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The authors report on modeling of transport spectroscopy in split-gate-controlled quantum constrictions. A
mixed momentum-coordinate representation is employed to solve a set of time-dependent Lippmann-
Schwinger equations with intricate coupling between the subbands and the sidebands. Our numerical results
show that the transport properties are tunable by adjusting the ac-biased split gates and the applied perpen-
dicular magnetic field. We illustrate the Aharonov-Bohm oscillation characteristics in the split-gated systems
and the time-modulated quasibound-state features involving intersideband transitions.
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I. INTRODUCTION

Coherent transport phenomena in mesoscale conductors
with various geometries have attracted much attention over
recent years due to their potential in the investigation of
various resonance or bound-state features,1–5 imaging coher-
ent electron wave flow,6–9 and electrical switching
effects.10–13 The conductance G is a fundamental property of
quasi-one-dimensional systems with values close to integer
multiples of twice the quantum unit of conductance G0
=2e2 /h, where e denotes the charge of an electron, the factor
of 2 accounts for spin degeneracy, and h is Planck’s constant.
Moreover, the conductance depends sensitively on the par-
ticular arrangement of scatterers as well as the applied exter-
nal fields in the mesoscopic system.

Conducting structures subject to magnetic fields or peri-
odically varying voltages are essential fundamental entities
in mesoscopic physics. The momenta of electrons are al-
lowed to undergo a robust change if a magnetic field is ap-
plied, which in turn dynamically modifies the transport prop-
erties of a quantum system. It was reported that the
conductance involving Aharonov-Bohm �AB� interference14

as a function of magnetic field exhibits steplike
structures.15,16 Recently, differential conductance of an AB
interferometer was measured as a function of the bias
voltage.17 Varying either the magnetic field or the electro-
static confining potentials allows the interference to be tuned.

A mesoscale system driven by an external time-dependent
potential allows charge carriers to make coherent inelastic
scattering18,19 involving intersubband and intersideband
transitions.20,21 A number of interesting time-dependent
transport-related issues have been investigated such as time-
modulated quasibound-state �QBS� features,22,23 quantum
pumping effects,24–29 and nanomechanical rectifiers.30–32 If
the driving frequency is comparable to the subband level
spacing, the pumping becomes nonadiabatic and manifests
reversely shifted partial gap in the transmission as a function
of energy.26 The driving force behind nonadiabatic pumping
is the coherent inelastic multiple backscattering involving
either absorption or emission of a quantized photon energy. It
is noteworthy that these effects are applicable to design a
tunable current source or reversely to create a quantum mo-
tor driven by the generated electric current33 or fast manipu-

lations for quantum information processing.34

Of particular interest are investigations of the interplay
between the various effects of electron transport in mesos-
copic systems. In this study the main stress falls on the in-
vestigation of tunable quantum magnetoconductance that
could be manipulated by the ac-biased quantum point con-
tacts �QPCs� in the presence of a magnetic field perpendicu-
lar to the two-dimensional electron-gas �2DEG� plane. This
can be achievable by designing a specific size and geometry
of the quantum constriction by controlling split-gate voltages
for manipulating the coupling strength between the leads and
the open cavity region confined by the QPCs.

In Sec. II, we specify the setup and the geometry of the
two-dimensional quantum channel structure, and present the
theoretical framework as well as computational approach. In
Sec. III, the main transport spectroscopy features are demon-
strated and discussed along with the underlying dynamical
mechanisms. Concluding remarks are presented in Sec. IV.

II. MODEL AND TIME-DEPENDENT LIPPMANN-
SCHWINGER APPROACH

The system under investigation is composed of split-
gates-confined QPCs embedded in a quantum channel with
parabolic confining potential Vc�y�= 1

2m��0
2y2, and hence the

electrons are transported through the broad channel with
characteristic energy scale ��0 in the transverse direction.
The electrons incident from the reservoirs propagating in the
x direction impinge on the QPC system scattered by a local
time-periodic potential Vsc�x ,y , t� under the influence of a
perpendicular magnetic field. The system is supposed to be
fabricated from a modulation-doped GaAs/AlGaAs hetero-
structure hosting a 2DEG system. The Hamiltonian thus con-
sists of

H�t� = −
�2

2m���2 −
2i

l2 y�x −
y2

l4 � + Vc�y� + Vsc�x,y,t� , �1�

where we choose a value of effective mass m�=0.067me of
the charge carriers corresponding to a GaAs-based 2DEG
and l=� / �eB� denotes the magnetic length of an electron.
The local time-dependent scattering potential
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Vsc�x,y,t� = Vs�x,y� + �
i

Vt;i�x,y�cos��t + �i� �2�

contains a static part with spatial-dependent strength Vs and a
time-dependent part with spatial-dependent strength Vt, driv-
ing frequency �, and phase �.

In the presence of a magnetic field B=Bẑ, the time-
dependent Schrödinger equation H�t��= i��t� is insepa-
rable in the �x ,y� coordinates but is separable in the mixed
momentum-coordinate representation,35,36 namely, trans-
forming the total wave function ��x ,y , t� into the wave
function ��p ,y , t� and expanding in terms of the eigenfunc-
tions �n�y , p� of an ideal quantum channel,

��p,y,t� = �
n

�n�y,p��n�p,t� . �3�

The eigenfunctions of the parabolic confinement,

�n�y,p� = �	2



�1/4 1

�2nn!
e−	2�y − y0�2/2Hn�	�y − y0�� �4�

are obtained by solving the Schrödinger equation with
Vsc�x ,y�=0 for the Hamiltonian in Eq. �1�. The shift due to
the effects of the Lorentz force is y0= p�c / �	2��� with 	
=�m��� /� being the reciprocal of the effective magnetic
length of the system. Here the effective confining strength
���=���c

2+�0
2 under a magnetic field is related to the bulk

cyclotron frequency �c=eB / �m�c� and the characteristic fre-
quency �0 for the parabolic confinement. The resulting
equation after the expansion is a coupled nonlocal integral
equation in the momentum space describing the electron
propagation of an asymptotic state occupying subband n
along the x direction that can be expressed as

i��t�n�p,t�=En�p��n�p,t� +�
n�
	 dq

2

Vn,n��p,q,t��n��q,t� . �5�

Here the electron energy En�p�=En�0�+K�p� of the subband
n contains the subband threshold En�0�= �n+ 1

2 ���� for con-
duction �n=0,1 , . . .� that is determined by the lateral con-
finement and the effective kinetic energy,

K�p� =
���0�2

�����2

�2p2

2m�
. �6�

In the integrand of Eq. �5�, the overlap integral

Vn,n��p,q,t� =	 dydxe−i�p−q�x�n
��y,p�V�x,y,t��n��y,q� �7�

constructing the matrix elements of the scattering potential
indicates the electrons in the subband n making intersubband
transitions to the intermediate states n�.

Due to the periodicity in time of the driving field, the
time-dependent wave function with incident energy E0 and
the driving potential can be transformed into the frequency
domain, namely,

�n�p,t� = �
m=−�

�

e−iEmt/��n
m�p� �8�

and

Vn,n��p,q,t� = �
m�=−�

�

e−im��tVnn�
m� �p,q� , �9�

where the quasienergy Em=E0+m�� with m and m� indicat-
ing the indices of sidebands is induced by the external driv-
ing field. The magnitude of the wave vector kn

m along the x
direction in the �n ,m� intermediate state can be expressed as

1

2
� kn

m

	
�2 ���0�2

���

= Em − En�0� . �10�

This is convenient for us to obtain the multiple-scattering
identity containing intricate intersubband and intersideband
transitions,


� kn
m

	
�2

− � q

	
�2��n

m�q� = �
m�n�

	 dp

2

V̂n,n�

m−m��q,p��n�
m��p� ,

�11�

where we have defined

V̂n,n�
m−m��q,p� = 2

�����2

���0�2

	

���

Vn,n�
m−m��q,p� �12�

for simplicity. From Eq. �11�, we can define the Green’s
function of the �n ,m� state as


� kn
m

	
�2

− � q

	
�2�Gn

m�q� = 1 �13�

and the corresponding incident wave obeys


� kn
m

	
�2

− � q

	
�2��n

m,0�q� = 0. �14�

After some algebra, we can obtain the Lippmann-Schwinger
equation for the Fourier components of the wave function
scattered into the �n ,m� state,

�n
m�q� = �n

m,0�q� + Gn
m�q� � �

r,m�
	 d�p/	�

2

V̂n,r

m−m��q,p��r
m��p�

�15�

by taking all the intermediate �r ,m�� states into account. We
note that the above equation is not suitable for numerical
calculations because the incident wave �n

m,0�q� is a delta
function in the Fourier space. To achieve exact numerical
calculation, one has to define the T matrix,

Tn�,n
m�,m�q,p� = Vn�,n

m�−m + �
r,s
	 dk

2

Vn�,r

m�−s�q,k�Gr
s�k�Tr,n

s,m�k,p�

�16�

that couples all the intermediate �n ,m� and �n� ,m�� states.
The scattering potential is expanded in the Fourier series in
Eq. �9� and the matrix elements are calculated according to
Eq. �7�. This yields a connection between the sidebands in
the system which can be seen clearly when the matrix ele-
ments for the potential are inserted into Eq. �16� for the T
matrix,
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Tn�,n
m�,m�q,p� = Vs;n�n�q,p�m�−m,0

+
1

2
Vt;n�n�q,p��m�−m,−1 + m�−m,1�

+ �
r
	 dk

2

Vs;n�r�q,k�Gr

m��k�Tr,n
m�,m�k,p�

+
1

2�
r
	 dk

2

Vt;n�r

+ �q,k�Gr
m�+1�k�Tr,n

�m�+1�,m�k,p�

+
1

2�
r
	 dk

2

Vt;n�r

− �q,k�Gr
m�−1�k�Tr,n

�m�−1�,m�k,p� ,

�17�

where

Vt;n�r
� �q,k� = �

i

Vti;n�r�q,k�e�i�i �18�

from which we can see that adjacent sidebands are coupled.
This allows us to write the momentum-space wave function
in terms of the T matrix,

�n�
m��q� = �n�

m�,0�q� + Gn�
m��q� ��

rs
	 dk

2

Tn�,r

m�,s�q,k��r
s,0�k� . �19�

The transmission coefficients or amplitudes can be found by
constructing the full wave function by inserting Eq. �19�
back into the expansions done previously, i.e., Eqs. �3� and
�8�. After performing the inverse Fourier transform into the
coordinate representation and the application of residue inte-
gration to examine only the contribution of the wave travel-
ing in the +x direction, we have the transmission amplitudes,

tn�,n
m�,0 = n�,nm�,0 −

i

2kn�
m�

Tn�,n
m�,0�kn�

m�,kn
0� . �20�

The two-terminal conductance is simply obtained by the
Landauer-Büttiker transmission function,37,38

-10 -5 0 5 10

x [β-1]

-4

-3

-2

-1

0

1

2

3

4

y
[β

-1
]

V
[_ hΩ

ω
]

≈ 202 nm

≈ 84 nm

-10 -5 0 5 10

x [β-1]

-4

-3

-2

-1

0

1

2

3

4

y
[β

-1
]

V
[_ hΩ

ω
]

≈ 202 nm

≈ 540 nm

(b)(a)

FIG. 1. �Color online� Schematic of gate-voltage-controlled split-gate constriction with no magnetic field: �a� sketch of a single split-
gated quantum constriction; �b� sketch of a double split-gated quantum constriction.
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FIG. 2. �Color online� Conductance through a single QPC as a
function of energy in magnetic field with strength from 0.0 to 4.0 T.
The parameters of the constriction potentials are the same with
Fig. 1�a�.
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FIG. 3. �Color online� Conductance as a function of energy with
no magnetic field: �a� the conductance for the case of DQPC �red
solid curve� in comparison with the case of SQPC �green dashed
curve�; �b� the logarithm conductance for the case of DQPC. The
parameters for the potentials of the DQPC are the same as Fig. 1�b�.
The resonances �A�–�C� shown by the black arrows are at E /���

=0.606, 0.733, and 0.903.
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G��� =
2e2

h
�
m�

Tr��tm��†tm�� , �21�

where tm� is constructed from the transmission amplitudes
�Eq. �20�� and our notation indicates transmission matrix
with contributions from sideband m� connecting the incident
electron flux in the various subbands in the source region to
the outgoing electron flux in the subbands in the drain.

III. RESULTS AND DISCUSSION

In this section we investigate magnetotransport properties
of split-gated systems depicted in Fig. 1. The considered
single QPC �SQPC� system shown in Fig. 1�a� can be mod-
eled by the Gaussian-shaped potential,

Vsc�x,y� = Vse
−�xx2−�y�y − y0�2

+ Vse
−�xx2−�y�y + y0�2

, �22�

where y0 is the distance of the Gaussian potential peak away
from the center of the wire in the y direction. The parameters
for the potential in Eq. �22� are Vs=6.5 meV, �x=0.5	0

2,
�y =0.3	0

2, and y0=3	0 such that the width of the QPC is 84
nm and the distance of the split gates is approximately 202
nm. The double QPC �DQPC� system shown in Fig. 1�b� is
described using four Gaussian-shaped potentials,

Vsc�x,y� = Vse
−�x�x − x0�2−�y�y − y0�2

+ Vse
−�x�x + x0�2−�y�y + y0�2

+ Vse
−�x�x − x0�2−�y�y + y0�2

+ Vse
−�x�x + x0�2−�y�y − y0�2

,

�23�

where �x0 ,y0� are the center coordinates of the Gaussian po-
tentials. The parameters are the same as the Eq. �22� except
for x0=8	0.

To investigate the electronic transport properties under a
perpendicular magnetic field, we select the confinement pa-
rameter ��0=1 meV. We assume that the quantum constric-
tion is fabricated in a high-mobility GaAs-AlxGa1−xAs het-
erostructure such that the effective Rydberg energy ERyd
=5.92 meV and the Bohr radius aB=9.79 nm. Length pa-
rameters are scaled using the effective magnetic length at
zero magnetic field, referred to as 	0

−1��33.72 nm� while
energy is either fixed in meV or given in units of the effec-
tive confinement strength ���.

We start by considering a SQPC placed at x=0 between
two electron reservoirs, as shown in Fig. 1�a�. We assume
that the QPC could be induced by metallic split gates situ-
ated on the top of the heterostructure and can be treated as an
open structure with distance dSG�202 nm. In Fig. 2, we

show the conductance as a function of incident energy under
magnetic field. By increasing the magnetic field strength
from 0.0 to 4.0 T, the subband threshold is redshifted around
1.1���, and the pinch-off regime is also reduced. Moreover,
for a given incident electron energy, increasing the magnetic
field may enhance the conductance which tends to approach
the ideal quantization. This is because of the formation of
one-dimensional edge states in the channel suppressing the
backscattering. Since there is no significant interference, we
see that the conductance plateaus are monotonically in-
creased as a function of energy for arbitrary magnetic fields
implying that no AB oscillations could be induced in such a
simple geometry and small source-drain bias regime.

To enhance the interference effects, we consider a DQPC
made by two pairs of split gates located at x= �x0 with x0
=8	0 �see Fig. 1�b�� forming a cavity with characteristic
length L�540 nm. In Fig. 3�a�, we show the conductance as
a function of incident energy in the DQPC system with no
magnetic field �red solid curve� in comparison with the case
of a SQPC �green dashed curve�. By adding the second QPC,
the conductance is strongly suppressed in the nonresonant
energies. In addition, it is interesting to see that the conduc-
tance brings forth resonance peaks instead of dips.21 This
implies that the QPC increases the subband threshold so that
electrons with energy in the pinch-off regime manifest reso-
nant transmission feature induced by the cavity formed by
the DQPC.

To obtain a deeper understanding for the resonance fea-
tures shown by the black arrows in Fig. 3�a�, we plot the
logarithm conductance shown in Fig. 3�b�. It is clearly seen
that the resonance �A� manifests dip structure while the reso-
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FIG. 4. �Color online� Probability density for resonances in the conductance marked by �a�–�c� in Fig. 3�a� with corresponding energies
E /���= �a� 0.606; �b� 0.733; �c� 0.903.
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FIG. 5. �Color online� Conductance as a function of energy with
B=1.0 T. The other parameters are the same as previous figures.
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nances �B� and �C� exhibit the Fano line shapes39 indicating
the interference between the localized and the extended
states. Their corresponding probability densities are shown in
Figs. 4�a�–4�c�. The number of probability density peaks
within the cavity region implies the order of the resonances
formed in the cavity implying that the resonances �A�–�C�
are the second to the fourth resonances in the cavity. The
ratio of the distance between the nearby peaks to the incident
wavelength is around 2.0, this indicates long-lived resonance
modes fitting the cavity in the DQPC.

We now turn to study the magnetotransport properties in
the split-gated systems. In Fig. 5, we present abundant reso-
nance features in conductance of SQPC �green dashed curve�
and DQPC �red solid curve� under magnetic field B=1.0 T.
For the case of SQPC, the conductance is monotonically in-
creased in the pinch-off regime �E /����1.3�. The conduc-
tance quantization at 1.3�E /����2.0 demonstrates that
electrons can be transported coherently within the edge chan-
nel without significant backscattering. For the case of a
DQPC, the conductance manifests resonant transmission
peaks in the low kinetic-energy regimes of the first and the
second subbands while the conductance exhibits resonant re-
flection features in the high kinetic-energy regime. The reso-
nance structures in the conductance are more dense due to
the magnetic field.

To get a better understanding for the on-resonance peaks
�A� and �B� as well as the off-resonance valley structure �C�

marked by the black arrows in Fig. 5, we plot their corre-
sponding probability densities in Figs. 6�a�–6�c�. First, when
the electron is transported with very low kinetic energy such
as the case of Fig. 6�a� in which the electron is occupying the
second subband n=1. We see that the localized states in the
cavity can be well established forming double AB-oscillation
paths, where the inner path manifests an entangled feature. In
addition, the QBSs can be formed at both ends of the open
cavity. Second, if the electron carries sufficient high kinetic
energy such as the case of Fig. 6�b� in which the electron is
occupying the first subband n=0. The Lorentz force plays a
dominant role on the transport such that the electron wave is
pushed to the upper confinement and forms an edge state
facilitating the flow of electrons through the system by sup-
pressing backscattering in the system. For comparison with
the case �A�, we show the nonresonance probability feature
shown in Fig. 6�c� in which the electron is also occupying
the second subband n=1. It is important that, in the nonreso-
nant condition, the Lorentz force is able to push the electron
a little bit to the upper confinement and QBS can be formed
only at the left QPC thus manifesting reflection feature with
minimal conductance.

In Fig. 7, we show that the conductance versus magnetic
field exhibits periodic oscillations. The period �B of AB os-
cillations is inversely proportional to the effective area A
enclosed by the electron path, given by �B=�0A−1 with
�0=h /e being the flux quantum.40 The effective area can be
slightly changed by tuning the strength Vs of split gates. The
AB oscillations with large period �B�0.5 T is associated
with the interference between the directly reflected electrons
by the left QPC and the electrons go through an enclosed
path forming a small area in the left QPC �area I in Fig. 8�.
The small oscillations superimposed on the larger ones
shown in the inset of Fig. 7 are formed due to the interfer-
ence between the electrons directly reflected by the right
QPC and the electrons going through the open cavity form-
ing a large area in the DQPC �area II in Fig. 8�. We note in
passing that our results demonstrate that the AB oscillations
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FIG. 6. �Color online� Probability density for the peaks marked in Fig. 5. �a� A ring structure inside the cavity due to the magnetic field.
E /���=2.152, n=1. �b� An edge state. E /���=2.226, n=0. �c� A scattering state. E /���=2.259, n=1.

FIG. 8. �Color online� Illustration of the possible paths that the
electrons can take and the paths that they enclose in the DQPC
system confined by double split gates �shaded regions�.
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do not require a ring geometry.41 Interference is the most
important effect to generate AB oscillations. Moreover, the
robust zero conductance feature at around B1.77 T exhib-
its that the DQPC could be applicable as a mesoscopic
switching device.

To explore the time-dependent transport in a DQPC with
time-harmonic modulation, we construct the model by using
four Gaussian-shaped potentials that are expressed as

Vsc�x,y,t� = VR�t�e−�x�x − x0�2−�y�y − y0�2

+ VR�t�e−�x�x − x0�2−�y�y + y0�2

+ VL�t�e−�x�x + x0�2−�y�y + y0�2

+ VL�t�e−�x�x + x0�2−�y�y − y0�2
, �24�

where strengths of the left QPC VL�t�=Vs+Vt cos �t and the
right QPC VR�t�=Vs+Vt cos��t+�0� contain the same driv-
ing frequency � with a phase difference �0. This driven
DQPC system is similar to the one depicted in Fig. 1�b�
except for the external driving terms with amplitude Vt.

In Fig. 9�a�, we show the conductance as a function of

incident energy for the time-harmonic DQPC �Vt=0.5 meV
and �0=
, red solid curve� in comparison with the static
DQPC �Vt=0.0 meV, green dashed curve�. It is seen that the
electron kinetic energy plays a role to suppress the
quasibound-state feature, namely, the side-peak structure in
G beneath a main resonance peak. For example, at around
E1.75���, the small peak structure is smeared into a
shoulderlike structure. Below we focus on the small side
peak in G marked by �A� beneath the main peak marked by
�B�. These conductance peaks are emphasized in Fig. 9�b�. In
the absence of time-harmonic modulation, the conductance
resonant peak at E1.339��� manifests exact resonant
transmission feature with G1.0G0. In the case the DQPC is
ac biased, this resonant peak �green dashed� may be red-
shifted to E1.322��� with a little lower main conductance
peak G0.9G0 but opening a side peak at E1.492���.
The side peak �A� with G0.1G0 is an opened sideband
channel of the main peak �B�, indicating that the electron
may emit one photon making intersideband transitions to the
resonant state in the DQPC system.

In Fig. 10, we demonstrate the intersideband transition
feature by comparing the conductance of a time-harmonic
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FIG. 9. �Color online� Conductance versus incident energy with no magnetic field �B=0� for a time-harmonic DQPC �Vt=0.5 meV and
�0=
, red solid� in comparison with that of a static DQPC �Vt=0.0 meV, green dashed�. The other parameters for the system are Vs

=6.0 meV, �x=0.5	0
2, �y =0.3	0

2, y0=3	0, x0=8	0, and driving frequency �=0.17��.
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FIG. 10. �Color online� Conductance versus incident energy with B=0 for a time-harmonic DQPC with driving frequency � /��

=0.17 �red solid� in comparison with the case of � /��=0.34 �green dashed�. The other parameters are the same as in Fig. 9.
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DQPC with different driving frequencies � /��=0.17 �red
solid� and 0.34 �green dashed�, as illustrated. From the full
conductance spectroscopy Fig. 10�a�, we see that the higher
frequency �green dashed� may suppress the side-peak fea-
ture. In Fig. 10�b�, it is clearly shown that the main resonant
state at E1.322��� is not influenced by different driving
frequencies while the quasibound states manifesting side
peaks in conductance may be redshifted by the time-
harmonic DQPC potentials with higher driving frequency. In
Fig. 11, we show the conductance as a function of phase
difference between the two QPCs. The energies are fixed at
the main peak E=1.323��� �green dashed curve� and at the
side peak E=1.268��� �red solid curve� marked, respec-
tively, by �A� and �B� in Fig. 9. Both cases are not very
sensitive to the phase difference �0 but we see that �0 at
around 
 can enhance the intersideband transitions.

We would like to bring attention in passing that the
quasibound-state features may be enhanced by increasing the
driving strength Vt but more sidebands have to be involved
for numerical accuracy. To illustrate this fact, it is demon-
strated in Fig. 12�a� that the conductance as a function of
incident energy for the case of driving amplitude Vt

=1.5 meV and driving frequency �=0.17�� in a DQPC
system exhibits clear side-peak quasibound-state features. To
identify the relationship between the photon energy �� and
the distance from the side peaks to the main peak, we focus
on the energy regime E within 1.1 to 1.6 ���, as is shown
in Fig. 12�b�. The main peak at E1.32��� has two signifi-
cant side peaks at E−�� and E+�� corresponding to the
photon sidebands by absorbing and emitting one photon to
the main resonance state, respectively. These photon-
sideband resonance features are in agreement with the
photon-assisted tunneling features demonstrated experimen-
tally by Oosterkamp et al.42

IV. CONCLUDING REMARKS

We have developed a Lippmann-Schwinger model that
has allowed us to explore the magnetotransport and time-
dependent transport spectroscopy of coherent elastic and in-
elastic multiple-scattering features relevant to quantum-
constricted SQPC and DQPC systems under a magnetic field
perpendicular to the 2DEG. We have analyzed the mecha-
nisms causing the slow and the fast conductance oscillations
due to AB interference in the DQPC system. Furthermore,
we have illustrated that the resonant states in the time-
harmonic-driven DQPC system are insensitive to the driving
frequency while the time-modulated quasibound-state mani-
festing side-peak structure in conductance is sensitive to the
driving frequency. Photon-assisted sideband quasibound-
state features through a DQPC with zero-dimensional reso-
nance states have also been demonstrated. We hope that our
numerical demonstrations on magnetotransport and time-
dependent transport could be useful for the utilization of in-
tricate coupling between subbands and sidebands toward the
realization of quantum pumping circuits and fast manipula-
tion of quantum information processing in mesoscopic sys-
tems.
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