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It is known that a perpendicular electric field applied to multilayers of graphene modifies the electronic
structure near the K point and may induce an energy gap in the electronic spectrum which is tunable by the gate
voltage. Here we consider a system of graphene multilayers in the presence of a positively charged top and a
negatively charged back gate to control independently the density of electrons on the graphene layers and the
Fermi energy of the system. The band structure of three- and four-layer graphene systems in the presence of the
top and back gates is obtained using a tight-binding approach. A self-consistent Hartree approximation is used
to calculate the induced charges on the different graphene layers. We predict that for opposite and equal
charges on the top and bottom layers an energy gap is opened at the Fermi level. For an even number of layers
this gap is larger than in the case of an odd number of graphene layers. We find that the circular asymmetry of
the spectrum, which is a consequence of the trigonal warping, changes the size of the induced electronic gap,
even when the total density of the induced electrons on the graphene layers is low.
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I. INTRODUCTION

Since the fabrication of single and multilayers of
graphene,1 the investigation of its exotic electronic, optical,
and transport properties became an intriguing area in con-
temporary physics. Ultrathin graphite films are very promis-
ing for, e.g., nanoelectronics2 and as transparent conducting
layers3 which is important for, e.g., displays and solar cells.

In such systems magnetotransport was measured and the
integer quantum Hall effect was observed.1,4 It was con-
cluded that a single graphene layer has a k-linear Dirac-like
spectrum1,4,5 while quasi-two dimensional highly oriented
pyrolytic graphite has both parabolic and Dirac-like disper-
sion with massless electrons.6

Theoretical and experimental investigations have shown
that an applied electric field, directed perpendicularly to bi-
layer graphene, can open an electronic gap between the va-
lence and conduction bands.7–9 Recently it was shown that
by applying a perpendicular electric field a tunable energy
gap can also be opened in three- and four-layer graphene
systems10 whose size depends on the number of layers. The
circular asymmetry of the band structure, that is a conse-
quence of trigonal warping, leads to a nonmonotonic behav-
ior of the induced gap in multilayers of graphene.10 In Ref.
10 it was found that the Fermi energy is located outside the
induced energy gap.

In Ref. 11 the electronic band structure of ABA-stacked
trilayer graphene was studied self-consistently, in the field of
back and top gates, to estimate the conductivity of trilayer
graphene. The behavior of the induced gap was not system-
atically studied in Ref. 11 and the results were limited to the
case in which there is a net electron charge on graphene. We
generalize these results to the case of hole charges and found
that the obtained results do not exhibit electron-hole symme-
try.

In the present paper we generalize our previous results10

and study the band structure of three and four layers of

graphene in the presence of top and back gates taking into
account the effect of trigonal warping, which we found leads
to a stronger modification of the band structure as compared
to the case when only a single gate is applied. We predict a
nonmonotonic behavior of the true energy gap in trilayer
graphene as a function of the top gate density, when charges
on the top and the back gates are opposite but equal in mag-
nitude. This aspect was not discussed in Ref. 11. We found
also an indirect gap with a similar nonmonotonic character,
which at low and intermediate charge densities on the gates
is smaller than the direct true gap while for larger densities
both gaps coincide. For four-layer graphene we did not ob-
serve such a nonmonotonic behavior, neither an indirect gap.
Our analysis is based on a tight-binding approach to calcu-
late the band structure of multilayers of graphene and a self-
consistent Hartree approximation is used to find the induced
charges on the different graphene layers when an external
gate voltage is applied.

In our previous work10 with a single gate, we found that
the true energy gap tends to decrease with increasing number
of graphene layers. Here we find that when the charges on
the top and back gates are opposite but equal in magnitude,
the four graphene layer system may open up a larger gap
than the three-layer system. This can be explained as being a
consequence of the fact that Dirac fermions are present in
AB-stacked graphene multilayers in case of an odd number
of layers while for an even number of stacked graphene lay-
ers only charge carriers with a parabolic energy dispersion
are present.12

Such three-layer graphene samples can be realized experi-
mentally as was recently demonstrated in Ref. 13 where
transport measurements on a tunable three-layer graphene
single-electron transistor were reported and its functionality
was proven through Coulomb blockade oscillations. It is ex-
pected that in the near future similar experiments will be
performed on four layers of graphene.
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This paper is organized as follows. The details of our
tight-binding approach with the description of the self-
consistent calculation are given in Sec. II for the three and
bilayer graphene systems in the presence of two gates, and
the corresponding results are discussed in Sec. II A for the
bilayer and in Sec. II B for the three-layer case. In Sec. II C
we discuss results for three-layer graphene when only one,
i.e., the back or top gate is applied. In Sec. III we investigate
a four-layer graphene system in the presence of top and back
gates, and Sec. IV summarizes our conclusions.

II. THREE AND BILAYER GRAPHENE SYSTEMS IN AN
EXTERNAL ELECTRIC FIELD

We consider a system consisting of three layers of
graphene, which is modeled as three coupled hexagonal lat-
tices with inequivalent sites Ai and Bi in the ith layer, with Ai
and Ai+1 atoms in adjacent layers on top of each other. A top
gate with a density of negative charges nt�0 �the electron
excess density is positive� on it and a back gate with a den-
sity of positive charges nb�0 are applied to control the den-
sity of electrons on the different graphene layers and the
Fermi energy of the system; the system is schematically
shown in Fig. 1. As a result in the graphene system a total
excess density n=n1+n2+n3 is induced �n=nt+nb�, where n1
is the excess density on the closest layer to the top gate and
n2�n3� is the excess density on the second �third� layer from

the top gate. In our model the top or back gate produces a
uniform electric field Et,b=nt,be /2�0�, where �0 is permittiv-
ity of the vacuum and � is the dielectric constant. For our
numerical calculations we use the value �=2.3, which corre-
sponds to graphene layers on SiO2 as well as �=1, which
describes freely suspended graphene in vacuum. There is a
simple relation between the charge density on the gates and
the voltage between the gate and the closest graphene layer:
Vt,b=ent,bd /2�0�, where d is the distance from a gate to a
closest graphene layer �d is equal to the oxide thickness,
which is usually about 300 nm�. The charges in the layers of
graphene, in its turn, produce a uniform electric field Ei
=nie /2�0�, where i=1,2 ,3 is the layer number. The layer
asymmetries between first and second layers, as well as be-
tween second and third layers are determined by a corre-
sponding change in the potential energy �1,2 and �2,3

�1,2�n� = ��n2 + n3 − �nb�� , �1�

�2,3�n� = ��n3 − �nb�� . �2�

where �=e2c0 /�0�, with c0=3.35 Å the interlayer distance.
In order to obtain the band structure in the presence of the
electric field we should add −�1,2�n� and �2,3�n� to the first
and third layer on-site elements of the three-layer system
Hamiltonian in the absence of gates.14 The tight-binding
Hamiltonian for the three ABA-stacked graphene layers in
the presence of the top and back gates becomes

H =�
− �1,2�n� + � + �5 �0f �1 − �4f� �5/2 0

�0f� − �1,2�n� + �2 − �4f� �3f 0 �2/2
�1 − �4f � + �5 �0f� �1 − �4f

− �4f �3f� �0f �2 − �4f �3f�

�5/2 0 �1 − �4f� �2,3�n� + � + �5 �0f

0 �2/2 − �4f� �3f �0f� �2,3�n� + �2

� , �3�

where the rows and columns are ordered according to atom A
from layer 1, atom B from layer 1, atom A from layer 2, atom
B from layer 2, etc. In Eq. �3� �0 ,�1 ,�2 ,�3 ,�4 ,�5 and � are
the Slonczewski-Weiss-McClure parameters and the function
f stands for

f�kx,ky� = eikxa0/�3 + 2e−ikxa0/2�3 cos kya0/2, �4�

with a0=2.46 Å the length of the in-plane lattice vector. The
six parameters �0 ,�1 ,�2 ,�3 ,�4, and �5 express the couplings
between the different atoms and are given in Ref. 10.

The tight-binding Hamiltonian operates in the space of
coefficients of the tight-binding functions c�k��
= �cA1

,cB1
,cA2

,cB2
,cA3

,cB3
�, where cAi

=cAi
�k�� and cBi

=cBi
�k�� are the ith layer coefficients for A and B type of

atoms, respectively. The total eigenfunction of the system is
then given by

�k��r�� = �
i=1

Nl

cAi
	k�

Ai�r�� + �
i=1

Nl

cBi
	k�

Bi�r�� , �5�

with Nl the number of layers. The six coefficients in Eq. �5�
of the three-layer system, for fixed values of the layer asym-
metries defined by Eqs. �1� and �2�, can be obtained by di-
agonalizing Eq. �3�. The electronic densities on the indi-
vidual layers are given by

ni =
2



� dkxdky��cAi

�2 + �cBi
�2� . �6�

Since the coefficients cAi
and cBi

depend also on the specific
band, we can distinguish the electronic densities on each
band. The following cases are possible: when the magnitudes
of the top and back gates are equal to each other �but have
opposite charges on them� then the Fermi energy is located
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in the opened band gap; in this case to find the electron
densities in the valence bands one should integrate Eq. �6�
from zero until some optimal kmax �which is chosen such that
the energy gap is convergent�. In the case when the density
of the positive charge in the back gate is larger than the
density of the negative charge on the top gate �or in the
absence of the top gate� the Fermi energy will be located in
the conduction band. After integrating Eq. �6� till the Fermi
vector kF we find the charge densities in the partially occu-
pied bands, namely, in the first and second conduction bands.
To take into account the density redistribution in the valence
bands one should integrate Eq. �6� from zero until some large
kmax. Using Eqs. �1�–�3� and �6� we evaluate the energy gap

�0 at the K point and the true gap, �̃, self-consistently for a
fixed total density nt+nb=n1+n2+n3 �see Refs. 7 and 10�.

For comparison purposes we include here also the results
for bilayer graphene where top and bottom are at a different
gate potential. The tight-binding Hamiltonian for a bilayer
graphene, with layer asymmetry between first and second
layers �1,2�n�=��n2− �nb��, in the presence of the top and
back gates is reduced to

H =�
− �1,2�n�/2 �0f �1 − �4f�

�0f� − �1,2�n�/2 − �4f� �3f

�1 − �4f �1,2�n�/2 �0f�

− �4f �3f� �0f �1,2�n�/2
� .

�7�

The electronic densities on the individual layers for bilayer
graphene are given by Eq. �6� and the gaps can be calculated
self-consistently similarly as indicated above for the three-
layer case.

In the following we will consider two cases. First, we
neglect all interactions except between the nearest-neighbor
atoms in the same layer and between A-type atoms of adja-
cent layers �which are on top of each other�, i.e., we put �2
=�3=�4=�5=0. In our calculations we used the parameter
�0=3.12 eV which within each plane leads to an in-plane
velocity �=�3�0a /2�	106 m /s and for the interlayer cou-
pling strength, i.e., between Ai and Ai+1 atoms we take �1
=0.377 eV �see Ref. 14� and for the interlayer distance c0

=3.35 Å. Second, the full interaction case is studied. When
all the interactions between the different atoms, which are
expressed by the SWMcC parameters ��2=−0.0206, �3
=0.29, �4=0.12, �5=0.025� are taken into account the en-
ergy surface is no longer circular. The corresponding results
for these two cases for different number of graphene layers
are discussed in next sections.

A. Bilayer graphene in the presence of top and back gates

The dependence of the first conduction-band minimum,
the highest valence-band maximum, and the Fermi energy on
the charge density of the back gate nb is shown in Fig. 2�b�
for bilayer graphene, when only �0 ,�1 are taken into account
�with �=1� for fixed charge density of the top gate nt
=1012 cm−2. For equal magnitude of top and back gates the
Fermi energy is located in the forbidden gap. Figure 2�a�
shows the band structure for bilayer graphene when charges
on the top and back gates are opposite but equal in magni-

tude with �nb�=nt=1013 cm−2. Notice that the true gap �̃
occurs away from the K point where the gap is �0

=294 meV��̃=232 meV. In Figs. 2�c� and 2�d� we show
the dependence of the gap �0 at the K point �dot-dashed

curve�, the true direct gap �̃ �solid curve� for bilayer
graphene ��=1� when including the full interaction with the
SWMcC parameters, as a function of the top gate density nt
with equal but opposite in sign back gate density nb=−nt. For
comparison in Fig. 2�c� we show also the corresponding re-

sults, �0� �dashed curve� and ��˜ �dotted curve� when only
�0 ,�1�0. In a recent experiment,15 slightly different values
for the � parameters were obtained, i.e., �0=2.9, �1
=3.0, �3=1.0, �4=1.2. The values of the parameters of the
SWMcC model for bilayer graphene in Ref. 15 were ob-
tained from an analysis of the dispersive behavior of the
Raman features, where the electronic structure of bilayer
graphene was investigated from a resonant Raman study of
the G� band using different laser excitation energies. For
comparison reasons we give the obtained energy gap with
these � parameters by the dashed �at the K point� and dotted
�true direct-gap� curves in Fig. 2�d�.

We have found that even for low densities ��nb�=nt

1012 cm−2� it is important to take into account all the in-
teractions between the atoms, and the true gap for this case is

�̃=20.3 meV and the relative difference with the case when
only �0 ,�1�0 is about 10% �see Fig. 2�c��. The relative
difference between the results obtained in the present paper
with the SWMcC parameters and the gaps found using the
new � parameters proposed in Ref. 15 is about 10% for
intermediate densities �see Fig. 2�d��. Notice that the true
gaps for both choices practically coincide at large densities.
We were able to fit the different energy gaps for bilayer
graphene using the different tight-binding parameters by a
polynomial ��meV�=A
nt+B
nt

2 �where nt in units of
1012 cm−2�. The values of the parameters A and B for these
different cases are given in Table I. For the case when only
the back gate was applied the energy gap differs substantially
at high densities and for n=1013 cm−2 the relative difference
was about 15%.10

FIG. 1. �Color online� Schematic of the three-layer graphene
system, near a negatively charged top gate with a charge density
nt�0 and a positively charged back gate with a density nb�0,
which induce a total excess density n=n1+n2+n3 on the graphene
layers, with n1 the excess density of electrons on the closest layer to
the top gate and n2�n3� is the excess density on the second �third�
layer; Ei �i=1,2� is the uniform electric field between the layers
with E1= �n2+n3− �nb��e /�0� and E2= �n3− �nb��e /�0�.
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B. Three-layer graphene in the presence of top and back gates

When two gates, i.e., a top gate and a back gate are ap-
plied to three-layer graphene, it will allow us to control in-
dependently the opening of the gap and to change the Fermi
level. However, for the three-layer system when only �0 ,�1
�0 we found zero true direct and indirect gaps for any
strength of the top gate �for equal magnitude of charge den-
sity on the top and back gates�.

In contrast, for the full interaction case the symmetry of
the energy spectrum is no longer circular but becomes trian-

gular and it is possible to have an indirect true gap �kk�. The
behavior of the true indirect gap �kk� �solid curve� as well as

the true direct gap �̃ �dot-dashed curve� and the K gap �0
�dotted curve� are shown in Fig. 3�a� for �=1 as a function
of the strength of the top gate, provided that charges on the
top and back gates are opposite but equal in magnitude. In
this case we found for all values of the density that the Fermi
energy is located in the energy gap and the total average
electron density on the layers is zero. In fact we have an
electron-hole bilayer system where the electrons �holes� are

FIG. 2. �Color online� Results for bilayer graphene ��=1� around the K point when only �0 ,�1�0: �a� Band structure for −nb=nt

=1013 cm−2. Horizontal dotted line is the Fermi level. The true gap �̃ and the energy gap at the K-point �0 are indicated. �b� The dependence
of the lowest conduction-band minimum �dot-dashed curve�, highest valence-band maximum �dashed curve�, and the Fermi energy �solid
curve� on the density of the back gate nb with fixed density on the top gate nt=1012 cm−2. �c� The dependence of the gap �0� at the K point,

the true direct gap ��˜ as a function of the top gate density nt when nb=−nt. �0 �dot-dashed curve� and �̃ �solid curve� are the results when
including the full interaction with the SWMcC parameters. �d� The same as �c� but now with the � parameters from Ref. 15.

TABLE I. The fitting parameters A and B for the density dependence of the energy gap ��meV�=A

nt+B
nt

2, where nt is in units of 1012 cm−2 with equal �but opposite in sign� density on top and bottom

gates. Results are given for the true gap �̃ and the gap at K-point �0 for bilayer graphene, when all the
SWMcC parameters are included, when only �0 ,�1 are taken into account �results with accent�, when �
parameters are taken from Ref. 15 �double accent results�.

�̃
�meV�

�0

�meV�
��˜

�meV�
�0�

�meV�
��˜

�meV� Ref. 15
�0�

�meV� Ref. 15

A�meV cm2� 0.02461 0.02342 0.02851 0.02618 0.02885 0.02689

B�meV cm4� −0.00044 0.00031 −0.00049 0.00036 −0.00086 0.00019
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situated in the top �bottom� graphene layer and the middle
layer has zero electron density. From Fig. 3�a� we notice that
for low densities the indirect gap is smaller than the true
direct gap and for nt�4.5
1012 cm−2 they coincide. The
true direct gap becomes zero when nt
2
1013 cm−2 and it
increases with the further increase in nt. The equivalent re-
sults for the case of �=2.3 are shown in Fig. 3�b�. Notice
that the results are qualitatively very similar but the point
where the direct and indirect gaps coincide is shifted to nt
=7.5
1012 cm−2. For nt�1013 cm−2 the maximum size of
the energy gap is about 5 meV.

In order to gain a better understanding of the density de-
pendence of the energy gap we show in Fig. 4 three-
dimensional �3D� plots and corresponding contourplots of
the lowest conduction and the highest valence band for three-
layer graphene near the K point �K point is chosen as the
origin and �=2.3� for different values of nt, providing nb=
−nt. For intermediate density nt= �nb�=5
1012 cm−2 the
highest valence band exhibits several local maxima with the
highest one situated at ky =0, kx=−0.025 and smaller local
maxima with ky �0, kx=−0.025 �see Fig. 4�a��. The con-
duction band has corresponding minima in the same plane
with kx=−0.025 leading to an indirect gap, as shown in Fig.
5�a�. Notice that the true direct as well as the indirect gap
shown in the plane with kx=−0.025 �Fig. 5�a�� equal the
corresponding gaps found for nt= �nb�=5
1012 cm−2 in Fig.
3�b�. At high densities the maxima and minima in the corre-
sponding bands are comparable �see Fig. 4�b�� and the indi-
rect gap coincides with the direct one, as shown in Fig. 5�b�
for the plane with kx=−0.05. Notice that for this density the
minimal gap is located in the plane kx=−0.05. The Fermi
energy for all the densities is located in the energy gap and is
indicated by the dotted curves in Fig. 5.

We also show in Fig. 6 the energy bands along ky for kx
=0 of three-layer graphene with the full interaction ��
=2.3� for different values of nt, with nb=−nt. The band struc-
ture for low density �Fig. 6�a�� is similar to our earlier
result10 when only one gate is applied to the trilayer system.
In the presence of two gates we are able to move the Fermi
energy inside the opened gap. However, at intermediate and
high densities the band structure is very different from our

earlier result10 �see inset of Fig. 8� when only a single gate is
applied.

The charge density ni �solid curves� on the different
graphene layers is shown in Fig. 7 for the system with the
full interaction with �=2.3 and for the case when �=1
�dashed curves� as a function of the density of the top gate nt
�when back gate density �nb�=nt�. Notice that for the case
with �=1 the values of the induced electron density in the
outer layers are larger than for the case with �=2.3. It is
interesting that when the full interaction is included the ex-
cess density in the middle layer is no longer zero; i.e., for
�nb�=nt=1013 cm−2 and �=2.3 the layer densities are n1=
−3.84, n2=1.70, n3=3.67 in units of 1012 cm−2. This can
be explained by the fact that negatively and positively
charged gates �with the same magnitude of charges on them�

FIG. 4. �Color online� The first conduction and the highest va-
lence band, with the corresponding contourplots for three-layer
graphene near the K point �K point is chosen as the origin, �=2.3�
with equal but opposite charges on the top and back gates: �a� when
nt= �nb�=5
1012 cm−2 and �b� nt= �nb�=1013 cm−2. The Fermi en-
ergy for both densities is located in the energy gap.

FIG. 3. �Color online� The dependence of the K-point gap �0 �dotted curve�, the true direct gap �̃ �dot-dashed curve�, and the true
indirect gap �solid curve� �kk� as a function of the top gate density nt=−nb for three-layer graphene where we included the full interaction.
Results are shown for two cases: �a� �=1 and �b� �=2.3.
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induce different gaps and layer densities �see Figs. 8�a� and 9
in the next section�. As a consequence of this asymmetry in
the induced excess electron densities a gap opens, which is
absent in the case when only �0 ,�1�0. For the case when
only �0 ,�1�0 we found that n2=0 and that the outer layers
have equal excess densities, i.e., n1=−n3.

C. Three-layer graphene in the presence of a single
(top or back) gate

Here we extend our previous work10 on the single gate
tuning of the electron density in trilayer graphene to the tun-
ing of the hole density and we will show that there is a clear
asymmetry between electrons and holes. The dependence of

FIG. 5. �Color online� The lowest conduction and the highest valence bands of the three-layer graphene ��=2.3� with the full interaction
as function of ky �around the K point and with fixed kx� when top and back gates are such that nt=−nb: �a� for kxa0=−0.025 and nt=5

1012 cm−2 and �b� for kxa0=−0.05 and nt=1013 cm−2. The Fermi energy is located in the energy gap and is indicated by the dotted curve.

FIG. 6. �Color online� The band structure of three-layer graphene ��=2.3� with the full interaction, when top and back gates with nb

=−nt are applied, as a function of ky �around the K point, for kx=0�. The Fermi energy for all the densities is located in the energy gap and
is indicated by the dotted curve.
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the energy gap at the K point �0 and of the true direct gap �̃
�solid curve� as well as the true indirect gap �kk� �dotted

curve, which for n�1.8
1012 cm−2 coincides with �̃� are
shown in Fig. 8�a�, as a function of the total density of ex-
cess electrons n=n1+n2+n3 when only the top or back gate
is applied for �=1. In the region when excess densities are
negative �in the presence of the top gate� the Fermi energy is
located in the valence band. Notice that the energy gaps are:
�i� not symmetric around n=0, �ii� they have a nonmonotonic
behavior as a function of n, and �iii� for a negatively charged
gate the energy bands have a “Mexican-hat” shape and due
to this the energy gap at the K point does not coincide with
the true gap in this region of total density. Notice that the
gaps for negative and positive densities are symmetric
around n=0 for the case when only �0 ,�1�0. In the case,
when we take into account all the interactions between the

different atoms except �3 the energy bands are circular sym-
metric. The dependence of the true gap �dashed curve� for
this case is shown in Fig. 8�b� when �=2.3. Notice that the
true gap remains zero up to the density n
2
1012 cm−2.
The parameter �3 describes the interaction of B-type atoms
between adjacent layers �which are not on top of each other�
which is not well known for multilayers of graphene and we

present in Fig. 8�b� the results for �̃ for different values of

�3: �i� �3=0.15 �dot-dashed curve� and �ii� �̃ when �3
=0.29 �solid curve�. It is clear that the gap is strongly influ-
enced by the value of �3. The indirect true gap �kk� is also
presented �dotted curves� in Fig. 8�b� for �3=0.29 and is
very small for n�5.5
1012 cm−2. For larger densities this
gap increases almost linearly with the density. The inset to
this figure shows the band structure of the three-layer system
calculated with the full interaction along ky �kx=0� for the

FIG. 7. �Color online� The charge density ni �solid curves� on
the different graphene layers for the trilayer system with �=2.3
�with the full interaction� and ni� �dashed curves� for the case when
�=1 as a function of the charge density on the top gate nt �the back
gate density nb=−nt�.

FIG. 8. �Color online� Density dependence of the energy gaps in trilayer graphene when only one gate is applied: �a� �0 at the K point

�dot-dashed curve�, the true direct gap �̃ �solid curve�, and the true indirect gap �dotted curve� �kk� for �=1 when including the full

interaction. For comparison we show also the corresponding results, �0� �dot-dot-dashed curve� and ��˜ �dashed curve� when only �0 ,�1

�0. �b� The dependence of the true gap �dashed curve� for the case when only �3=0 and when all the interactions are included with �3

=0.15 �dot-dashed curve� for �=2.3. We show also the corresponding results for �3=0.29 for the true direct gap �solid curve� and the true
indirect gap �kk� �dotted curve�. Inset: the band structure of the three-layer system calculated with the full interaction �for �3=0.29� along
ky for kx=0 with n=2
1012 cm−2; the dotted curve is the Fermi level.

FIG. 9. �Color online� The layer densities ni �solid curves� for
the three-layer system with the full interaction ��=1� and ni�
�dashed curves� for the case when only �0 ,�1 are different from
zero, as a function of total excess density n when either the back
gate either the top one is applied.
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total electron density n=8
1012 cm−2, induced by a posi-
tively charged back gate. Comparing Figs. 8�a� and 8�b� we
notice that the gaps for the system with �=2.3 at high den-
sities are approximately half the gaps obtained for �=1.

The distribution of the charge density over the different
layers is shown in Fig. 9 for the system with �=1 and when
the full interaction is included �solid curves�, as well as for
the case when only �0 ,�1�0 �dashed curves�. Notice that in
the negative gate voltage region �when a top gate is present
and the total excess electronic densities are negative� the
inclusion of the full interaction affects much stronger the
density redistribution of the individual layers than in the case
when only the back gate is applied to the system.

Since the SWMcC parameters are not known for multi-
layers of graphene and the maximal change in these param-
eters takes place when changing their signs, in the rest part of
this section we will study the dependence of the signs of the
different SWMcC parameters on the band structure of the
trilayer. We found that when we change the signs of
�0 ,�1 ,�3 ,�4 the true and K-point gaps shift but conserve the
oscillatorylike behavior of the gaps as a function of n. The
change in the sign of �2 modifies the band structure more
strongly. We found the following interesting fact: when one
changes simultaneously the sings for some SWMcC param-
eters, then the true and K-point gaps remain unaltered. For
example, the true gap obtained for the case when the signs of
�0 and �4 �or �0 ,�1 ,�3� are simultaneously changed coin-
cides with that we found using the SWMcC parameters �see
Ref. 14� for graphite, i.e., the results corresponding to the

solid curve in Fig. 8�b�. The true gap �̃ �solid curve� ob-
tained for SWMcC parameters and the true indirect gap �kk�
�dotted curve� are also presented in Fig. 10�a� for �=2.3.
Change in �0 ,�3 ,�4 gives the same result as one changes

�0 ,�1; �̃ for this case �dot-dashed curve� is presented in Fig.
10�a�. The true direct- and indirect-gap behaviors for this
case are close to the corresponding gaps found with SWMcC
parameters until n
5
1012 cm−2. The change in the sign
of �3 leads to similar dependencies as if the signs of �0 ,�1
are changed and for large densities in both cases the indirect
gap coincides with the direct one.

A change in sign of �2 and a simultaneous change in sign
of �0 ,�1 ,�4 �or �0 ,�3� leads to the same gaps as if only �2 is

changed; the true gap �̃ �dashed curve� and �kk� �dot-dot-
dashed curve� are presented in Fig. 10�a�. One can see that in
the case when the sign of �2 is changed then the indirect gap
is negative until n
3
1012 cm−2 due to the fact that the
conduction and valence bands overlap for certain momenta.
We see also that in this case the indirect gap does not coin-
cide with the true gap at high densities.

Change in the signs of �0 ,�1 ,�3 ,�4 gives the same result

as one changes �0 and �̃ �solid curve� as well as �kk� �dot-
dot-dashed curve� for this case are shown in Fig. 10�b�. As a

comparison �̃ for the SWMcC parameters is indicated by
circles in Fig. 10�b� and �kk� is given by triangulares. Also, a
change in signs of �0 ,�1 ,�4 or �0 ,�3 leads to the same result

as if the sign of �1 is changed and for this case �̃ �dashed
curve� as well as �kk� �dot-dashed curve� are given in Fig.
10�b�. Notice that: �i� in both cases when �0 or �1 are
changed, then the true direct and indirect gaps do not coin-
cide at high densities and �ii� there is a shift between the true

FIG. 11. �Color online� The gap �0 at the K point �dashed

curve� and the true gap �̃ �solid curve� as a function of the top gate
nt=−nb for four-layer graphene with �=2.3, and for �=1 where �0�

�dot-dashed curve� and �̃� �dotted curve�.

FIG. 10. �Color online� The dependence of the true direct and indirect gaps as a function of the total excess electron density n for

three-layer graphene with �=2.3: �a� �̃ �solid curve� and �kk� �dotted curve� obtained with SWMcC parameters; �̃ �dot dashed� for the case

when signs of �0 ,�1 are changed; �̃ �dashed curve�; and �kk� �dot-dot-dashed curve� when �2 sign is changed. �b� �̃ �solid curve� and �kk�
�dot-dot-dashed curve� for the case �0 sign is changed; �̃ �dashed curve� and �kk� �dot-dashed curve� if the sign of �1 is changed. For

comparison purposes �̃ for the SWMcC parameters is indicated by circles and �kk� is given by triangulares.
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gaps for the cases when �0 or �1 are changed. Therefore, in
an experiment one should be able to observe a nonmonotonic
behavior of the energy gaps, from which one can deduce the
true value for the SWMcC parameters.

III. FOUR-LAYER GRAPHENE SYSTEM IN AN
EXTERNAL ELECTRIC FIELD

In this section we consider a four-layer graphene system
with top and back gates, which induce a total excess density
n=n1+n2+n3+n4, where ni is the excess density on the ith
layer as counted from the top gate. The corresponding
change in the potential energy between consecutive layers is

�1,2�n� = ��n2 + n3 + n4 − �nb�� , �8�

�2,3�n� = ��n3 + n4 − �nb�� , �9�

�3,4�n� = ��n4 − �nb�� . �10�

By adding �II=�1,2�n�, �III=�1,2�n�+�2,3�n�, and �IV

=�1,2�n�+�2,3�n�+�3,4�n� to the on-site elements of the II,
III, and IV layers, respectively, of the Hamiltonian in the
absence of the gates, we obtain the Hamiltonian for the four
AB-stacked graphene layers in the presence of top and bot-
tom gates

�
�� �0f �1 − �4f� �5/2 0 0 0

�0f� �2 − �4f� �3f 0 �2/2 0 0

�1 − �4f �II + �� �0f� �1 − �4f �5/2 0

− �4f �3f� �0f �II + �2 − �4f �3f� 0 �2/2
�5/2 0 �1 − �4f� �III + �� �0f �1 − �4f�

0 �2/2 − �4f� �3f �0f� �III + �2 − �4f� �3f

0 0 �5/2 0 �1 − �4f �IV + �� �0f�

0 0 0 �2/2 − �4f �3f� �0f �IV + �2

� , �11�

where ��=�+�5. The eight coefficients cAi
=cAi

�k�� and cBi

=cBi
�k��, for fixed values of the layer asymmetries defined by

Eqs. �8�–�10�, can be obtained by diagonalizing Eq. �11�. The
electronic densities on the individual layers are given by Eq.

�6�. The gaps �0 and �̃ are evaluated self-consistently analo-
gously as was done for the three-layer system.

The variation in �̃ �solid curve� and �0 �dashed curve�
with nt �charges on the top and back gates are taken opposite
but equal in magnitude� are shown in Fig. 11 for �=2.3 and
when the full interaction between the atoms is included. The

same gaps �0� �dot-dashed curve� and ��˜ �dotted curve� are
shown for the case �=1.

Figure 12 shows typical 3D plots and corresponding con-
tourplots of the first conduction and the highest valence band
for the four-layer graphene ��=2.3� for an intermediate value
of nt=−nb=5
1012 cm−2. Notice that the valence band has
a local broad minimum at the K point which is surrounded by
three local maxima. Figure 13 gives the band structure along
ky for kx=−0.04. In this plane the minimal gap equals the
true direct gap. The maxima in the highest valence band is
located just below the lowest conduction-band minima �see

FIG. 12. �Color online� The first conduction �left figure� and the
highest valence �right figure� bands, and the corresponding contour-
plots for the four-layer graphene near the K point �K point is chosen
as the origin, �=2.3� when nt=−nb=5
1012 cm−2.

FIG. 13. �Color online� The lowest conduction and the highest
valence bands of the four-layer graphene ��=2.3� with the full in-
teraction as function of ky �around the K point� when nt=−nb=5

1012 cm−2 and kxa0=−0.04. The Fermi energy �dotted curve� is
located in the energy gap.
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Fig. 13� and due to this the indirect gap coincides with the
direct one for the four-layer system. Notice that the true gap
is found for ky ,kx�0 and is much smaller than the gap near
the K point.

Figure 14 shows the distribution of the charge density
over the different graphene layers ni �solid curves� when �
=2.3 and ni� �dashed curves� for the case when �=1 as a
function of the top gate density nt=−nb �the full interaction is
included in both cases�. We found ni
ni� for i=2,3 although
the potential-energy difference between these layers for the
case �=2.3 is twice smaller than for �=1. This is even more

remarkable because the true gap �̃=5.1 meV for �nb�=nt
=1013 cm−2 is more than three times larger when �=2.3 than

the corresponding gap ��˜=1.6 meV for �=1. In order to
understand this we consider also the case when only �0 ,�1
�0, where the true gap is almost three times larger than the
corresponding gap for the full interaction case. We found that

�̃=15.6 meV for nt=−nb=10 �in units of 1012 cm−2, �
=2.3� and corresponding induced densities on the outer �on
the inner� layers are symmetric �n1�=n4=4.40 ��n2�=n3
=1.41� while for the same fixed parameters in the case of the
full interaction n1=−4.66, n2=−1.15, n3=1.39, n4=4.41.
Also, in the case when only �0 ,�1�0 the increase in � leads
to an increase in the true gap. We see that in the four-layer
case the asymmetry in the induced density between the inner
layers makes the gap smaller. We conclude that the increase
in �, which results in an increase in screening, effectively
suppresses the layer asymmetry as well as the density asym-
metry between the second and third layers. This is respon-
sible for the increase in the gap with increase in �.

In Ref. 10 it was found that when only one gate was
present the true gap had the tendency to decrease with in-
creasing number of graphene layers. This behavior is con-
nected with the excess charge distribution between the layers
and corresponding asymmetries between the graphene layers.
Due to imperfect screening, the charge density on the layers
furthest from the gate is considerably smaller in comparison
with the excess density on the layer closest to the gate as
shown in Fig. 9. With the increase in the number of layers,
the asymmetry between the last layers abruptly decreases,

resulting in layers with almost no excess charge. Also, when
only one gate is applied to the system we found that with
increasing � the true gap decreases as shown in Fig. 15.

Now, when top and back gates are applied with opposite
�but equal in magnitude� charges on them, in order to open
an energy gap and tune the Fermi energy into the energy gap,
we found that for �=2.3 the gap for four layers of graphene
at high densities is larger than the gap for the three-layer
system. This fact is a consequence of the presence of Dirac
fermions in AB-stacked graphene multilayers with an odd
number of layers and that for an even number of stacked
graphene layers only charge carriers with a parabolic energy
dispersion exist.12

IV. CONCLUSIONS

We considered multilayers of graphene in the field of top
and back gates, which are negatively and positively charged,
respectively, and investigated the electronic structure near
the K point. For three layers of graphene we found a true
indirect gap, which at high densities coincides with the direct
true gap. For the three-layer system with inclusion of full

interaction the true energy gap �̃ as well as the true indirect
gap �kk� have a nonmonotonous behavior as a function of the
potential on the top gate, provided that charges on the top
and back gates are opposite but equal in magnitude. The
Fermi energy, in this case, is always located in the energy
gap. It is interesting that, when both gates are applied to the
three-layer system, increasing � leads to a reduction in the
gap at high densities and for certain values of the gate volt-
age the gap can be closed.

We found that when only one gate is applied to a
multilayer of graphene, the true gap decreases with increas-
ing �. However, the true gap is larger when top and back
gates are applied to four layers of graphene with �=2.3 than
for the case of �=1.

For the four-layer graphene system the gap for �=2.3
including the full interaction is larger at high densities than

FIG. 14. �Color online� The layer densities ni �solid curves� for
the four-layer system with �=2.3 and ni� �dashed curves� for the
case when �=1 �in both cases the full interaction is included� as a
function of the charge density on the top gate nt=−nb.

FIG. 15. �Color online� The gap �0 at the K point �dot-dot-

dashed curve� and the true gap �̃ �solid curve� as a function of the
total excess electron density n when only the back gate is applied
for the value of �=1 for a four-layer graphene when including the
full interaction. The corresponding results for �=2.3 are shown for

�0� �dotted curve� and ��˜ �dash-dotted curve�.
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the corresponding gap for the three-layer system when the
magnitude of the charge on the top and back gates is the
same. For this case, the gaps are a monotonic function of the
density for even number of layers. The true gap for bilayer
graphene is much larger than for the three- and the four-layer
systems.

The effect of the circular asymmetry that arisen as a con-
sequence of the trigonal warping, strongly modifies the be-
havior of the induced electronic gap even when the total
density of induced electrons on the layers is low.

In a recent experimental work by Craciun et al.16 the re-
sistance of trilayer graphene was measured as a function of
the voltage on the top and bottom gates. They found that the
resistance was maximal when Vb	−�Vt, where Vb �Vt� is
the back �top� gate voltage and � a leverage factor taking
into account the difference in distance between the back and
the top gates to the graphene trilayer. This result implies that
the resistance is maximal when nt=−nb in which case we
find the opening of a gap with the Fermi energy inside the
gap. They could understand these experimental results by
assuming that trilayer graphene is a semimetal where the
overlap between the electron and hole bands could be tuned

by the gate voltage Vb+�Vt. Our theoretical results provide
an alternative explanation to these experimental observa-
tions. From measurements on single layer graphene17 we
know that disorder is large and that around the Dirac point
there are electron-density fluctuations �i.e., puddles� of size
of about 1011 cm−2 which corresponds to very large potential
fluctuations, i.e., tens of meV. From the mobility measure-
ments on trilayer graphene16 we expect a similar type of
disorder which is much larger than the here predicted gap of
a few meV. Therefore, unlike bilayer graphene, for trilayer
graphene gap opening is too small to be seen in the transport
experiment of Ref. 16. Disorder can be reduced by using
suspended graphene which is a possible rout to observe the
here predicted energy gap in trilayer graphene.
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