle speeds, the
charge carriers in graphene are not as effective in screening
out the graphene-substrate gap, and hence the gap height has
a much stronger effect on the stopping and image forces. In
particular, Fig. 3 shows that for sufficiently high speeds
�v�vF� an increase in the gap height tends to increase the
strength of the stopping force and decrease the strength of
the image force, but there is a range of moderate speeds for
which this trend is reversed. Also note that for sufficiently
high speeds, all MDF-RPA stopping and image forces ap-
proach the intrinsic case, n=0.

The effect of the gap height at high speeds is further ex-
plored in Fig. 4, which shows the distance dependence of the
stopping and image forces on a proton moving at a moder-
ately high-speed v=6vF above graphene for the same gap
heights and densities as in Fig. 3. In Fig. 4, it can be seen
that the gap height has a strong influence on both forces for
all distances. One may conclude that in the MDF-RPA
model, as in the SCKE model,46 any uncertainty or local
variations in the gap height across graphene can lead to large
fluctuations in the stopping and image forces, particularly for
high particle speeds.

B. Intrinsic graphene with a zero gap

We now take advantage of the simplicity of the MDF-
RPA dielectric function for intrinsic graphene with a vanish-

ing damping rate21,22 to evaluate the stopping and image
forces analytically for a zero gap. In this case, it is worth
noting that the distance dependence of both forces can be
factored out as F0=Z2e2 / �4z0

2�. For the stopping force, we
find

Fs
0 = −

F0

�bg
0


s

�
�1 − �1 +

�2 − 1


s
2 �−1/2	 , �11�

where 
s��rs /2 and ��v /vF. As seen from the thick solid
curve in Fig. 1�a�, this expression is subject to the velocity
threshold constraint v�vF, which is a consequence of the
interband SPEs yielding the loss function −I��q ,���0
only for ��qvF.21,22 For sufficiently high particle
speeds �v�vF�, one obtains an asymptotic form
Fs

0�−�� /8�
Ze2 / ��bg
0 z0��2 / ��v� that is independent of vF. It

is interesting to note that the MDF-RPA stopping forces for
all densities approach this high-speed asymptotic limit, as
seen in Fig. 1�a� for free graphene and in Fig. 3�a� for vari-
ous gap heights.

The corresponding expression for the image force on a
charged particle moving above intrinsic graphene, Fi

0, is
rather cumbersome. We therefore define the effective back-
ground dielectric constant �bg

� by writing the image force in
the form Fi

0=F0�1 /�bg
� −1�, and in Fig. 5 we present �bg

� as a
function of the particle speed v and the actual background
dielectric constant �bg

0 = ��s+1� /2. We do this for background
dielectric constants ranging from free graphene ��bg

0 =1� to a
HfO2 substrate ��bg

0 �14�. For vanishing particle speeds
�v→0�, one finds �bg

� →�bg
0 �1+
s���bg

0 + �
2

vB

vF
, which is a

well-known result for the contribution of interband SPEs to
the static limit of the MDF-RPA dielectric constant for intrin-
sic graphene.13,22 For sufficiently fast particles �v�vF�,
graphene becomes “transparent” and one recovers the case of
a bare substrate, �bg

� →�bg
0 , with an accuracy to the order of

�bg
� −�bg

0 �v−1. Again, it is interesting to note that the MDF-
RPA image forces for all densities eventually approach this
high-speed asymptotic limit for intrinsic graphene, as seen in
Figs. 1�b� and 3�b�.
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MDF-RPA model with vanishing damping ��=0� shown as a func-
tion of the distance z0 of a proton �Z=1� moving at a reduced speed
v /vF=6 above graphene on a SiO2 substrate ��s�3.9�. Results are
shown for several values of the gap height h and several values of
the reduced charge-carrier density n /n0, where n0=1011 cm−2.
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C. Vanishing particle speed with a zero gap

In this subsection, we consider the density dependence of
the stopping and image forces from the MDF-RPA model in
the limit of vanishing particle speed �v→0� for a zero gap.
For sufficiently small speeds, the inset in Fig. 1�a� shows that
the stopping force is proportional to the particle speed v, and
hence we can define a friction coefficient � through the
equation Fs=−�v. To evaluate �, it is sufficient to expand
the loss function I
−1 /��q ,��� to the first order in � and use
the resulting expression in Eq. �7� to find the stopping force.9

We find the expression for the continuum of low-energy, in-
traband SPEs, subject to the constraint q�2kF, to be

− I�−1�q,�� �
2rs

�bg
0 �TF

2 �q�
�

qvF

��2kF

q
�2

− 1, �12�

where �TF�q�=1+qs /q is the TF dielectric function.13,22,46

The friction coefficient is then given by
�=2��nZ2I�4z0kF ,rs�, where the function I�a ,rs� is defined
in Eq. �4� of Ref. 17

The case z0kF�1 is particularly interesting because, un-
like in the SCKE model, the constraint q�2kF in Eq. �12�
causes I�4z0kF ,rs� to remain finite even as z0kF→0.46 The
friction coefficient for a charge moving very close to
graphene in the MDF-RPA model is therefore given by
�=2��nZ2I�0,rs�, and is proportional to the charge-carrier
density n. In the opposite case, z0kF�1, one recovers the TF
result for the friction coefficient given in Eq. �37� of Ref. 46,
which yields an asymptotic form �=Z2� / �32z0

3��n� that is
independent of vF. These two limiting cases for the friction
coefficient can be observed in Fig. 2�a�, which shows the
MDF-RPA stopping forces for a particle speed v=vF /2 that
is very near the static limit. Recalling that the stopping force
Fs�− 1

2vF� is normalized by F0=Z2e2 / �4z0
2� in Fig. 2�a�,

note that all MDF-RPA curves are proportional to z0
2 for short

distances and fall off as z0
−1 for large distances. The transition

between these two behaviors occurs around the peaks of the
curves at z0kF�1.

In the limit of vanishing particle speed, the image force is
closely related to the well-studied problem of static screen-
ing of an external charge, for which the dielectric function in
Eq. �2� reduces to ��q ,0���bg

0 + 2�e2

q s�q�, where s�q� is
the static MDF-RPA polarization function for graphene given
in the Appendix.13,15,21,22 Although the � integration in Eq.
�8� is trivial with this dielectric function, the remaining q
integration cannot be completed analytically. However, ex-
pressions for the image force in the two limiting cases of
z0kF can be given explicitly. For z0kF�1, the MDF-RPA
image force reduces to the static limit for intrinsic graphene,
Fi

0=F0
1 / ��bg
0 + �

2
vB

vF
�−1�. In the opposite case, z0kF�1, one

easily recovers the TF result for the static image force given
in Eq. �38� of Ref. 46, which yields asymptotically
Fi�−F0. Figure 2�b� clearly shows the transition between
these two cases for the particle speed v=vF /2, which is a
good approximation to the static limit. Note that all normal-
ized MDF-RPA image forces fall between the limits
�1+ �

2
vB

vF
�−1−1�−0.78 and −1 in Fig. 2�a�, with a broad tran-

sition occurring at z0kF�1.

V. MDF-RPA WITH FINITE DAMPING

In this section, we use the MDF-RPA model with a finite
damping rate ��0 �by means of the Mermin dielectric func-
tion� to evaluate the stopping and image forces. Since the
exact value of the damping rate is not known, we first treat it
as a fitting parameter and come up with an estimate for � by
comparing the MDF-RPA model with a finite damping rate to
experimental data for the HREELS spectra of graphene on a
SiC substrate. We then use this estimate to investigate the
effects of the damping rate on the stopping and image forces
for free graphene �h→��, with a special focus on its role in
the friction of low-speed particles.

It should be mentioned that introducing a finite � into the
MDF-RPA dielectric function for graphene to create the Mer-
min dielectric function, �M�q ,� ,��, is a nontrivial matter, as
described in the Appendix. There is, however, a significant
advantage in using such a dielectric function in numerical
calculations of the stopping and image forces. Specifically,
expressions for the MDF-RPA dielectric function in the strict
�=0 case make numerical integrations of Eqs. �7� and �8�
difficult as the boundary of the integration domain,
0���qv, intersects the deltalike plasmon line. A small but
finite �, however, broadens the plasmon line to allow for a
simple numerical treatment of this deltalike behavior.
Throughout this paper, we have therefore reproduced the
strict �=0 limit of the MDF-RPA dielectric function21,22 by
using the value �=10−3�vFk0, where k0=��n0 and
n0=1011 cm−2.

A. Comparison with HREELS experiment

To obtain a reasonable estimate for �, we compare the
MDF-RPA model with finite damping to the experimental
data of Liu et al.11 for the HREELS spectra of graphene on a
SiC substrate. Since the focus of this paper is on slow-
moving particles that are unable to excite graphene’s � elec-
trons, this HREELS experiment is more relevant to the
present work than the EELS experiments on graphene and
other carbon nanostructures.1–3 We note, however, that the
effects of a SiC substrate on graphene are not as well under-
stood as those of a SiO2 substrate. Without entering the cur-
rent debate,4,60 we simply neglect any changes in graphene’s
�-band structure that may result from a hybridization of its �
orbitals with the substrate and treat the gap height, h, as a
free parameter.

Since the measurements in Ref. 11 indicate that the maxi-
mum HREELS yields occur in the direction of near-specular
reflection of slow incident electrons, it is appropriate to use
Eq. �10� for the probability density of exciting the mode
�q ,��. However, since we are not aware at this time of spe-
cific details of the experimental procedure that predomi-
nantly affect the low frequency range of the HREELS spec-
tra via the prefactor in Eq. �10�,11,55 we simply focus on the
Mermin loss function I
−1 /�M�q ,� ,��� and assume that it
gives the correct order of magnitude for spectral widths out-
side of this low frequency range. Therefore, in Fig. 6 we
display a tentative comparison between the HREELS data11

and the Mermin loss function with ��=0, 200, and 400 meV
and a gap height of 1 Å for wavenumbers ranging from
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0.008 to 0.102 Å−1. The SiC subtrate is treated in the static
mode with dielectric constant �s=9.7, and the equilibrium
density in graphene is set at n=2�1013 cm−2 �hence
�F�570 meV and kF�0.08 Å−1� to match experimental
conditions. Note that since the HREELS data is scaled arbi-
trarily, the Mermin loss functions for ��=200 and 400 meV
are scaled so that the maximum peak heights coincide with
those from the experiment. For ��=0, however, the singular
plasmon peak prevents such a scaling, and so the Mermin
loss function is scaled by the same factor as for the
��=400 meV loss function.

In Fig. 6, the range q�kF is particularly interesting be-
cause the Mermin loss function with ��=0 exhibits three
distinct features for these wavenumbers: a continuous spec-
trum of intraband SPEs for 0���vFq, a continuous spec-
trum of interband SPEs for ��vF�2kF−q�, and a narrow
plasmon line at �=�p�q� in the otherwise void interval
vFq���vF�2kF−q�. The fact that these three features are
not visible in the experimental HREELS spectra can be ten-
tatively explained by assuming that a large enough damping
rate � exists, due to various scattering mechanisms, that a
broadened plasmon line merges into the two regions of SPEs
to form a single peak that follows approximately the original
plasmon dispersion curve, �=�p�q�. Note that a broadening
of the plasmon line for the ��=0 loss function does occur
for the wavenumbers q=0.077 and 0.102 Å−1 as the plas-
mon line crosses the boundary �=vF�2kF−q� and enters into
the region of interband SPEs, in which collective plasma
oscillations decay into SPEs in a way that can be described
by a finite Landau damping rate, �L.61 For the Mermin loss
function with a phenomenological damping rate �, however,

a broadening of the plasmon line occurs for all q. Given that
we have neglected the effects of temperature, the kinematic
prefactor, and the reflection coefficient in Eq. �10�, which all
give rise to the low-frequency features in the HREELS spec-
tra, Fig. 6 shows that a reasonably good qualitative agree-
ment with the experiment can be achieved by using a gap
height h=1 Å and a damping rate ��=400 meV.

In Fig. 7, we compare the peak positions of the model
spectra in Fig. 6 with the experimental HREELS data.11 In
addition to the best fit gap height h=1 Å, we also include
the zero gap case to demonstrate the effect of the gap height.
Note, however, that this effect is limited to shifting the spec-
tral peak positions, and therefore does not significantly affect
the estimate of the damping rate. In the long wavelength
limit �q→0�, it can be seen that the plasmon dispersion
curve �=�p�q� for a vanishing damping rate exhibits the �q
behavior of a classical 2D electron gas,21,22 but as the damp-
ing rate increases the plasmon dispersion curve falls off in a
more quasiacoustic manner. It is worth noting, however, that
none of the curves are able to describe the trend of the ex-
perimental data at long wavelengths. From Fig. 6, it can be
seen that there is a strong coupling of graphene’s � electron
excitations with the nondispersing Fuchs-Kliever surface
phonon mode in the SiC substrate at the frequency
�116 meV.11,62 We note that a dynamic treatment of the
substrate phonon excitation through Eq. �4�, the use of a
q-dependent damping rate, and the inclusion of low-
frequency features through the prefactor in Eq. �10� may be
necessary for accurate modeling of the experimental
HREELS spectra in the full range of frequencies. However,
further discussion on these points would go beyond the scope
of the paper, and we merely conclude that a reasonable value
for the damping rate �� is on the order of several hundred
meV.

B. Results for MDF-RPA with finite damping

In this subsection, we discuss the effects of a finite damp-
ing rate on the stopping and image forces calculated with the
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FIG. 6. The Mermin loss function �in arbitrary units� versus the
energy loss for graphene with a charge-carrier density
n=2�1013 cm−2� supported on a SiC substrate with static dielec-
tric constant �s=9.7 and a gap height h=1 Å. Model results are
shown for damping rates ��=0, 200, and 400 meV, while symbols
show the HREELS experimental data from Ref. 11

FIG. 7. The peak positions of the Mermin loss function shown
as a function of the wavenumber q /kF for graphene with a charge-
carrier density n=2�1013 cm−2 supported on a SiC substrate with
static dielectric constant �s=9.7. Model results are shown for damp-
ing rates ��=0, 200, and 400 meV, as well as for gap heights
h=0 and 1 Å. Filled circles show the HREELS experimental data
from Ref. 11
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Mermin dielectric function for free graphene with several
charge-carrier densities. Since it was found that a reasonable
value for �� is on the order of several hundred meV, we
again consider the values ��=0, 200, and 400 meV, or
equivalently � / �vFk0��0, 5, and 10, where k0=��n0 and
n0=1011 cm−2.

In Fig. 8, we examine the velocity dependence of the
stopping and image forces for the various damping rates and
densities. For medium to high speeds �v�vF�, it can be seen
that the strength of both forces decreases significantly as the
damping rate increases, and that this effect diminishes faster
for the image force than for the stopping force as the particle
speed increases. For low speeds �v�vF�, the fact that the
image force is unaffected by the damping rate can be under-
stood through Eq. �A5�, from which it can be seen that the
static limit of the Mermin polarization reduces to the static
limit of the MDF-RPA polarization, M�q ,0 ,��=s�q�.

Figure 8�a� also shows an interesting relationship between
the damping rate, �, and the density, n, at low speeds. One
can see that the strength of the stopping force tends to in-
crease with � at a fixed density, but at a fixed � the stopping
force tends to peak at some intermediate density. This trend
is further confirmed in Fig. 9�a�, which shows the stopping
force as a function of the particle distance z0 for low particle
speeds. For high particle speeds, however, Fig. 9�b� shows
that the distance dependence of the stopping force is affected
more by the density than the damping rate.

C. Friction coefficient

The stopping forces in the inset of Fig. 8�a� suggest that,
as for the case of vanishing damping, the concept of friction
may be useful in the case of finite damping for low particle
speeds. Again, we define the friction coefficient � through
the equation Fs=−�v. Although we wish to focus on the case
of free graphene �h→��, we provide analytic results for the
slightly more general case of a zero gap and note that the
case of free graphene can be recovered by taking �s=1, and
hence �bg

0 =1. To evaluate �, we expand the Mermin loss
function for a zero gap to the first order in �, which gives

− I�M
−1�q,�,�� �

�

�

2�e2

q

s�q�

��bg
0 +

2�e2

q
s�q�	2

��− 1 +
s�q�

�q,i��	 , �13�

Equation �13� can then be substituted into the stopping force,
Eq. �7�, to get an expression for the friction coefficient. Since
the resulting integral cannot be evaluated analytically for an
arbitrary density n, we first consider the case of intrinsic
graphene �n=0�, for which
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�q,i�� =
1

4�

q2

��2 + �qvF�2
, �14�

and hence s�q�=q / �4�vF�. Using these expressions in Eq.
�13�, the friction coefficient for intrinsic graphene is given by

�0 =
�Z2e2

4�0vF
� �

vF
�2

�

2

vB

vF

��bg
0 +

�

2

vB

vF
�2

��−
1

2��0
+ Y0��0� − Y1��0� − H0��0� + H1��0�	 ,

�15�

where �0�2z0� /vF, and Y� and H� are the Bessel function of
the second kind and the Struve function, respectively. By
combining the leading terms of the series expansions for
large and small �0 in this expression for �0, one obtains the
simple but surprisingly accurate formula �with a maximum
error of approximately 3% at �0�1�

�0 �
Z2e2

8vF

�

2

vB

vF

��bg
0 +

�

2

vB

vF
�2

1

z0�z0 +
vF

�
� . �16�

We now consider the friction coefficient � for an arbitrary
density n. In Fig. 10, we display the normalized friction co-
efficient � /�0 for free graphene ��bg=1� as a function of the
reduced damping rate � / �vFk0�, where k0=��n0, and the re-
duced charge-carrier density n /n0, where n0=1011 cm−2. It
can be seen that the friction coefficient for a slow particle
moving at a distance z0=20 Å above free graphene is a
rather complicated function of � / �vFk0� and n /n0, but the
qualitative behavior of this function can be understood. Re-
call from Sec. IV C that the friction coefficient for a vanish-
ing damping rate goes as ��n for z0kF�1 and as
��1 / �z0

3n� for z0kF�1, where kF=��n. For the distance
z0=20 Å, the transition between these two limiting behav-

iors occurs at n /n0�80. For a finite damping rate, we find in
Eq. �16� that the friction coefficient goes as ��� / �z0vF� for
z0� /vF�1 and as ��z0

−2 for z0� /vF�1. For the distance
z0=20 Å, the transition between these two limiting behav-
iors occurs at � / �vFk0��9. Note how a saddle point devel-
ops at these two values for the density and damping rate in
the surface plotted in Fig. 10.

VI. CONCLUDING REMARKS

We have presented an extensive analysis of the stopping
and image forces on an external point charge moving parallel
to a single layer of supported, doped graphene under condi-
tions validating the massless Dirac fermion �MDF� represen-
tation of graphene’s � electron band excitations. These con-
ditions require that the particle distance, z0, be greater than
the lattice constant of graphene, and that the particle speed,
v, satisfy �v /z0�2 eV. Calculations of the velocity and dis-
tance dependencies of the stopping and image forces were
performed within the random phase approximation �RPA� for
a broad range of charge-carrier densities with three major
goals: to compare the results with a semiclassical kinetic
equation �SCKE� model, to examine of the effects of a finite
graphene-substrate gap, and to explore the effects of a finite
damping rate introduced using Mermin’s procedure.

With respect to the first goal, a comparison of the forces
from the MDF-RPA and SCKE models in the regime of van-
ishing damping has revealed that the latter model may be
justified for particle distances satisfying z0kF�1 for v�vF
and satisfying z0kF�1 for v�vF. When combined through
Bohr’s adiabatic criterion, these conditions suggest that the
SCKE model is valid only for heavily doped graphene with
�F��v /z0, for which the effects of the interband single-
particle excitations on the stopping and image forces are
minimized. With respect to the second goal, the effects of a
finite gap between graphene and a supporting substrate in the
MDF-RPA model with vanishing damping have been found
to be quite strong, particularly for medium to high particle
speeds. These results have confirmed earlier findings from
the SCKE model46 and raise some concern over the common
practice of treating graphene with a zero gap when dealing
with the dynamic polarization forces on external moving
charges. With respect to the third goal, we have made an
effort to estimate the order of magnitude of the damping rate,
�, by providing a tentative fit of the MDF-RPA dielectric
function modified by Mermin’s procedure with recently pub-
lished experimental data for the HREELS spectra of
graphene on a SiC substrate.11 With a suitable estimate of �,
we have found that both the stopping and image forces are
primarily affected by the damping rate at moderate particle
speeds. We have also shown that the combined effect of a
finite gap and a finite damping rate can be important in mod-
eling the plasmon peak positions of the Mermin loss func-
tion.

In all calculations of the stopping and image forces within
the MDF-RPA model, we have also found strong effects of
the charge-carrier density, n, which are only weakened at
sufficiently high particle speeds �v�vF�. Although both
forces were shown to approach the results for intrinsic
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FIG. 10. The friction coefficient � normalized by the friction
coefficient for intrinsic graphene �0 and shown as a function of the
reduced damping rate � / �vFk0�, where k0=��n0, and the reduced
charge-carrier density n /n0, where n0=1011 cm−2, for a proton
�Z=1� moving at a distance z0=20 Å above free graphene
��bg

0 =1�.
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graphene in this regime, it is likely that the diminished effect
of graphene’s doping level will be masked by excitations of
graphene’s � electrons as �v /z0 exceeds the � band gap
��7 eV�. On the other hand, the parameter ranges consid-
ered in this paper are perfectly suitable for studying the fric-
tion of slow charges moving near graphene. The friction co-
efficient’s dependence on the particle distance, the charge-
carrier density, and the damping rate have been studied in
detail for a zero gap, where analytic or semianalytic results
have been obtained. An intricate relationship has been found
between these parameters and the friction coefficient, which
may be of great practical interest for applications involving
the concept of friction, including surface processing and
electrochemistry with graphene.

There are several possible routes for extending the present
work. Although not addressed in this paper, we have exam-
ined the local-field correction to the MDF-RPA dielectric
function at the level of Hubbard approximation63 and found
no significant effects on the stopping and image forces. How-
ever, a recent treatment of the local-field effects �LFE� using
the GW method has led to significant improvements in the
loss function of free, undoped graphene in the MDF-RPA
model with vanishing damping.4 Therefore, it would be de-
sirable to treat the LFE using the GW method and explore its
effects on the stopping and image forces. Furthermore, it
would be desirable to extend the domain of applicability of
the MDF-RPA model to small particle distances by including
the finite size of graphene’s � orbitals.20 Finally, the results
of our tentative comparison of the Mermin loss function and
the experimental HREELS spectra for graphene on a SiC
substrate have opened up the possibility of further modeling
of this data in the low-frequency regime.
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APPENDIX: THE MERMIN DIELECTRIC FUNCTION

In this appendix, we extend the MDF-RPA dielectric func-
tion for graphene given in Refs. 21 and 22 to include a finite
damping rate ��0. Beginning with Eq. �3� of Hwang and
Das Sarma,22 we rewrite the polarization as
�q ,�+ i��=−�q ,�+ i��++�q ,�+ i��, where it is as-
sumed that q�0 and ��0. For a finite damping rate, the
term −�q ,�+ i�� is given by

−�q,� + i�� =
gsgvqi

16�vF
��

, �A1�

where

� � �� + i�

vFq
�2

− 1. �A2�

Note that the square root of a complex number z is defined as
�z=e1/2 log z, where log z=logz+ i arg z and the argument,
arg z, is defined up to an integer multiple of 2�. As with
other multivalued complex functions, the square root must be
evaluated with respect to a single-valued branch, for which
the value of arg z is selected from an interval of length 2�.
For instance, the principal branch, denoted Arg z, selects the
value of arg z from the interval �−� ,��. In Eq. �A1�, the
square root must be evaluated with respect to the branch of
arg z that selects values from ��−2� ,��, where ��Arg � is
the principal argument of �.

The term +�q ,�+ i�� is given by

+�q,� + i�� =
gsgvkF

2��vF
+

gsgvq

16��vF
��

��F�� + i�

vFq
+

2kF

q
� − F�� + i�

vFq
−

2kF

q
�	 ,

�A3�

where

F�u� �
u���u2 − 1�

��
− log�u�� + ���u2 − 1�� �A4�

and � is defined in Eq. �A2�. The square roots and logarithms
in Eqs. �A3� and �A4� must also be evaluated with respect to
the branch of arg z that selects values from ��−2� ,��, where
�=Arg �. Note that ���u2−1�����u2−1 when dealing with
specific branches of the square root, so Eq. �A4� cannot be
simplified in the obvious manner.

After introducing a finite damping rate �, it is necessary
to modify the polarization �q ,�+ i�� using Mermin’s pro-
cedure to conserve the local number of charge carriers in
graphene.50,51 The Mermin polarization function is then
given by

M�q,�,�� =
�q,� + i��

1 −
i�

� + i�
�1 −

�q,� + i��
s�q� 	 , �A5�

where s�q���q ,0� is the static limit of the polarization
�q ,�+ i�� with �→0 and �→0, given by21,22

s�q� =
gsgvkF

2��vF
� �1 if q � 2kF

1 −
1

2
�1 −

4kF
2

q2 −
q

4kF
arcsin�2kF

q
� +

�q

8kF

otherwise � . �A6�
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Note that the piecewise definition of Eq. �A6� ensures that
the square root and arcsine are real-valued. Using Eq. �A5� in
Eq. �2�, the Mermin dielectric function is then given by

�M�q,�,�� = �bg�q� +
2�e2

q
M�q,�,�� . �A7�

In the limit �→0, it can be shown that Eq. �A7� is equiva-
lent to the dielectric functions presented in Refs. 21 and 22.64

The difficulty in obtaining a compact form for the dielectric
function in the limit as �→0 lies in reproducing the behavior
of the branch cut that naturally arises for ��0—it is neces-
sary to employ rather complicated piecewise-defined func-
tions, as in Refs. 21 and 22 Alternatively, the compact Eq.
�A7� may be used with a small, positive � to approximate
this limit, or Eq. �A7� may be used with a realistic damping
rate, �, as originally intended. To this end, we describe how
to implement the branch cut technique below.

Most computer codes support basic arithmetic for com-
plex numbers including exponentiation with base e, but only
include built-in functions for computing complex logarithms
and square roots with respect to the principal branch. To
compute logarithms and square roots with respect to the
branch required in Eqs. �A1�, �A3�, and �A4�, it is necessary
to implement a function argbranch �z� that returns the argu-

ment of a complex number z in the range ��−2� ,��, where
�=Arg �. Using the built-in function atan2 �y,x�, which re-
turns the polar angle of the Cartesian point �x,y� in the range
�−� ,��, one may define

Arg�z�:z � atan 2
Im�z�,Re�z�� , �A8�

argbranch�z�:z � �Arg�z� − 2� if Arg�z� � Arg���
Arg�z� otherwise

� .

�A9�

Since q�0 and ��0, Eq. �A9� correctly handles all values
of z. The functions for the corresponding branches of the
logarithm and the square root are then defined as

logbranch�z�:z � log�z� + i argbranch�z� , �A10�

sqrtbranch�z�:z � exp
logbranch�z�/2� , �A11�

where z is the modulus of z, log�� and sqrt�� are the real-
valued logarithm and square root, respectively, and exp�� is
the complex exponentiation with base e. It is then a simple
matter of evaluating Eqs. �A1�, �A3�, and �A4� with respect
to these branches of the logarithm and square root. Note that
argbranch��� must return Arg��� to yield the correct result.
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