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We present an implementation of localized atomic-orbital basis sets in the projector augmented wave �PAW�
formalism within the density-functional theory. The implementation in the real-space GPAW code provides a
complementary basis set to the accurate but computationally more demanding grid representation. The possi-
bility to switch seamlessly between the two representations implies that simulations employing the local basis
can be fine tuned at the end of the calculation by switching to the grid, thereby combining the strength of the
two representations for optimal performance. The implementation is tested by calculating atomization energies
and equilibrium bulk properties of a variety of molecules and solids, comparing to the grid results. Finally, it
is demonstrated how a grid-quality structure optimization can be performed with significantly reduced com-
putational effort by switching between the grid and basis representations.
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I. INTRODUCTION

Density-functional theory �DFT� with the single-particle
Kohn-Sham scheme is presently the most widely used
method for electronic-structure calculations in both solid-
state physics and quantum chemistry.1–3 Its success is mainly
due to a unique balance between accuracy and efficiency
which makes it possible to handle systems containing hun-
dreds of atoms on a single CPU with almost chemical accu-
racy.

At the fundamental level the only approximation of DFT
is the exchange-correlation functional which contains the
nontrivial parts of the kinetic and electron-electron interac-
tion energies. However, given an exchange-correlation func-
tional one is still left with the nontrivial numerical task of
solving the Kohn-Sham equations. The main challenge
comes from the very rapid oscillations of the valence elec-
trons in the vicinity of the atom cores that makes it very
costly to represent this part of the wave functions numeri-
cally. In most modern DFT codes the problem is circum-
vented by the use of pseudopotentials.4–6 The pseudopoten-
tial approximation is, in principle, uncontrolled and is, in
general, subject to transferability errors. An alternative
method is the projector augmented wave �PAW� method in-
vented by Blöchl.7 An appealing feature of the PAW method
is that it becomes exact if sufficiently many projector func-
tions are used. In another limit the PAW method becomes
equivalent to the ultrasoft pseudopotentials introduced by
Vanderbilt.5

The representation of the Kohn-Sham wave functions is a
central aspect of the numerics of DFT. High accuracy is
achieved by using system-independent basis sets such as
plane waves,7–9 wavelets,10,11 or real-space grids,12,13 which
can be systematically expanded to achieve convergence. Less
accurate but computationally more manageable methods ex-
pand the wave function in terms of a system-dependent lo-
calized basis consisting of, e.g., Gaussians14 or numerical
atomic orbitals.15,16 Such basis sets cannot be systematically
enlarged in a simple way and consequently any calculated
quantity will be subject to basis-set errors. For this reason the
former methods are often used to obtain binding energies
where accuracy is crucial while the latter are useful for struc-
tural properties which are typically less sensitive to the qual-
ity of the wave functions.

In this paper we discuss the implementation of a localized
atomic basis set in the PAW formalism and present results for
molecular atomization energies, bulk properties, and struc-
tural relaxations. The localized basis set, which we shall re-
fer to as the linear combination of atomic orbitals �LCAO�
basis, is similar to that of the well-known SIESTA pseudopo-
tential code16 but here it is implemented in our recently de-
veloped multigrid PAW code GPAW.13 A unique feature of the
resulting scheme is the possibility of using two different but
complementary basis sets. On the one hand wave functions
can be represented on a real-space grid which, in principle,
facilitates an exact representation and on the other hand the
wave functions can be represented in the efficient LCAO
basis. This allows the user to switch seamlessly between the
two representations at any point of a calculation. As a par-
ticularly powerful application of this “double-basis” feature,
we demonstrate how accurate structural relaxations can be
performed by first relaxing with the atomic basis set and then
switching to the grid for the last part. Also adsorption ener-
gies, which are typically not very good in LCAO, can be
obtained on the grid at the end of a relaxation.

While LCAO pseudopotential codes as well as plane-
wave/grid PAW codes already exist and have been discussed
extensively in the literature,7,15,16 the combination of LCAO
and PAW is different. Compared to the popular SIESTA

method, which is based on norm-conserving pseudopoten-
tials, the advantage of the present scheme �apart from the
double-basis feature� is that PAW works with coarser grids to
represent the density and effective potentials. As an example,
Fig. 1 shows the atomic orbitals of iron calculated with the
norm-conserving Hartwigsen-Goedecker-Hutter �HGH�
pseudopotentials6 as well as with PAW. Clearly the d wave
function is much smoother in PAW. This is essential for
larger systems where operations on the grid, i.e., solving the
Poisson equation, evaluating the density, and calculating the
potential matrix elements become computationally demand-
ing.

II. PROJECTOR AUGMENTED WAVE METHOD

In this section we give a brief review of the PAW formal-
ism. For simplicity we restrict the equations to the case of
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spin-paired finite systems but the generalizations to magnetic
and periodic systems are straightforward. For a more com-
prehensive presentation we refer to Ref. 7.

A. PAW transformation operator

The PAW method is based on a linear transformation T
which maps some computationally convenient “pseudo” or

“smooth” wave functions ��̃n� to the physically relevant “all-
electron” wave functions ��n�,

��n� = T ��̃n� , �1�

where n is a quantum state label, consisting of a band index
and possibly a spin and k-vector index.

The transformation is chosen as T=1+�aT a, i.e., the
identity operator plus an additive contribution centered
around each atom, which differs based on the species of
atom. The atomic contribution for atom a is determined by
choosing a set of smooth functions �̃i

a�r�, called pseudopar-
tial waves and requiring the transformation to map those
onto the atomic valence orbitals �i

a�r� of that atom, called
all-electron partial waves. This effectively allows the all-
electron behavior to be incorporated by the smooth pseudo-
wave functions. Since the all-electron wave functions are
smooth sufficiently far from the atoms, we may require the
pseudopartial waves to match the all-electron ones outside a
certain cutoff radius, such that �̃i

a�r�=�i
a�r� for r�rc. This

localizes the atomic contribution Ta to the augmentation
sphere r�rc. Finally a set of localized projectors p̃i

a�r� is
chosen as a dual basis to the pseudopartial waves. We further
want the partial-wave-projector basis to be complete within
the augmentation sphere, in the sense that any pseudowave
function should be expressible in terms of pseudopartial
waves and therefore require

�
i

��̃i
a��p̃i

a� = 1, ��̃i
a�p̃j

a� = �ij . �2�

The transformation T is then defined by

T = 1 + �
a

�
i

���i
a� − ��̃i

a���p̃i
a� , �3�

which allows the all-electron Kohn-Sham wave function

�n�r�= �r ��n� to be recovered from a pseudowave function
through

�n�r� = �̃n�r� + �
a

�
i

��i
a�r� − �̃i

a�r���p̃i
a��̃n� . �4�

We emphasize that the all-electron wave functions are never
evaluated explicitly but all-electron values of observables are
calculated through manipulations which rely only on coarse
grids or one-dimensional radial grids. Using Eqs. �1� and �3�,
the all-electron expectation value for any semilocal operator
O due to the valence states can be written as

�O� = �
n

fn��̃n�O��̃n� + �
naij

fn��̃n�p̃i
a���i

a�O�� j
a��p̃j

a��̃n�

− �
naij

fn��̃n�p̃i
a���̃i

a�O��̃ j
a��p̃j

a��̃n� . �5�

Inside the augmentation spheres the partial-wave expansion
is ideally complete, so the first and third terms will cancel
and leave only the all-electron contribution. Outside the aug-
mentation spheres the pseudopartial waves are identical to
the all-electron ones, so the two atomic terms cancel. The
atomic matrix elements of O in the second and third terms
can be pre-evaluated for the isolated atom on high-resolution
radial grids, so operations on smooth quantities, such as

��̃n�O��̃n� and �p̃i
a � �̃n�, are the only ones performed during

actual calculations.
It is convenient to define the atomic density matrices

Dij
a = �

n

�p̃i
a��̃n�fn��̃n�p̃j

a� �6�

since these completely describe the dependence of the
atomic terms in Eq. �5� on the pseudowave functions. The
expectation value can then be written as

�O� = �
n

fn��̃n�O��̃n� + �
aij

Dji
a ���i

a�O�� j
a� − ��̃i

a�O��̃ j
a�� . �7�

Although the PAW method is an exact implementation of
density-functional theory, some approximations are needed
for realistic calculations. The frozen-core approximation as-
sumes that the core states are localized within the augmen-
tation spheres and that they are not modified by the chemical
environment and hence taken from atomic reference calcula-
tions. The noncompleteness of the basis, or equivalently the
finite grid spacing, will introduce an error in the evaluation

of the PS contribution �̃n in Eq. �5�. Finally, the number of
partial waves and projector functions is obviously finite. This
means that the completeness conditions of Eq. �2� we have
required are not strictly fulfilled. This approximation can be
controlled directly by increasing the number of partial waves
and projectors.

B. Density

The electron density n�r� is the expectation value of the
real-space projection operator and, by Eq. �7�, takes the form

0 1 2 3 4 5

r [ B o h r ]

φ
(r
)

H G H 4 s

H G H 3 d

P A W 4 s

P A W 3 d

FIG. 1. �Color online� The pseudovalence states of iron calcu-
lated with PAW and the norm-conserving HGH pseudopotentials.
Both methods produce smooth wave functions for the delocalized
4s state but the lack of norm conservation allows the short-ranged
3d state in PAW to be accurately sampled on a much coarser grid.
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n�r� = ñ�r� + �
a

�na�r − Ra� − ña�r − Ra�� , �8�

where

ñ�r� = �
n

fn��̃n�r��2 + �
a

ñc
a��r − Ra�� , �9�

na�r� = �
ij

Dji
a �i

a�r�� j
a�r� + nc

a�r� , �10�

ña�r� = �
ij

Dji
a �̃i

a�r��̃ j
a�r� + ñc

a�r� . �11�

Here we have separated out the all-electron core density
nc

a�r� and the pseudocore density ñc
a�r�, where the latter can

be chosen as any smooth continuation of nc
a�r� inside the

augmentation spheres since it will cancel out in Eq. �8�. We
omit conjugation of the partial waves since these can be cho-
sen as real functions without loss of generality.

C. Compensation charges

In order to avoid dealing with the cumbersome nuclear
point charges and to compensate for the lack of norm con-
servation, we introduce smooth localized compensation

charges Z̃a�r� on each atom, which are added to ñ�r� and
ña�r�, thus keeping the total charge neutral. This yields a
total charge density that can be expressed as

��r� = �̃�r� + �
a

��a�r − Ra� − �̃a�r − Ra�� �12�

in terms of the neutral charge densities

�̃�r� = ñ�r� + Z̃�r� = ñ�r� + �
a

Z̃a�r − Ra� , �13�

�a�r� = na�r� + Za��r� , �14�

�̃a�r� = ña�r� + Z̃a�r� , �15�

where Za��r� is the central nuclear point charge. The com-
pensation charges are chosen to be localized functions
around each atom of the form

Z̃a�r� = �
L

QL
ag̃L

a�r� = �
lm

Qlm
a rlg̃l

a�r�Ylm�r̂� , �16�

where g̃l
a�r� are fixed Gaussians and Ylm�r̂� are spherical har-

monics. We use L= l ,m as a composite index for angular and
magnetic quantum numbers. The expansion coefficients QL

a

are determined in terms of Dij
a by requiring the compensation

charges to cancel all the multipole moments of each augmen-
tation region up to some order, generally lmax=2. The
charges will therefore dynamically adapt to the surroundings
of the atom. For more details we refer to the original work by
Blöchl.7

D. Total energy

The total energy can also be separated into smooth and
atom-centered contributions

E = Ẽ + �
a

�Ea − Ẽa� , �17�

where

Ẽ = �
n

fn��̃n� −
1

2
�2��̃�n + �

a
	 ñ�r�v̄a��r − Ra��dr

+
1

2
	 	 �̃�r��̃�r��

�r − r��
drdr� + Exc�ñ� , �18�

Ea = �
ij

Dji
a ��i

a� −
1

2
�2�� j

a� + Tcore
a +

1

2
	 	 �a�r��a�r��

�r − r��
drdr�

+ Exc�na� , �19�

Ẽa = �
ij

Dji
a ��̃i

a� −
1

2
�2��̃ j

a� + T̃core
a +	 ña�r�v̄a�r�dr

+
1

2
	 	 �̃a�r��̃a�r��

�r − r��
drdr� + Exc�ña� . �20�

The terms Tcore
a and T̃core

a are the kinetic-energy contributions
from the frozen-core states while v̄a�r� is an arbitrary poten-
tial, vanishing for r�rc

a. This potential is generally chosen to
make the atomic potential smooth while its contribution to
the total energy vanishes if the partial-wave expansion is
complete.13

Exc is the exchange-correlation functional, which must be
local or semilocal as per Eq. �7� for the above expressions to
be correct. While the functional is nonlinear, it remains true
that

Exc�n� = Exc�ñ� + �
a

�Exc�na� − Exc�ña�� �21�

because of the functional’s semilocality: the energy contribu-
tion from ñ�r� around every point inside the augmentation
sphere is exactly canceled by that of ña�r� since ñ�r� and
ña�r� are exactly identical here, leaving only the contribution
Exc�na�. Outside the augmentation region, a similar argument
applies to na�r� and ñ�r�, leaving only the energy contribu-
tion from ñ�r� which is here equal to the all-electron density.

E. Hamiltonian and orthogonality

In generic operator form, the Hamiltonian corresponding
to the total energy from Eq. �17� is

H̃ = −
1

2
�2 + ṽ + �

aij

�p̃i
a��Hij

a �pj
a� , �22�

where ṽ= ṽHa��̃�+ v̄+vxc�ñ� is the local effective potential,
containing the Hartree, the arbitrary localized and the xc po-
tentials, and where

�Hij
a =

�E

�Dji
a �23�

are the atomic Hamiltonians containing the atom-centered
contributions from the augmentation spheres. Since the all-

LOCALIZED ATOMIC BASIS SET IN THE PROJECTOR… PHYSICAL REVIEW B 80, 195112 �2009�

195112-3



electron wave functions �n must be orthonormal, the pseudo-

wave functions �̃n must obey

�nm = ��n��m� = ��̃n�T†T��̃m� = ��̃n�S��̃m� , �24�

where we have defined the overlap operator

S = T†T = 1 + �
aij

�p̃i
a��Sij

a �p̃j
a� . �25�

The atomic contributions

�Sij
a = ��i

a�� j
a� − ��̃i

a��̃ j
a� �26�

are constant for a given element.
Given the Hamiltonian and orthogonality condition, a

variational problem can be derived for the pseudowave func-
tions. This problem is equivalent to the generalized Kohn-
Sham eigenvalue problem

H̃��̃n� = S��̃n��n, �27�

which can then be solved self-consistently with available
techniques.

III. LOCALIZED BASIS SETS IN PAW

We now introduce a set of basis functions �	
� which are
fixed, strictly localized atomic-orbital-like functions repre-
sented numerically, following the approach by Sankey and
Niklewski.15 We furthermore consider the pseudowave func-

tions ��̃n� to be linear combinations of the basis functions

��̃n� = �



c
n�	
� , �28�

where the coefficients c
n are variational parameters. It
proves useful to define the density matrix

�
� = �
n

c
nfnc�n
� . �29�

The pseudodensity can be evaluated from the density matrix
through

ñ�r� = �

�

	

� �r�	��r���
 + �

a

ñc
a�r� . �30�

Ahead of a calculation, we evaluate the matrices

T
� = �	
� −
1

2
�2�	�� , �31�

Pi

a = �p̃i

a�	
� , �32�

�
� = �	
�	�� , �33�

which are used to evaluate most of the quantities of the pre-
vious sections in matrix form. The atomic density matrices
from Eq. �6� become

Dij
a = �


�

Pi

a �
�Pj�

a� �34�

and the kinetic-energy contribution in the first term of Eq.
�18� is

�
n

fn��̃n� −
1

2
�2��̃n� = �


�

T
���
. �35�

We can then define the Hamiltonian matrix elements by tak-
ing the derivative of the total energy E with respect to the
density-matrix elements, which eventually results in the dis-
cretized Hamiltonian

H
� 

�E

���


= T
� + V
� + �
aij

Pi

a��Hij

a Pj�
a , �36�

where

V
� =	 	

� �r�ṽ�r�	��r�dr . �37�

The overlap operator of Eq. �25� has the matrix representa-
tion

S
� = �	
�S�	�� = �
� + �
aij

Pi

a��Sij

a Pj�
a , �38�

so orthogonality of the wave functions is now expressed by

�

�

c
m
� S
�c�n = �mn. �39�

This is incorporated by defining a quantity  to be variation-
ally minimized with respect to the coefficients, specifically

 = E − �
mn
�

�nm�c
m
� S
�c�n − �mn� . �40�

Setting the derivative of  with respect to c
n equal to 0, one
obtains the generalized eigenvalue equation

�
�

H
�c�n = �
�

S
�c�n�n, �41�

which can be solved for the coefficients c
n and energies �n
when the Hamiltonian H
� and the overlap matrix S
� are
known.

A. Basis functions generation

The basis functions �	
� in Eq. �28� are atom-centered
orbitals written as products of numerical radial functions and
spherical harmonics,

	nlm�r� = �nl�r�Ylm�r̂� . �42�

In order to make the Hamiltonian and overlap matrices
sparse in the basis-set representation, we use strictly local-
ized radial functions, i.e., orbitals that are identically zero
beyond a given radius, as proposed by Sankey and
Niklewski15 and successfully implemented in the SIESTA

method.16

The first �single-zeta� basis orbitals �nl
AE�r� are obtained

for each valence state by solving the radial all-electron
Kohn-Sham equations for the isolated atom in the presence
of a confining potential with a certain cutoff. If the confining
potential is chosen to be smooth, the basis functions simi-
larly become smooth. We use the same confining potential as
proposed in Ref. 17. The smooth basis functions are then

LARSEN et al. PHYSICAL REVIEW B 80, 195112 �2009�

195112-4



obtained using �nl�r�=T−1�nl
AE�r�. The result of the procedure

is illustrated in Fig. 2.
The cutoff radius is selected in a systematic way by speci-

fying the energy shift �E of the confined orbital compared to
the free-atom orbital. In this approach small values of �E
will correspond to long-ranged basis orbitals.16

To improve the radial flexibility, extra basis functions
with the same angular momentum l �multiple zeta� are con-
structed for each valence state using the split-valence
technique.16 The extra function is constructed by matching a
polynomial to the tail of the atomic orbital, where the match-
ing radius is determined by requiring the norm of the part of
the atomic orbital outside that radius to have a certain value.

Finally, polarization functions �basis functions with l
quantum number corresponding to the lowest unoccupied an-
gular momentum� can be added in order to improve the an-
gular flexibility of the basis. There are several approaches to
generate these orbitals, such as perturbing the occupied
eigenstate with the highest l quantum number with an elec-
tric field using first-order perturbation theory �like in Ref.
16� or using the appropriate unoccupied orbitals. As a first
implementation we use a Gaussian-type function of the form
rl exp�−�r2� for the radial part, where l corresponds to the
lowest unoccupied angular momentum. This produces rea-
sonable polarization functions as demonstrated by the results
presented in a following section.

A generator program is included in the GPAW code and it
can produce basis sets for virtually any elements in the peri-
odic table. Through our experiences with generating and us-
ing different basis sets, we have reached the following set of
default parameters: we usually work with a double zeta po-
larized �DZP� basis. The energy shift for the atomic orbital is
taken as 0.1 eV and the tail norm is 0.16 �in agreement with
SIESTA �Ref. 16�. The width of the Gaussian used for the
polarization function is 1/4 of the cutoff radius of the first
zeta basis function. Further information can be found in the
documentation for the basis-set generator. At this point we
have not yet systematically optimized the basis-set param-
eters, although we expect to do so by means of an automatic
procedure.

B. Atomic forces

The force on some atom a is defined as the negative de-
rivative of the total energy of the system with respect to the
position of that atom,

Fa = −
�E

�Ra . �43�

The derivative is to be taken with the constraints that self-
consistency and orthonormality according to Eq. �39� must
be obeyed. This implies that the calculated force will corre-
spond to the small-displacement limit of the finite-difference
energy gradient one would obtain by performing two sepa-
rate energy calculations, where atom a is slightly displaced
in one of them.

The expression for the force is obtained by using the
chain rule on the total energy of Eq. �17�. The primary com-
plication compared to the grid-based PAW force formula, Eq.
�50� from Ref. 13, is that the basis functions move with the
atoms, introducing extra terms in the derivative.

The complete formula for the force on atom a is

Fa = − 2R �

�a;�

dT
�

dRa ��
 + 2R �

�a;�

d�
�

dRa E�


− 2R �
b;
�a;�

Z
�
b E�
 + 2R�


�

Z
�
a E�


+ 2R �
b;
�a;�

A
�
b ��
 − 2R�


�

A
�
a ��


− 2R �

�a;�

�	 d	

� �r�

dRa ṽ�r�	��r�dr���


−	 ṽ�r�
dñc

a��r − Ra��
dRa dr −	 ñ�r�

dv̄a��r − Ra��
dRa dr

−	 ṽH�r��
L

QL
a dg̃L

a�r − Ra�
dRa dr , �44�

where

A
�
b = �

ij

dPi

b�

dRb �Hij
b Pj�

b , �45�

Z
�
b = �

ij

dPi

b�

dRb �Sij
b Pj�

b , �46�

E
� = �
��

S
�
−1 H�����. �47�

The notation 
�a denotes that summation should be per-
formed only over those basis functions that reside on atom a.

Equation �44� is derived in Appendix. The last three terms
are basis set independent and inherited from the grid-based
implementation.

IV. IMPLEMENTATION

The LCAO code is implemented in GPAW, a real-space
PAW code. For the details of the real-space implementation

0 1 2 3 4

r [ B o h r ]

r
φ
(r
)

r c o n fr c u t

A E , f r e e

A E , c o n f i n e d

P S , c o n f i n e d

FIG. 2. �Color online� Basis function generation for the nitrogen
2s state: the all-electron orbital of the free atom, the confined all-
electron orbital, and the corresponding pseudowave function after
applying the inverse PAW transformation. The augmentation sphere
and basis function cutoffs are indicated.
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we refer to the original paper.13 In this code the density,
effective potential, and wave functions are evaluated on real-
space grids.

In LCAO the matrix elements of the kinetic and overlap
operators T
�, �
�, and Pi


a in Eqs. �31�–�33� are efficiently
calculated in Fourier space based on analytical expressions.15

For each pair of different basis orbitals �i.e., independently of
the atomic positions�, the overlap can be represented in the
form of radial functions and spherical harmonics. These
functions are stored as splines which can in turn be evaluated
for a multitude of different atomic separations.

The two-center integrals are thus calculated once for a
given atomic configuration ahead of the self-consistency
loop. This is equivalent to the SIESTA approach.16 The matrix
elements of the effective potential V
� are still calculated
numerically on the three-dimensional �3D� real-space grid
since the density is also evaluated on this grid.13

Because of the reduced degrees of freedom of a basis
calculation compared to a grid-based calculation, the Hamil-
tonian from Eq. �36� is directly diagonalized in the space of
the basis functions according to Eq. �41�. This considerably
lowers the number of required iterations to reach self-
consistency, compared to the iterative minimization schemes
used in grid-based calculations.

For each step in the self-consistency loop, the Hartree
potential ṽHa�r� is calculated by solving the Poisson equation
�2ṽHa�r�=−4��̃�r� in real space using existing multigrid
methods, such as the Gauss-Seidel and Jacobi methods. A
solver based on the fast Fourier transform is also available in
the GPAW code.

The calculations are parallelized over k points, spins, and
real-space domains such as in the grid-based case.13 We fur-
ther distribute the orbital-by-orbital matrices such as H
� and
S
�, and use SCALAPACK for operations on these, notably the
diagonalization of Eq. �41�.

Localized functions on the grid

Quantities such as the density ñ�r� and effective potential
ṽ�r� are still stored on 3D grids. Matrix elements such as V
�

in Eq. �37� and the pseudodensity given by Eq. �30� can
therefore be calculated by loops over grid points.

Since each basis function is nonzero only in a small part
of space, we only store the values of a given function within
its bounding sphere. Each function value inside the bounding
sphere is calculated as the product of radial and angular
parts, viz., Eq. �42�, where the radial part is represented by a
spline and the spherical harmonic evaluated in Cartesian
form, i.e., as a polynomial. The same method is used to
evaluate derivatives in force calculations, although this in-
volves the derivatives of these quantities aside from just their
function values.

We initially compile a data structure to keep track of
which functions are nonzero for each grid point. When loop-
ing over the grid, we maintain a list of indices µ for the
currently nonzero basis functions by adding or removing, as
appropriate, those functions whose bounding spheres we in-
tersect. The locations of these bounding spheres are likewise
precompiled into lists for efficient processing. The memory

overhead due to this method is still much smaller than the
storage requirements for the actual function values.

V. RESULTS

In this section we calculate common quantities using the
localized basis set on different systems. The results are com-
pared to the complete basis-set limit, i.e., a well-converged
grid calculation. Note that this comparison can be done in a
very systematic way since the calculations on the grid share
the same approximations and mostly the same implementa-
tion as the calculations performed with the localized basis.
All the results presented in this section have been obtained
using PAW setups from the extensive GPAW library, freely
available online.18

A. Molecules

In order to assess the accuracy of the LCAO implemen-
tation for small molecules, the Perdew-Burke-Ernzerhof
�PBE� �Ref. 19� atomization energies for the G2-1 data set20

are considered. The atomic coordinates are taken from
MP2�full�/6-31G�d� optimized geometries. The error with re-
spect to the grid results is shown in Fig. 3 for different basis
sets. This error is defined as

�ELCAO − �Egrid = Emol
LCAO − �

atoms
Eatoms

LCAO

− Emol
grid − �

atoms
Eatoms

grid � . �48�

The reference grid results are well-converged calculations in
very good agreement with the VASP �Ref. 8� and Gaussian14

codes. The figure shows that enlarging the basis set, i.e.,
including more orbitals per valence electron, systematically
improves the results toward the grid energies.

It must be noted that some differences with respect to the
grid atomization energies still remain, even in the case of
large basis sets. This is mainly due to the two following
reasons. First, the basis functions are generated from spin-
paired calculations and hence they do not explicitly account
for possible spin-polarized orbitals. This is in practice ac-
counted for by using larger basis sets in order to include
more degrees of freedom in the shape of the wave functions.
Second, isolated atoms are difficult to treat because of their
long-ranged orbitals. Actual basis functions are, in fact, ob-
tained from atomic calculations with an artificial confining
potential thus resulting in more confined orbitals.

B. Solids

The equilibrium bulk properties have been calculated for
several crystals featuring different electronic structures:
simple metals �Li, Na, and Al�, semiconductors �AlP, Si, and
SiC�, ionic solids �NaCl, LiF, and MgO� transition metals
�Fe, Cu, and Pt� as well as one insulator �C�. The results are
shown in Fig. 4. For comparison with grid-based calcula-
tions, the bar plots show the deviations from grid-based re-
sults for each basis set while the precise numbers are shown
in each of the corresponding tables. All the calculations were
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performed with the solids in their lowest energy crystal
structure, using the PBE functional for exchange and
correlation.19 The quantities were computed using the re-
laxed structures obtained with the default, unoptimized basis
sets. The calculations were generally spin paired, i.e., non-
magnetic, with the exception of Fe and the atomic calcula-
tions used to get cohesive energies.

The overall agreement with the real-space grid is excel-
lent: about 0.5% mean absolute error in the computation of
lattice constants, 4% in cohesive energies, and 5–8 % for
bulk moduli using double zeta polarized �DZP� basis sets.
Notice that in many cases remarkably good results can be
obtained even with a small single zeta polarized �SZP� basis,
particularly for lattice constants. This shows that structure
optimizations with the LCAO code are likely to yield very
accurate geometries. This is probably due to the fact that
calculations of equilibrium structures only involve energy
differences between very similar structures, i.e., not with re-
spect to isolated atoms, thus leading to larger error cancella-
tions.

With DZP the primary source of error in cohesive energy
comes from the free-atom calculation, where the confine-
ment of each orbital raises the energy levels by around 0.1

eV. Thus, atomic energies are systematically overestimated,
leading to stronger binding. This error can be controlled by
using larger basis-set cutoffs, i.e., choosing smaller orbital
energy shifts during basis generation.

C. Structure optimizations

LCAO calculations tend to reproduce geometries of grid-
based calculations very accurately. In structure optimiza-
tions, the LCAO code can therefore be used to provide a
high-quality initial guess for a grid-based structure optimiza-
tion.

While it is trivial to reuse a geometry obtained in one
code for a more accurate optimization in another, our ap-
proach is practical because the two representations share the
exact same framework. Thus the procedure is seamless as
well as numerically consistent, in the sense that most of the
operations are carried out using the same approximations,
finite-difference stencils, and so on. With quasi-Newton
methods, the estimate of the Hessian matrix generated during
the LCAO optimization can be reused as well. For most non-
trivial systems, an LCAO calculation is between 25 and 30

FIG. 3. �Color online� PBE atomization energies from the G2-1 data set, relative to the grid values. The corresponding mean absolute
errors with respect to the grid values are: 1.71 eV �20.4%� for DZ; 0.36 eV �4.45%� for DZP; 0.25 eV �3.02%� for triple zeta polarized; and
0.20 eV �2.44%� for triple zeta double polarized.
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times faster than a grid calculation, making the cost of the
LCAO optimization negligible.

Figure 5 shows a performance comparison when reusing
the positions and Hessian from a LCAO-based structure op-
timization for a grid-based one, using the default basis set.
The system is a 38-atom truncated octahedral gold cluster
with CO adsorbed, with the initial and final geometries
shown in the inset.

A purely grid-based optimization takes 223 CPU hours
while a purely LCAO-based one, requiring roughly the same
number of steps, takes 8.4 CPU hours. A further grid-based
optimization takes 45 CPU hours, for a total speedup factor

(a)

(b)

(c)

FIG. 4. �Color online� Deviations in lattice parameter �a�, cohe-
sive energy �b�, and relative bulk modulus �c� from the converged
results. The largest bars have been truncated and are shown with
dotted edges. See Table I for the precise values.

TABLE I. Lattice parameter �top�, cohesive energy �middle�,
and bulk modulus �bottom� calculated using different basis sets.

a �Å�

SZ SZP DZ DZP GRID

LiF 4.08 4.08 4.02 4.10 4.06

C 3.61 3.58 3.59 3.58 3.57

Na 4.18 4.19 4.26 4.24 4.19

MgO 4.26 4.28 4.27 4.27 4.26

Al 4.24 4.07 4.08 4.07 4.04

NaCl 5.52 5.62 5.61 5.67 5.69

Li 3.68 3.47 3.70 3.43 3.43

SiC 4.50 4.42 4.46 4.41 4.39

Si 5.60 5.52 5.58 5.49 5.48

AlP 5.62 5.55 5.56 5.53 5.51

Fe 2.80 2.77 2.78 2.83 2.84

Cu 3.80 3.59 3.58 3.64 3.65

Pt 4.02 3.99 3.95 3.98 3.98

MAE 0.097 0.034 0.068 0.019

MAE % 2.33 0.84 1.70 0.45

Ec �eV�

SZ SZP DZ DZP GRID

LiF 3.49 4.48 4.99 4.52 4.24

C 7.29 7.51 7.70 7.89 7.72

Na 0.97 1.02 1.07 1.07 1.09

MgO 2.81 4.01 4.94 4.97 4.95

Al 3.07 3.51 3.38 3.54 3.43

NaCl 2.94 3.14 3.24 3.26 3.10

Li 1.13 1.58 1.31 1.63 1.62

SiC 5.80 6.31 6.08 6.48 6.38

Si 4.14 4.52 4.34 4.71 4.55

AlP 3.77 4.09 3.92 4.21 4.08

Fe 1.34 3.83 4.77 5.07 4.85

Cu 2.38 3.97 3.75 4.14 3.51

Pt 4.54 5.33 5.57 5.69 5.35

MAE 0.86 0.25 0.19 0.18

MAE % 20.70 5.86 5.51 4.40

B �GPa�

SZ SZP DZ DZP GRID

LiF 87 84 91 70 80

C 394 408 411 422 433

Na 8.9 9.1 8.3 7.9 7.9

MgO 156 184 209 173 154

Al 53 74 73 79 77

NaCl 35 32 34 26 24
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of 4. The value of an initial LCAO optimization is of course
higher if the initial guess is worse. For systems where a large
fraction of the time is spent close to the converged geometry,
the speedup may not be as significant.

The energy reference corresponds to the separate cluster
and molecule at optimized geometries—the total-energy dif-
ference between an LCAO and a grid calculation is other-
wise around 30 eV. It is therefore important to choose an
optimization algorithm which will handle such a shift well.
The present plots use the L-BFGS algorithm22,23 �limited
memory Broyden-Fletcher-Goldfarb-Shanno� from the
Atomic Simulation Environment.21

VI. CONCLUSIONS

We have described the implementation of a localized ba-
sis in the grid-based PAW code GPAW and tested the method
on a variety of molecules and solids. The results for atomi-

zation energies, cohesive energies, lattice parameters, and
bulk moduli were shown to converge toward the grid results
as the size of the LCAO basis was increased. Structural prop-
erties were found to be particularly accurate with the LCAO
basis. It has been demonstrated how the LCAO basis can be
used to produce accurate initial guesses �both for the electron
wave functions, atomic structure, and Hessian matrix� for
subsequent grid-based calculations to increase efficiency of
high-accuracy grid calculations.

The combination of the grid-based and LCAO methods in
one code provides a flexible, simple, and smooth way to
switch between the two representations. Furthermore the
PAW formalism itself presents significant advantages: it is an
all-electron method, which eliminates pseudopotential errors
and it allows the use of coarser grids than norm-conserving
pseudopotentials, which increases efficiency.

Finally, the LCAO method enables GPAW to perform cal-
culations involving Green’s function, which intrinsically
need a basis set with finite support. Current developments
along these lines include electron-transport calculations,
electron-phonon coupling, and scanning tunnel microscope
simulations.
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APPENDIX: FORCE FORMULA

The force on atom a is found by taking the derivative of
the total energy with respect to the atomic position Ra. We
shall use the chain rule on Eq. �17�, taking �
�, Dij

a , ñ�r�,
�̃�r�, T
�, and v̄�r� to be separate variables for the purposes
of partial derivatives,

�E

�Ra = �

�

�E

���


���


�Ra + �
bij

�E

�Dji
b

�Dji
b

�Ra +	 �E

�ñ�r�
� ñ�r�
�Ra dr

+	 �E

��̃�r�
� �̃�r�
�Ra dr + �


�

�E

�T
�

�T
�

�Ra

+	 �E

�v̄�r�
� v̄�r�
�Ra dr , �A1�

where v̄�r�=�av̄a��r−Ra��. The remaining quantities in the
energy expression pertain to isolated atoms and thus do not
depend on atomic positions. The first term of Eq. �A1� is

�

�

�E

���


���


�Ra = 2R�

�n

H
�c�nfn

�c
n
�

�Ra

= 2R�

�n

�c
n
�

�Ra S
�c�n�nfn, �A2�

where we have used Eqs. �29� and �36� in the first step and
Eq. �41� in the second. When the atoms are displaced �infini-
tesimally�, the coefficients must change to accommodate the

TABLE I. �Continued.�

Li 10.8 15.2 10.7 16.3 14.2

SiC 178 196 221 202 211

Si 70 81 77 86 88

AlP 69 77 76 81 82

Fe 248 379 297 231 198

Cu 88 181 166 143 141

Pt 224 266 309 263 266

MAE 22.9 24.8 23.2 7.4

MAE % 20.4 18.2 18.8 6.3

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
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FIG. 5. �Color online� The energy as a function of iteration
count �top� as well as CPU time �bottom� in structure optimizations.
Shows a grid-based optimization and an LCAO-based structure op-
timization plus the continuation of the LCAO optimization after
switching to the grid representation.
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orthogonality criterion. This can be incorporated by requiring
the derivatives of each side of Eq. �39� to be equal, implying
the relationship

− �

�

c
n
� �S
�

�Ra c�n = 2R�

�

�c
n
�

�Ra S
�c�n. �A3�

Inserting this into Eq. �A2� yields

�

�

�E

���


���


�Ra = − �

�n

�S
�

�Ra c�n�nfnc
n
� = − �


�

�S
�

�Ra E�
,

�A4�

where we have introduced the matrix

E�
 = �
n

c�n�nfnc
n
� = �

��

S��
−1H����
. �A5�

The equivalence of these forms follows from Eq. �41�. The
overlap matrix elements S
� depend on Ra through the two-
center integrals �
� and Pi


b . The derivative of a two-center
integral can be nonzero only if exactly one of the two in-
volved atoms is a and for nonzero derivatives, the sign
changes if the indices are swapped. Taking these issues into
account, Eq. �A4� is split into those three terms in Eq. �44�
which contain E�
.

In the second term in Eq. �A1�, we take the Dij
b -dependent

derivative for fixed ��
, which by Eq. �23� evaluates to

�
bij

�E

�Dji
a

�Dji
a

�Ra = 2R �
bij
�

Pi

b��Hij

b �Pj�
b

�Ra ��
. �A6�

Again most of the two-center integral derivatives are zero. A
complete reduction yields the two terms in Eq. �44� which
depend on the A
�

b vectors.
Using Eq. �30�, the third term of Eq. �A1� is

	 �E

�ñ�r�
� ñ�r�
�Ra dr =	 ṽ�r�

� ñ�r�
�Ra dr

= 2R�

�
�	 �	


� �r�
�Ra ṽ�r�	��r����


+	 ṽ�r�
� ñc

a��r − Ra��
�Ra dr . �A7�

The sum over 
 can be restricted to 
�a.
Consider the fourth term of Eq. �A1�. Aside from ñ�r� and

Dij
b , which are considered fixed as per the chain rule, the

pseudocharge density �̃�r� depends only on the locations of
the compensation charge expansion functions g̃L

a�r� which
move rigidly with the atom, so

	 �E

��̃�r�
� �̃�r�
�Ra dr =	 ṽH�r�

��̃�r�

�Z̃�r�
�
bL

�Z̃�r�
�g̃L

b�r�
� g̃L

b�r�
�Ra dr

=	 ṽH�r��
L

QL
a � g̃L

a�r�
�Ra dr . �A8�

The kinetic term from Eq. �A1� is

�

�

�E

�T
�

�T
�

�Ra = �

�

�T
�

�Ra ��
 �A9�

and can also be restricted to 
�a. Finally, the contribution
from the local potential v̄a�r� is simply

	 �E

�v̄�r�
� v̄�r�
�Ra dr =	 ñ�r�

� v̄a�r − Ra�
�Ra dr . �A10�

By now we have considered all position-dependent variables
in the energy expression and have obtained expressions for
all terms present in Eq. �44�.
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