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We have studied the optoelectronics of a polaritonic nanowire which is fabricated by embedding a polari-
tonic crystal into another polaritonic crystal. It is considered that the band gap of the embedded crystal lies
within the band gap of the host crystal. This band-gap engineering is satisfied by GaP and MgO crystals where
MgO is the host crystal. Polaritons in the nanowire are confined within the embedded crystal. Bound states of
the confined polaritons are calculated using the transfer-matrix method. The bound polariton energies are
evaluated for a GaP-MgO nanowire. It is found that the number of bound states in the wire depends on its size,
well depth, and the barrier height. The absorption coefficient of the system has also been calculated by using
the time-dependent Schrödinger equation method. Numerical simulations for the GaP-MgO nanowire show
that when the resonant energy of a quantum dot lies near the bound states the spectrum has several transparent
states. The nanowire can be switched among the transparent or absorbing states by tuning the resonant state of
the quantum dot. The present findings can be used to make types of polaritonic devices such as polaritonic
switches and transistors.
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I. INTRODUCTION

Recently there has been considerable interest in studying
the properties of polaritonic materials.1–11 Examples of these
materials include semiconductors �i.e., GaP, GaAs, and SiC�,
oxide crystals �i.e., MgO�, and salts. They are also called
dispersive materials.1–3 Polaritonic materials have energy
gaps in their dispersion relation due to the coupling between
optical phonons and photons.1–4 In this paper we study the
optoelectronic properties of nanowires made from polari-
tonic materials.

In polaritonic materials the radiation signals are carried
out by an admixture of photons and optical phonons rather
than electrons or photons. An admixture of photons and op-
tical phonons create a new quantum particle called polari-
tons. The study of characterizations and applications of these
materials is called “polaritonics.” Polaritons propagate with
frequencies in the range of hundreds of gigahertz to several
terahertz �THz�. Therefore, polaritonics lies in an intermedi-
ate regime between photonics and electronics.

The new field of polaritonics is going to be useful because
electronics suffers technological and physical barriers to in-
crease speed whereas photonics requires lossy integration of
a light source and guiding structures.5,6 Therefore, it bridges
the gap between electronics and photonics. It has a wide
range of applications, including high bandwidth signal pro-
cessing, THz imaging, and THz spectroscopy.5,6

Rupasov and Singh1 have shown that there is the suppres-
sion of spontaneous emission when a quantum dot is placed
within polaritonic materials. We found a polariton-dot bound
state in which the polaritons are localized in the vicinity of
the dot. We have also shown that bound polariton �BP� soli-
tons can be created in these materials.1 Lau and Singh2 have
studied the spontaneous emission rate of polaritons in III-V
semiconductors when two two-level atoms are doped. It is
found that when the two atoms are very close to each other
the degenerate states split into a symmetric and an antisym-
metric states. The system in the symmetric state can radiate a

polariton with a probability that is twice that of the indepen-
dent dot case. This is known as super-radiance.

Nonlinear two-polariton absorption has also been studied
in polaritonic materials doped with an ensemble of three-
level quantum dots.3 It was considered that the quantum dots
are interacting with each other via the dipole-dipole interac-
tion. It has been found that two-photon absorption can be
turned on and off when the decay resonance energy of the
three-level quantum dots is moved within the lower energy
band. The inhibition of two-polariton absorption can also be
achieved by controlling the strength of the dipole-dipole in-
teraction.

Polaritonic waveguides and resonators are also fabricated
through the femtosecond laser machining of holes or
trenches which are carved through LiNbO3 or LiTaO3 host
crystals.5–7 Infrared and optical 111 polaritons propagation
have also been investigated in a polaritonic wire made from
an isotropic dielectric material coated with metal.8 The wire
contains surface bound modes which did not exist previously
in the dielectric material.

Polaritons have also been studied in periodic and quasip-
eriodic multilayers made up of both positive �SiO2� and
negative refractive index materials.9 Polaritonic band gaps
have been found in these structures. The reflection and ab-
sorption measurements for polaritons have been performed
in ferroelectric crystals in the terahertz region.10 Photonic
crystals have also been fabricated by using polaritonic
materials.11

In the present paper polaritonic nanowires are fabricated
by embedding a polaritonic material into another. A sche-
matic diagram for the nanowire is shown in Fig. 1. It is
considered that the embedded polaritonic material has a
smaller band gap than the host material. For example, the
semiconductor GaP has a smaller band gap than that of MgO
�see Fig. 2�. Therefore, a nanowire can be fabricated by em-
bedding GaP into MgO. Because of this band-gap engineer-
ing, the polaritons are confined in the embedded materials
and have bound states. The radius of the wire is taken in the
order of several hundred nanometers.
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We have calculated the polaritonic bound states by using
the transfer-matrix method. The density of states �DOS� for
the polariton bound states has also been calculated. Numeri-
cal simulations are performed on a nanowire fabricated by
embedding GaP into MgO. It has been found that the number
of bound polaritons states depends on the size of the nano-
wire.

We have doped an ensemble of quantum dots in a polari-
tonic nanowire. There is a considerable interest in studying
electronic and photonic properties of quantum dots doped in
different materials.12,13 The quantum dots have been used as
multilevel atoms to study the interference and coherence
phenomena.12,13The quantum dots are interacting with the
polaritonic nanowire via the electron-bound polariton inter-
action. Three levels of the quantum dots are considered in
the study of the absorption. A probe-laser field is applied to
study the absorption process in the quantum dots. The ab-
sorption coefficient has been calculated by using the Schro-
dinger equation method.

Numerical simulations have been performed on the ab-
sorption coefficient and density of states. It has been found
that the absorption spectrum splits into many absorption
peaks due to the coupling between quantum dots and bound
polariton states. The number of peaks in the absorption spec-
trum depends on the number of bound states in the nanowire.
In other words, the absorption spectrum has several transpar-
ent and absorption states. The polaritonic nanowire can be
switched from one transparent state to another. It can also be
switched between a transparent minimum to an absorbing
peak. This is a very interesting discovery which can be used
to make polaritonic switches and transistors.

II. POLARITONIC NANOWIRES

We consider a polariton nanowire which is fabricated
from two polaritonic materials, A and B. Material A is em-

bedded into B. The dispersion relation for the polaritonic
materials is written as4

k =
�k
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, �1�

where �L and �T are the longitudinal and transverse optical
phonon frequencies of the polaritonic materials, respectively.
The parameter �� is the dielectric constant when the photon
frequency is infinite and c is the speed of light. The longitu-
dinal frequency is related to the optical frequency by the
Lyddane-Sachs-Teller relation as
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where �0 is the dielectric constant when the photon fre-
quency is zero.

The dispersion relation has two solutions which are writ-
ten as

�k
2 =�

1

2��L
2 + ��ck

���

�2�
�

1

2
���L

2 − ��ck
���

�2�2

+ 4��ck
���

�2

��L
2 − �T

2� 	 .

�3�

Note from the above expressions that polaritonic materials
have an energy gap in their dispersion relations. The energy
gap lies between frequencies �L and �T.

Let us denote the upper band energy edge as �c=��L and
lower band energy edge as �v=��T. In the rest of the paper
we will use the dispersion relation in the energy space rather
than in the frequency space. Therefore, the dispersion rela-
tion of the crystals A and B can be written as

Crystal B
(MgO)

Quantum
dots

2da

2db
Crystal A
(GaP)

FIG. 1. A schematic diagram is shown for polaritonic nanowires
�top view�. The nanowire is made from GaP and MgO where GaP is
embedded in MgO.
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FIG. 2. The dispersion relation �i.e., energy vs wave vector� is
plotted for GaP and MgO. The solid and dashed-dotted lines corre-
spond to GaP and MgO, respectively. Note there is an energy gap in
dispersion relations. The wave vector is multiplied by a constant
106.
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where �+� and �−� stand for the upper and lower polaritonic
bands, respectively. Crystal A has an energy band gap be-
tween �c

a and �v
a and crystal B has an energy band gap be-

tween �c
b and �v

b.
In fabricating the polaritonic nanowire it is considered

that the band gap of crystal A lies within the band gap of
crystal B. This band-structure engineering will confine the
polaritons in the doped crystal A. Therefore, crystal A acts as
a polaritonic nanowire and the polaritons are confined within
crystal A.

To achieve the above band-structure engineering we have
chosen materials GaP and MgO as an example. The former is
a semiconductor and the latter is an insulator. The upper and
lower band edges for GaP are found experimentally as �c

a

=51.4 meV and �v
a =45.4 meV, respectively.4 Similarly, the

upper and lower band edges for MgO are found experimen-
tally as �c

a=72.5 meV and �v
a =38.2 meV, respectively.4 The

dielectric constant �� is taken as 8.5 and 2.95 for GaP and
MgO, respectively.4 Using these parameters the dispersion
relations for both crystals GaP and MgO are plotted in Fig. 2.
Solid lines correspond to GaP whereas dashed-dotted lines
belong to MgO. Note that the upper and lower band edges of
GaP lie within the band gap of MgO. See solid and dashed-
dotted horizontal lines in Fig. 2. A schematic band structure
of the polaritonic wire is plotted in Fig. 3.

Band-gap materials are generally quantified by the quan-
tity called the gap to midgap ratio. This quantity plays an
important role in photonic crystals when they are used to
fabricate photonic devices. Photonic crystals are materials
which also have band gaps in their photonic dispersion rela-
tion. It is defined as

r =
�c − �v

1
2 ��c + �v�

. �5�

The gap to midgap relation for GaP and MgO is found as
12.2% and 61.9%, respectively. Note that the ratio for MgO
is larger than that of GaP.

The width and height of the wire A is taken as 2da and
2db, respectively. The nanowire lies along the z direction and
its length is taken as dc. In Ref. 14 we have calculated the
energy states of a nanowire made from photonic crystals.
They are mainly manmade materials fabricated by arranging
dielectric spheres in a periodic structure. We use the method

of Ref. 14 to calculate polariton energy states. Matching the
boundary conditions for the wave functions at interfaces15–17

we obtained the following expressions for the energies of
bound polaritons in the wire:

kn tan�knda − n
�
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�

2
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where kn and km are the x and y components of the wave
vector ka. Parameters n and m are quantum numbers. Func-
tions Fa and Fb are given as
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FIG. 3. A schematic band-structure diagram is plotted for a po-
laritonic nanowire. The lower band edges for GaP and MgO are
denoted as �a

v and �b
v, respectively. Similarly the upper band edges

for GaP and MgO are denoted as �a
c and �b

c, respectively. Note that
the upper band of the crystal GaP has a lower value than that of
MgO. The width and height of wire is taken as da and dy.
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The above expressions are obtained from Eqs. �4a� and �4b�,
respectively.

The wave vectors kn and km are quantized. Therefore, the
polariton energy within the wire is also quantized. Let the
quantized energy for the upper and lower bands be denoted
as �nmkz

+ and �nmkz

− , respectively. They are obtained from Eqs.
�4a�, �6a�, and �6b� as
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where the component kz is the z component of ka and is not
quantized. It is responsible for the polariton propagation
along the wire.

The expression of kz is obtained from Eq. �1� as �nmkz
,

kz = �Fa
2��nmkz

� � − �knm
2 � , �9a�

where

knn = ��kn�2 + �km�2,

Fa��nmkz
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When kz=0, the quantized energy of the wire can be calcu-
lated from the following equation:

knm = Fa��nm� . �10�

The expression of kz further reduces to

kz = �Fa
2��nmkz

� − Fa
2��nm� . �11�

We found that the polariton energies are quantized within the
wire. That is why we call these structures nanopolaritonic
wires.

III. ABSORPTION COEFFICIENT

It is considered that the nanowire is doped lightly with
quantum dots. Therefore, the interaction between the quan-
tum dots can be neglected. Three energy levels of the quan-
tum dots are considered in the calculation of the absorption
coefficient. The levels are denoted by �a�, �b�, and �c� where
�a� is the ground state. A schematic diagram of a quantum
dot is presented in Fig. 4.

We consider that the quantum dots are interacting with the
polaritonic nanowire which is acting as a reservoir. We call
this the quantum-dot-bound polariton �QDBP� interaction.
The origin of this interaction is as follows. We consider that
the transition energy for the transition b↔c lies near one of
the polariton localized �bound� states of the nanowire. This
transition induces an electronic dipole in the quantum dots
which interact with the polariton bound states. This interac-
tion is nothing but the electron-bound polariton interaction.

a

c

b

cbε

Probe
field

FIG. 4. A schematic diagram of a three-level quantum dot.
Three levels are denoted by �a�, �b�, and �c� where �a� is the ground
state. A probe field is applied to monitor the absorption transition
a↔b. The transition b↔c couples to the polaritonic bound states
of the wire.
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We have calculated this interaction for three-dimensional
polaritonic materials in Ref. 1. Following the method of
these references we have obtained the Hamiltonian for the
interacting quantum dots with bound polaritons as

Hpol = H0 + HQDBP, �12a�

where

H0 = �
nm

�
kz

�nmkz

+ p+
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− �t/� + H.c.,

�12c�

where �+� and �−� stand for the upper and lower polaritonic
bands, respectively. The operator 	bc

+ is called the raising
operator and is defined as 	bc

+ = �c��b�. The resonance energy
�bc is the energy difference between �b� and �c� and H.c.
stands for the Hermitian conjugate. Here p�

† and p� are
called the polariton annihilation and creation operators, re-
spectively. The first and second terms in the Hamiltonian
correspond to the bound polaritons and the QDBP interac-
tion, respectively.

Functions V���nmkz

� � are the polariton coupling parameters
and are written as

V+ =� ck
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where k is the wave vector with its expression given in Eq.
�1�. Here A is the cross-sectional area of the nanowire and

bc is the dipole moment for the transition b↔c. Note that
polariton coupling depends on the cross-sectional area A.

A probe-laser field is applied to monitor the absorption
process due to the transition a↔b in the quantum dots. The
energy of the probe field is assigned the letter �p. We use the
time-dependent Schrödinger equation to calculate the ab-
sorption coefficient. Following the method of Ref. 14 and
using Eq. �12� we have found the following expression of the
susceptibility in the linear-response theory:

� = − �0� �b

ab + i�b + �bc
+ + �bc

− � , �14�

where

�0 = � N
ab
2

��0�b
� .

Here �b and �c are the linewidths of levels �b� and �c� in the
absence of the QDBP interaction, respectively. 
ab is the
dipole moment for the transition a↔b. The parameter ab is
called the probe detuning and is defined as

ab = �ab − �p.

Functions �bc
� are called self-energies and are obtained as
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�
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Using the concept of the DOS, the summation over kz can
be replaced by the integration over energy �nmkz

� as

�
n,m

�
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where �nm
� is the DOS and is defined as
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With the help of Eq. �11� the DOS is evaluated as
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Here � is called the theta function and has the following
property:

���nmkz

� − �nm
� � = 1 for ��nmkz

� − �nm
� � � 1,

���nmkz

� − �nm
� � = 0 for ��nmkz

� − �nm
� � � 1. �20�

The expression of the DOS can be simplified when the
polariton energy lies near one of the bound energies �nm

� . We

expand the function F2��nmkz

� −�nm
� � in Eq. �18� near �nmkz

�

=�nm
� by using the Taylor series
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�� − �nm
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The first term in the above equation has the following form

POLARITONICS IN NANOWIRES MADE FROM… PHYSICAL REVIEW B 80, 195303 �2009�

195303-5



Fa
2�����−�nm
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The second term in Eq. �21� can be evaluated using Eq. �9b�
after which we obtain

Fa
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� � = Fa
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Finally the DOS is calculated as
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The above expression can be further simplified if we put
�nmkz

� =�nmkz

� in the numerator. The DOS reduces to
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where
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It is important to note that the DOS of the nanowires has a
singularity at �nmkz

=�nm.
In terms of the DOS, the self-energy reduces to

�bc
� = �

m,p
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−�
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Putting the expression of the DOS from Eq. �25� into the
above expression we find
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� d�mpkz
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where
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� = �nm

� �V���nm
� ��2. �29�

The expression of the self-energy can be further simpli-
fied to

�bc
� = �

nm

− �nm
�

�i�c + �ab − nm
� �

, �30�

where nm
� is called the bound polariton parameter. This pa-

rameter measures the difference between the resonance en-
ergy �bc and the polariton bound energies �nm

� and is defined
as

nm
� = �nm

� − �bc. �31�

The parameter �nm
� is called the QDBP parameter and is

found as
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where �0 is the linewidth of an atom in a vacuum. The
QDBP parameter controls the coupling between a quantum
dot and bound polaritons.

Note that the polariton absorption coefficient depends on
the self-energy which in turn depends on the energy differ-
ence between the transition energy �bc and a bound polariton
energy �nm �i.e., nm�. It also relies on the polariton coupling
constant �nm

� .

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section we consider that the polaritonic nanowire
consists of GaP and MgO. These two materials are chosen
because the band gap of GaP lies within the band gap of
MgO. The crystal parameters for crystals of GaP are taken as
�c

a=51.4 meV and �v
a =45.4 meV.4 Similarly the crystal pa-

rameters for crystals of MgO are taken as �c
a=72.5 meV and

�v
a =38.2 meV.

Note that the upper band of GaP is higher than that of
MgO. Let us define the well depth of the wire as
��c=�c

b−�c
a. The well depth of the present wire is ��c

=21.1 meV. Therefore, polaritons whose energies lie within
the well depth are bound according to our theory.

Note also that the lower band edge of GaP is higher than
that of MgO. We define a barrier height of the wire as
��v=�v

a −�v
b. Then, the barrier height of the present wire is

found as ��v=7.2 meV. Therefore, polaritons whose ener-
gies lie within the barrier height are bound within the barrier.
See Fig. 3.

We have performed the numerical simulation for bound
polariton energies using the equations derived in Sec. II. The
size of the nanowires are taken as da=db=1500 nm. Let us
first calculate bound polariton states lying within the well
depth formed by the upper bands of GaP and MgO. In Fig. 5
we have plotted the function appearing to the left-hand side
of Eq. �6�. Let us call it the BP function. This function gives
the number of bound states within the wire. Note in the fig-
ure that the BP function with n=0 cuts the x axis whereas the
BP function with n=1 does not cut the x axis. This means
that the wire has one bound state with n=m=0 and is located
at energy �00=66.3 meV. Here �00 stands for the ground
state.

Let us increase the size of the wire as da=db=2500 nm.
Now the results are plotted in Fig. 6. In this case both BP
functions with n=0 and 1 cut the horizontal axis. This gives
two bound states within the wire with energies
�00=57.5 meV and �10=71.3 meV. The bound-state energy
�10 corresponds to the state with quantum numbers n=1 and
m=0. However, it is found that the bound state �10 is degen-
erate with the bound state �01 which corresponds to quantum
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numbers n=0 and m=1. They are degenerate because we
have considered a symmetric nanowire. Note that both bound
states lie within the energy depth. From Figs. 6 and 7 we
conclude that the number of bound states depends on the
cross-sectional area of the wire.

Let us measure the ground-state energy with respect to the
upper band edge �a

c. The ground-state energy �00 becomes
��00=�00−�a

c =14.9 meV. It is interesting to note that there
are no polaritonic energy states between the ground state and
the upper band edge. This means that the upper band edge of
the nanowire has been increased from �c

a=51.4 meV to
�a

c +��00=66.3 meV. The increase in the band edge depends
on the size of the wire.

We have also calculated the bound polaritonic states
within the barrier of the nanowire. When the size of the wire
is taken as da=db=2500 nm, we found several bound states.
They are located at �00=39.3 meV, �10=43.5 meV, and
�11=44.4 meV. The higher excited states are almost degen-
erate with excited state �11. The reason it has several bound
states is because the height of the barrier is very small. Note
that there are no polaritonic energy states between the
ground state and the lower band edge.

Next, we calculate the absorption coefficient in the polari-
tonic wire due to the transition �a�↔ �b�. The effect of the
QDBP interaction is included in the absorption coefficient.
The energies are measured in terms of �b which is assigned a
value of 1.0 meV.14 The linewidth �c is taken as 0.001�b.14

We considered that the resonance energy lies near the bound
states i.e., �bc=41.2 meV.

The absorption coefficient is calculated for the polaritonic
barrier which is formed due to the lower band of GaP and
MgO. The results are plotted in Fig. 7 as a function of the
probe detuning parameter. The solid and dotted curves de-
note the cases in the absence and the presence of the QDBP
interaction, respectively. Note that the absorption spectrum
displays the usual symmetric Lorentzian line shape in the
absence of the interaction. The maximum of the absorption
peak is located at zero detuning.

However, in the presence of the interaction the peak splits
into several peaks. This means that the interaction is strong
and is able to split the absorption spectrum. The interaction
is strong since the DOS of the polaritonic nanowire is very
large at the bound states. The DOS has been plotted in Fig. 8
as a function of energy. One can see that the DOS is very
large near the bound photon states �00, �10, and �11.

The several transparent minima in the absorption spec-
trum are due to the scattering of the quantum dots with sev-
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eral bound states in the wire. The splitting of the absorption
peaks is explained by using the physics of dressed states.18 In
summary we have found several transparent and absorption
states in the nanowire. The polaritonic nanowire can be
switched among transparent and absorption states.

Finally we comment on the configuration of nanowires. In
the present paper we have used a square nanowire for the
calculation of bound photon energies. The bound photon en-
ergies have also been calculated for a circular nanowire. It is
found the number of bound states and their energies depend
on the radius of the wire. However, the finding of the paper
remains the same. The bound photon wave functions for the
square nanowire consist of sine and cosine functions. On the
other hand, the wave functions for the circular wire are made
from Bessel functions. Photon bound states are degenerate in
the square and circular nanowires because of their symmetri-
cal configurations. However, in elliptical nanowires the de-
generacy of the bound photon states is removed because of
their asymmetric configurations.

V. CONCLUSIONS

We have studied the optoelectronics of a polaritonic nano-
wire doped with an ensemble of three-level quantum dots.

The wire is made from two polaritonic crystals, A and B,
where crystal A is embedded in crystal B. Crystal A has a
smaller band gap than that of crystal B. Because of this
band-structure engineering the polaritons are confined in
crystal A. The bound states of the confined polaritons are
calculated. It is found that the number of bound states in the
wire depends on its size, well depth, and the barrier height.
The absorption coefficient of the system has also been cal-
culated using the time-dependent Schrödinger equation
method. Numerical simulations show when the resonance
energy for one of the transitions lies near one of the bound
states the spectrum has several transparent states. The nano-
wire can be switched among the transparent or absorbing
states by tuning the resonance state of the quantum dot. The
present findings can be used to make devices such as polari-
tonic switches and transistors.
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