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Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides
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We introduce the complex band structure and a medium-dependent (Green’s function) quantum-optics for-
malism to study the enhanced spontaneous emission factors and Lamb shifts from a quantum dot or atom near
the surface of a slow-light metamaterial waveguide. Using a realistic loss factor of y/27w=2 THz, Purcell
factors of approximately 250 and 100 are found at optical frequencies for p-polarized and s-polarized dipoles,
respectively, placed 28 nm (0.02\) above the slab surface. For smaller loss values, we demonstrate that the
slow-light regime of odd metamaterial waveguide propagation modes can be observed and related to distinct
resonances in the Purcell factors. Correspondingly, we predict unusually large and rich Lamb shifts of approxi-
mately —1 to —6 GHz for a dipole moment of 50 Debye. We also make a direct calculation of the far-field-
emission spectra which contains direct measurable access to these enhanced Purcell factors and Lamb shifts.
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I. INTRODUCTION

Early in 1968, Veselago predicted that a planar slab of
negative-index material (NIM), which possesses both nega-
tive permittivity &€ and negative permeability u, could refo-
cus electromagnetic waves.! While an interesting prediction,
these so-called metamaterials did not receive much attention
in optics research until Sir John Pendry showed that NIMs
could be used as a “superlens,” which could overcome the
diffraction limit of conventional imaging system.? Subse-
quently, a host of applications has been proposed, ranging
from designs for optical cloaks to hide objects,® through to
schemes that completely stop light.* Although most of these
schemes are idealized, and suffer in the presence of metama-
terial loss, they have nevertheless motivated significant ex-
perimental progress. For example, Schurig ef al. experimen-
tally demonstrated some cloaking features using split-ring
resonators® and recent achievements in fabrication have fa-
cilitated the realization of negative indices at communication
wavelength® with some extension to quasi-three-dimensional
structures also reported.’

While it is certainly becoming established that metamate-
rials posses some remarkable classical optical properties, less
well studied are their quantum optical properties, such as
what happens to the spontaneous emission of an embedded
atom or quantum dot. In 1946, Purcell pointed out that due to
the spatial variation in the local photon density of states
(LDOS), the spontaneous emission rate in a cavity can be
enhanced or suppressed depending upon the distance be-
tween the mirrors.® The modification in spontaneous emis-
sion due to inhomogeneous structures is a large research field
in its own right, leading to applications in quantum optical
technology.” In the domain of metamaterials, Kistel and co-
workers investigated the spontaneous emission of an atom
placed in front of a mirror with a layer of NIM (Ref. 10); this
study was motivated by the perfect lens prediction of a van-
ishing optical path length between the focal points, leading
to the peculiar property that the evanescent waves emerging
from the source are exactly reproduced; consequently they
found that the spontaneous emission can be completely sup-
pressed. This prediction does not account for the essential
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inclusion of metamaterial loss or absorption; yet, it is well
known that metamaterials must be dispersive and absorptive
to satisfy the fundamental principle of causality and the
Kramers-Kronig relation.!! Not surprisingly, when absorp-
tion is necessarily taken into account, then the predicted
properties of an ideal lossless metamaterial can qualitatively
change. For example, the superlens and the invisible cloak
are never perfect,’>!3 and slow-light modes can never be
really stopped and are usually impractically lossy.'* Simi-
larly, it is expected that absorption will have an important
influence on the modification in spontaneous emission."> In
this regard, Xu et al.'®!7 have extended the works of Kistel
et al. to one dimensional right-handed and left-handed mate-
rial layers and find that nonradiative decay and instantaneous
radiative decay will significantly weaken the predicted inhi-
bition of spontaneous emission.

In 1978, Chance, Prock, and Silbey theoretically investi-
gated the fluorescence of an excited emitter near a dielectric
surface using a classical Green function (GF) technique.'® A
quantum electrodynamics approach was introduced in 1984
by Wylie and Sipe,'*?° where, again using GF techniques,
they showed that the scattered field can be expressed in terms
of the appropriate Fresnel susceptibilities. Using such meth-
ods, it is now well known that the photonic LDOS can be
increased near a metallic surface, e.g., see Ref. 21, whereby
the p-polarized dipole couples to a transverse magnetic (TM)
surface-plasmon polariton (SPP). Typically such resonances
are far from the optical frequency domain and they are re-
stricted to TM polarization; in addition, the emission is
dominated by quenching or nonradiative decay. Even in the
presence of gratings, enhanced emission via SPPs is not very
practical.’> However, the rich waveguide properties of
metamaterials have quite different polarization dependences
and mode structures than SPPs at a metal surface; for ex-
ample, they can support slow-light, bound propagation
modes and transverse electric (TE or s-polarized) SPPs. It is
therefore of fundamental interest to explore the quantum op-
tical aspects of these waveguides.

Enhanced emission at the surface of both metals and
metamaterial slabs was studied in 2004 by Ruppin and
Martin.?? They noted that resonance peaks due to s-polarized
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surface modes and waveguide modes can appear for the
metamaterial case although they did not discuss the origin of
the waveguide peaks. Similar findings were found by Xu et
al.** but the role of loss was not explored in detail but rather
it was treated as a perturbation and assumed to lead to only
dissipation; such an assumption is highly suspect in a NIM
waveguide since the entire modal characteristics of the struc-
ture depend intimately upon the material loss and dispersion
profiles.'* Very recently, spontaneous emission enhance-
ments in NIM materials and interesting quantum interference
effects have been reported by Li et al.?® although unrealisti-
cally small losses were typically assumed and again the
physics behind the enhancement factors was not made clear.
In all of these works, there has been no quantitative connec-
tion made to the complex band structure or to the far-field
(and thus measurable) spontaneous emission spectra or dipo-
lar frequency shifts (Lamb shifts).

In this work, the modified spontaneous emission of a
quantum dot or atom (single-photon emitter) situated above a
slow-light metamaterial waveguide is investigated in detail
by employing a medium-dependent GF theory and compar-
ing with the lossy guided waveguide modes. We compute the
Purcell factor (PF) as well as the spontaneous emission spec-
trum in the far field by developing and using a rigorous
quantum optics theory. We stress that the recent prediction of
completely stopped waveguide modes in a metamaterial
waveguide* would lead to an infinite PF but as reported by
Reza et al.,'* the properties of the slow-light modes are sig-
nificantly changed in the presence of loss; thus we also in-
vestigate the dependence on loss in some detail. We show
that the emission properties of a photon emitter can act as a
probe for below-light-line propagation-mode characteristics,
showing measurable enhanced radiative broadening and
quantum Lamb shifts. The Lamb shifts are found to be ex-
tremely rich and pronounced. We also compare and contrast
these NIM quantum optical features with well-known results
for metallic surfaces.

Our paper is organized as follows. In Sec. II, we introduce
the NIM waveguide structure of interest and compute and
discuss the band structure for both s (TE) and p (TM) polar-
ization. In Sec. III, we present a rigorous theory for calculat-
ing the PF, Lamb shift, and emitted spectrum from a single-
photon emitter. From this theory, we derive an explicit and
analytical solution to the emitted field at any spatial location
using a full non-Markovian theory which is valid for any
general media (lossy and inhomogeneous). In Sec. IV, we
discuss a general technique for computing the multilayered
GF using a stratified medium technique of Paulus et al.? and
formally separate the total GF into a homogeneous and scat-
tered part to properly obtain the photonic Lamb shift. In Sec.
V, we present calculations for the Purcell effect and Lamb
shift as well as the spontaneous emission spectra emitted into
the far field. Finally, we give our conclusions in Sec. VI.

II. METAMATERIAL SLAB WAVEGUIDES: COMPLEX
BAND STRUCTURE AND SLOW-LIGHT
PROPAGATION MODES

In the following sections, we wish to calculate the spon-
taneous emission from dipoles d=de,, where a=z or «

PHYSICAL REVIEW B 80, 195106 (2009)

Detector
ANr=R
4
T
——————————— * r =7~y
[20 x

FIG. 1. (Color online) Schematic diagram of the system being
investigated. The green dot at r=r, refers to the atom or quantum
dot that is decaying radiatively (with a rate I'), at a distance z,
above the slab of thickness 4. The vertical position of the dot, z,;
=ZO'

=x(y). Because the spontaneous emission is strongly affected
by the metamaterial waveguide modes, in this section we
present the results of calculations of the dispersion of both
TE and TM propagation modes. The schematic diagram of
the system under study is shown in Fig. 1. The negative-
index slab is surrounded by air and assumed infinite (or
much larger than a wavelength) in the x and y directions. The
thickness of the slab is /=280 nm. In view of the impor-
tance of dispersion and absorption, we take both into account
from the beginning, which ensures causality and thus avoids
unphysical results. The dispersion is introduced via the Lor-
entz and Drude models:?’
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M(w)zl—'- B 5 . s (1)
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2
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where w,,, and w,, are the magnetic and electric plasmon
frequencies, and w, is the atomic resonance frequency. In
what follow, we are interested in waveguides with guided
modes at optical frequencies and thus take wy/27
=189.4 THz, w,,/2m=165.4 THz, and w,,/27w=490 THz.

To solve the complex band structure, one can work with a
complex wave vector (8) and a real frequency (w), or, alter-
natively, a complex w and a real 8. The former is perhaps
more appropriate for modeling plane-wave excitation while
the latter is better suited for a broadband excitation response
that is invariant in z. Neither of these approaches constitutes
a complete connection to a broadband dipole response and
thus we will show both solutions, and briefly discuss their
main features. The details of these two approaches for mod-
eling metamaterial waveguide properties will be presented
elsewhere.

The complex dispersion curves of the aforementioned
metamaterial waveguide for both TE and TM modes are
shown in Figs. 2 and 3, using complex-w and complex-/3
approaches, respectively. In the complex-8 approach, we
only show the Re[ 8] solution (Fig. 3), as the Im[ 3] simply
demonstrates the large losses in the regime of slow light.!*
These curves come from the complex solution to the tran-
scendental dispersion equation derived from the Maxwell’s
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FIG. 2. (Color online) Dispersion curves of the lossy metama-
terial waveguide for the first few lower-order modes using the
complex-w approach for y/27=2 THz(y/ wy=0.01). The red and
blue curves show the surface-plasmon polariton modes and bound
propagation modes, respectively. The solid and dashed curves rep-
resent the even and odd modes, respectively. The solid thick black
curves display the vacuum light line and metamaterial light line
while the horizontal dashed lines indicate the atomic (wg) and TE
plasmon resonances (w;f). (a) Re(w) versus B for TM modes. The
modes become more dense near the resonance frequency w, and
form a continuum. (b) Im(w) versus B for TM modes. [(c) and (d)]
The same as (a) and (b) but for TE modes.

equations and the guidance conditions.?® Very recently, Ar-
chambault et al. discussed the LDOS and field confinement
near the surface of a metal using the vectorial representations
of a surface-plasmon field, and connected these to the
complex-f/ w dispersion relation.?’

In Fig. 2, we show the first few TM (TE) propagation
modes: TM2-TM6 (TE2-TE6), as well as TMO-TM1 (TEO-
TE1) SPP modes (red curves); a wide range of frequencies is
displayed from 180 to 240 THz. We stress that the TE-
polarized SPPs are unique to metamaterials and the proper-
ties of these SPP modes can be engineered to have a reso-
nance in the optical frequency regime, near the propagation
modes. For the TM case, there is also a higher-lying SPP
resonance, which we do not show as it is far outside the
frequency of interest (wi‘;‘~346 THz or specifically
w,,/ v2); the TMO and TM1 modes show the start of the SPP
modes just below the air light line.

The properties of these metamaterial waveguide modes
shown in Fig. 2 are considerably different from those in a
conventional dielectric waveguide.’® The most important dif-
ference is that backward and forward propagating modes ex-
ist and, in a lossless metamaterial waveguide, even stopped-
light modes (where the slope goes to zero) are supported.
However, the necessary inclusion of intrinsic loss in a
metamaterial slab dramatically changes the dispersion curves
near slow-light regions (see also Ref. 14). Thus one must
include material losses to have any confidence in the results
and predictions. In the complex-w solutions (Fig. 2), al-
though the slope and thus the group velocity v, is zero at
some points, the use of the group velocity as a measure of
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FIG. 3. (Color online) Dispersion curves of the lossy metama-
terial waveguide for the first few lower-order modes in using the
complex-B approach, where only Re[ 8] is shown. (a) TM modes.
(b) TE modes. The thin solid black curves represent vacuum light
line and metamaterial light line. Note that formally labeling the
curves is more difficult than in Fig. 2 due to the merging of the
different curves (e.g., the TE4 and TES5 curves near 220 THz).

energy transport is not meaningful,'* and there is a finite

imaginary part of frequency. However, at the points where
the slope is zero in Figs. 2(a) and 2(c), the density of modes
is large and as we shall see, this can lead to a large Purcell
factor at the relevant frequencies. In particular, because the
slopes of all of the different mode dispersions tend to zero as
B goes to infinity, there is a large enhancement in the density
of states at w=wy,.

In Fig. 3 we show the dispersion curves using the
complex-f approach. In this approach, the impact of material
losses on the dispersion curves are much more drastic and
these curves would appear to have little to do with the curves
in Fig. 2. However, despite their differences, there is a strong
correspondence between the two sets of curves. In a (ficti-
tious) lossless waveguide, the two sets of curves would be
identical apart from some leaky modes that carry no energy.
In the complex-f approach, two degenerate leaky modes
start at the zero-slope point of the non-SPP propagation
modes and move to higher frequencies. In Fig. 3, these leaky
modes split and merge seamlessly into the propagation mode
dispersion, creating the split-curve structure that is seen, e.g.,
for the TE4 mode near w/27=201 THz. Although the slope
no longer goes to zero in the complex-B approach at the
point where the propagation mode splits into the two leaky
modes, the energy velocity (which is the correct measure of
energy transport in a lossy system) is quite small but non-
zero. Another important difference between the modes in the
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complex-f approach and the complex-w approach is that for
the modes in the complex-w approach, S—® as w— wy,
while in the complex-8 approach, the modes bend back on
themselves at the atomic resonance frequency . Note that
the group velocity, which is given by the slope of dispersion
curve, is infinite at this point. There is no paradox here be-
cause, as discussed above, the group velocity is ill defined in
a lossy waveguide structure and the energy velocity is a cor-
rect measure of the transport speed.’! We have calculated the
energy velocity and find that the minimum-energy velocity
occurs exactly at the resonance frequency wg but that it is
never zero; for example, the energy velocity minimum for
both TE3 and TM3 modes is found to be around
1073c—10"*c, where c is the vacuum speed of light. A similar
effect occurs for TE modes near the plasmon resonance,
where in the complex-f picture, the SPP modes not only
penetrate below the plasmon frequency, but they transform
seamlessly into the higher-order leaky modes. For example,
the TE4 and TES modes merge into SPP modes. Interest-
ingly, in Fig. 3(b), we also observe new resonances in the left
branch of the leaky TE propagation modes, which couple to
the TE SPP modes just below the bare SPP resonance. Thus,
two resonances appear in this SPP frequency regime; evi-
dently, this is not expected from the complex-w perspective.

Later, we will show that the resonant frequency and the
slow-light regimes of the propagation modes are exactly co-
incident to that of the LDOS peaks in the spontaneous emis-
sion spectrum and thus both complex-w and complex-£3 band
structures are useful to gain insight into the origin of the
LDOS peaks. The spatial symmetries of the even and odd
modes will also prove to be very important; since the odd
modes have a much larger field amplitude at the surface, they
couple much more strongly to a quantum dot or atom near
the NIM surface.

III. QUANTUM THEORY OF SPONTANEOUS EMISSION
IN A METAMATERIAL

A. PF and Lamb shift

The PF is a measure of the spontaneous emission-rate
enhancement; it is defined as PF=I"/I";, where I" (the Ein-
stein A coefficient) is the spontaneous emission rate associ-
ated with population decay rate from an excited state to the
ground state and Iy is the spontaneous emission rate in
vacuum or a lossless homogeneous medium. We consider a
system consisting of a quantum dot embedded in or near a
general dispersive, absorptive, and inhomogeneous medium.
Employing a quantization scheme that rigorously satisfies the
Kramers-Kronig relations, and using the electric-dipole ap-
proximation, an appropriate Hamiltonian—following the
works of Welsch and co-workers—can be written as32-34

H=hw676"+

A=e,m

-[6*d+d7d] F(r,), (3)

dl’f dwlﬁwlfj;(r, (Ul) . f)\(l‘, 0)1)
0

where f}\(r, w;) and f')\(r,w,) are the continuum bosonic-field
operators of the electric (A=¢) and magnetic field (A=m)

PHYSICAL REVIEW B 80, 195106 (2009)

with eigenfrequency w;, 6 are the Pauli operators of the
electron-hole pair (exciton), and w, and d=n d (d is assumed
to be real) are the transition frequency and dipole moment of

the dot, respectively. The field operator F is essentially the
electric-field operator augmented by the quantum-dot polar-

ization and can be expressed as F=D/ (608)+13/ (g89€), where

D is the displacement field [E=D/ (go€) is the electric field
away from the dipole], € is the complex relative permittivity

and P is the polarization arising from the quantum-dot di-
pole; this latter contribution is needed as it is the displace-
ment field that should couple to the dipole in the interaction
Hamiltonian, !9-35-36 Using the above formalism, we derive

A o[~
F(r,?) =i\/—J deJ dr'G(r,r"; )
TE( 0

—a c
: {\’Sl(r/,wz)fe(l",wl;l) +—V
w;

) <a
X = K](r,,wl)fm(r,,wl;t) +H.c.

d[6*(1) + 67 (1) ]&r - r,)

goe(r)

, (4)

where the last term represents the polarization field from the
dipole, g/(r,w;) and k(r,w; are the imaginary parts of
e(r,w;) and 1/u(r,w;), respectively, and &(r,w;) and
u(r,w;) are the relative complex permittivity and permeabil-
ity. The dyadic G(r,r’;w;) is the electric-field GF that de-
scribes the field response at r to an oscillating polarization
dipole at r’ as a function of frequency; the GF is defined
from

W] , W} ,
V__zs(whr) G(r9r ;wl)z_zlé(r_r )9
C c

)

V X
Iu’(wl?r)

where 1 is the unit tensor.

From the above Hamiltonian, we derive the Heisenberg
equations of motion for the time-dependent operator equa-
tions as (¢ is implicit)

dA_ A
%:—l‘wl&_'Fl.h_ld'F(rd)? (6)

df,(r, )

=—iwﬁ, r,o
i fe(r, @)

- \/%ﬁ(j)d~G*(rd,r;w,)[&‘+ 61, (7)

=- i(!)[fm(r, (1)[)

- k/(r,w) ¢ .
- \/ﬂlﬁ—sol;d [G(ryr;m) X V]

X[6~+ %], (8)

dfm(r, (l)[)
dt
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where [G*(ry;1; @) X V];;=€0:G;(r,,r;w), and we have
used the one photon correlation approximation, through
&Zf‘z—f‘. We can make a Laplace transform on the above set,
defined through O,(w)= 8°ei“”é,»(t)dt, and obtain

i (1=0) A7'd-F(rgo)

0 (w) )
®—w, ®—w,
cadl -3 K

6+(w)=w (t—0)+h d F(rd,w)’ (10)

(1)+(,!)d w+wd

f,(r, o) 0) =2(r, 0 0)

_ —Siﬁn;’)d : G*(rd,r;wz)—l[o_(z)j; (w)],
(11)

fm(rawl;w) = ﬁ;(r7(‘l)l;w) - V Mid
7Tﬁ80 (O]]

i[6(w) + 6" (w)]

w— Wy

[GT(rgrsay) X V]

(12)

where O represents a possible free field or homogeneous
driving field in the absence of any quantum dot or atom.
We next assume that the initial field is the vacuum field

[ie., t”(r,w,;w):O], substitute Egs. (11) and (12) into Eq.
(4), and make use of the relation (see Ref. 32)

Wy

2
st{— k[G(r,s;m) X V][V, X G*(s,r’ ;w,)]c—2

+ SI(S’ wl)G(r,S,(,()[) : G*(S3r, 9wl)} =Im G(r’r, ,CU[)

(13)
Subsequently, we obtain an explicit solution for the dipole
operators (and thus the polarization operator)
0 (w) + 6" (w)
i6(t=0)w+ wy) +idH(t=0)(w - w,)
S(r—ry)

wh— o’ = 2w,d - lG(rd,rd;w) + —} -d/heg
g(r)

)

(14)
which we can rewrite as

- . i (t=0)(w+ wy) + i (t=0)(w— wy)
5 (0) 4 64 (w) = — = ,
w;— o —2w,d - K(r,r;o) - dhe,

(15)
where the new GF, K(r,r';w)=G(r,r';w)+8r-r")/e(r).
This is exactly the same form as the GF used in the formal-

ism by Wubs et al.,>” where the K function appears naturally
when working with mode expansion techniques for lossless
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inhomogeneous media. The origin of the discrepancy be-
tween theories that use G or K, is because the correct inter-
action Hamiltonian should really contain a displacement
field,'?3>36 as has been accounted for in our Eq. (4). This
subtlety becomes important, e.g., when deriving a Lippman-
Schwinger equation for the electric-field operator, which can
only be achieved through use of K.%’

It is worth noting that the above equations are obtained
with no Markov approximation so they can be applied to
both weak- and strong-coupling regimes of cavity QED. In
addition, we have made no rotating-wave approximations. In
the weak to intermediate coupling regime, the decay rate of
spontaneous emission I' can be conveniently expressed via
the photon GF through

2d - Im[K(rd,rd;w)] -d

F(rd7 w) = ﬁg
0

(16)

where for free space, Im[K"*(w)]=Im[G"*(w)]=w?/67c3,
and so I'°=2d°w?/ (he 6mc?).

Within the dipole approximation, the above formalism is
exact, and for lossless media, Eq. (16) can be reliably applied
as soon as G is known, and one can exploit
Im[G(r,r";w)]=Im[K(r,r’';w)], since ¢ is real. In a previ-
ous paper dealing with lossless photonic crystals,?® two of us
adopted precisely K(r,r’;w), since it can be constructed in
terms of the transverse modes. However, for lossy structures
such as metals and metamaterials, Im{G(r,r;w)] diverges,*
so we are forced to confront the immediate unphysical con-
sequences of a dipole approximation. For both real and com-
plex &, Re[G(r,r;w)] also diverges, which is well known.
These GF divergences, as r—r’, are of course not physical
and are simply a consequence of using the dipole approxi-
mation. Any finite-size emitter, no matter how small, will
have a finite PF and a finite Lamb shift.>® The usual proce-
dure for a lossy homogenous structure is to either regularize
the GF by introducing a high-momentum cutoff,*’ or to in-
troduce a real or virtual cavity around a finite-size emitter
and analytically integrate the homogenous GF.#!

In the remainder of this paper, we will only concern our-
selves with dipole emitters located in free space above a
NIM waveguide; we will, however, revisit the problem of
dipoles inside a NIM in future work, where one must care-
fully account for local-field effects. For any inhomogeneous
structure such as a layered waveguide, a convenient ap-
proach to using the GF is to formally separate it into two
parts, namely, a homogeneous contribution G"™ (whose so-
lution can be obtained analytically) and a scattering contri-
bution G**, This approach, which is especially well suited
to dipoles in free space, is the approach that we will adopt
below. Using this separation, one can identify the nondiver-
gent PF and Lamb shift solely from the scattered part of the
GF. We obtain

_ 2d - Im[Gscatt(rd,rd;w)] -d

Fscatt(rd’ w) .
0

(17)

so that the Purcell factor, for a dot in free space, is
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l"SClet(rd’ w)

PF(ry,) =1+ 18
(rd) Fo(w) ( )
Similarly, the Lamb shift is given by
d -R Gscalt , : . d
Aw(r,,w) =— ol (re.ryi )] ) (19)

ﬁSO

where we have neglected the vacuum Lamb shift from the
homogenous GF since it can be thought to exist already in
the definition of w, and in any case it will be much smaller
than any resonant frequency shifts coming from G,
While, in principle, one can apply mass-renormalization
techniques to also obtain the vacuum (or electronic) Lamb
shift,*> any observable shift will be related to—and com-
pletely dominated by—the photonic Lamb shift, and thus
from G5,

B. Spontaneous emission spectrum

Next, we will obtain an exact expression for the emitted
spectrum. From Egs. (4) and (11)—(15), we obtain the ana-

lytical expression for the electric-field operator, E(R, w), for
R#r,

+ 6
E(R,0) = f do——Im G(R.x ) - RGO
mEY w—

= S—G(R r o) d6 (o) + 67 (w)], (20)
where m=wﬁ(w,—w)+iP(m) (w; is the integration
variable) has been used. Note that the principal value of the
integral cannot be neglected, otherwise only the imaginary
part of GF in Eq. (20) is retained. This can be contrasted to
the expression derived by Ochiai et al.,*> where the real part
of the GF was omitted because they neglected the principal

value of the integral.
The power spectrum of spontaneous emission can be ob-

tained from S(R,w)=fgfﬁdtldtzei’"(’r”><E‘(t1)E*(lz)), lead-

ing to S(r,0)=((E(w)]'E(w)). Using Egs. (15) and (20), one
has, again for R#r,

S(R.0) d-GR,r ;o) (w+ w,) e 2
, W)=
Wi - 0* = 20,d - G (r 1 s 0) - difig,
21)

This is in an identical form to the emission spectrum derived
for a lossless material,*® showing that the electric-field spec-
trum at r depends on the two-space point GF, G(R,r;; ),
which describes radiative propagation from the dot position
to the detector. All that remains to be done is obtain the GF,

which we discuss next.

IV. MULTILAYERED GREEN’S FUNCTION:
PLANE-WAVE EXPANSION TECHNIQUE

The classical GF, G(r,r’; ), describes the response of a
system at the position r to a polarization dipole located at r’
so that the total electric field E(r,w)=G(r,r’; w) - p(r’, w).
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In the case of a multilayer planar system,?®* when calculat-

ing the electric field in the same layer as the dipole, and as
mentioned earlier, it is possible to write the GF in terms of a
homogenous part and a scattered part. Formally one has

G(r,r' ;o) =G""(r,r' ;o) + G**(r,r' ;w).  (22)

Because we consider z and x(y) oriented dipoles separately,
we only require the diagonal elements of the GF above the
slab and the GF tensor elements can be greatly simplified.
We take the source and field points to be r=(p,z) and r’
=(p,z’), i.e., the transverse position, p=(x,y) of the dipole
and observation points are equal. We will use the following
notation to label the three-layered structure: region 1 is air,
region 2 is metamaterial, and region 3 is air. For the total GF,
when both z and 7’ are in region 1, we have, for z=7’

il @)o “;)wf dk

Gxx/yy(pvz’zrvw) 81rc

><|:L(r§ eiklz(z+z’)+e—ik|z(z—z'))
P -

1z

k127(r,, e;kl (z+z” )+e—:k| (z-z ):| ,
ky
(23)
in(r',0)w’
GZZ(p’Z7Z/’w)=_ (Z < ) —2
8( , ) 4ac
o 3
XJ dkp_kp_z(rll)’_eiku(zﬂ')+e—ik|7(z—z'))
0 klzkl
(24)

and with 7>z’

i,ug(r',cz))a)zfOC

! —_— —
Gxx/yy(p7zaz 7w) - = chz

dkk,
0

% |:L(r§’_eiklz(z+z’) + eiklz(z—z'))k_lzZ
klz 1

X (r etk +z) _ eiklz(z—z')):| , (25)

, iu(r’, w)w K
G.(p.2.70) = TL dkpk—lz‘;?
X (1 _eiklz(z+z’) +eik1z(2‘3’)). (26)
Here, for s (TE) and p (TM) polarizations

t(s/p)t(zsllp)r%/p)e%kzzh

Y=y 7)

(s/p). (s/p) 2ik,.h*
1_r21 }’23 e 27

We define the wave vector k, w’e;u,/ ¢ in medium [. Thus,
for Re(k;)>Re(k,), the z component of the wave vector is
k= = (ki - kz)”z, where the positive (negative) sign is for
positive (negatlve) index material. For Re(k;) <Re(k,), we
have klz—t(k2 kz)”2 for both positive and negative index
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materials.?2%* The reflection and transmission coefficients
are

o= /*l’z'kiz - /J’ikzz _ Sz'kiz - Sikg'z (28)
Y mikiz + /J’ika, e ki + Sika’
S i”.kL P — j.kL (29)
ki ik Y ek, + ek,

From the above expressions it is seen that the scattered GF
for any z in region 1 (above the NIM slab) can be written as

iu(r’ ww® [~
GSCa[I(p z Z! (1)) — < dk k
EESE] ) 2
= 4rc 0o 7
S
% ( " eikiz(z+2’) _ klZ_rI])’—eiklz(zﬂ')) ,
2k, 2k7

(30)

. o0 3

in(r', w)w k it
Gscatt ,Z,Z/,(U — dk p rp_elklz(dz)_
2z (p ) 4’7TC2 0 pkl 271,

1
(31)

We highlight again that the difference between Eqgs.
(23)—(26) and Egs. (30) and (31) is simply the homogeneous
GE* From a numerical perspective, the task is to solve
Sommerfeld integrals. Such equations can be integrated in
the lower half of the complex plane using the method de-
scribed by Paulus et al.?® for positive index materials (where
the poles are in the first and the third quadrant of the com-
plex plane) or in the upper half of the complex plane for
negative-index materials (where the poles are in the second
and the fourth quadrant of the complex plane); this method
avoids any poles which may be near the real k, axis and
improves numerical convergence, though it is unnecessary
for large material loss. For our particular calculations, we
integrate Eqs. (23)—(31) using an adaptive Gauss-Kronrod
quadrature which was verified to be well converged for a
relative tolerance of 10~*. Specifically, the above equations
were integrated along an elliptical path around the region
containing the bound and radiation mode contributions,?
with the semimajor axis was 3|Re(k,)|/2 and the semiminor
axis was |Re(k,)|/1000. After integrating along the elliptical
path, the equations were integrated into the evanescent re-
gion along the real k, axis. An additional advantage of this
technique is that the integrand contributions from the bound
and evanescent modes can be conveniently compared with
the band structure, by examining the individual s- and
p-polarized contributions as a function of k, for a given o,
where it becomes obvious that the full GF solution requires
both complex-w and complex-8 pictures. Since the GF ap-
proach may be termed the complete answer, it is clear that
the band-structure approaches, either complex @ or complex
B, merely yield a limited subset solution about dipole cou-
pling in these structures; having said that, both approaches
(band structure and GF) offer a clear connection to the un-
derlying physics of enhanced Purcell factors and Lamb
shifts.
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FIG. 4. (Color online) Purcell factor as a function of frequency
for (a) y/2m=2 THz and (b) y/27=0.2 THz. The dot is located at
20=h/10=28 nm (0.02\,) above the NIM slab. The blue curves
correspond to a z-polarized dipole and the red curves correspond to
an x/y-polarized dipole. The inset is the refractive index, n, vs
frequency, where the dashed line corresponds to the imaginary part
and the solid line to the real part (which is negative throughout the
entire frequency range shown).

V. SPONTANEOUS EMISSION CALCULATIONS FOR A
SLOW-LIGHT METAMATERIAL WAVEGUIDE

A. Enhancement of the spontaneous emission rate
(Purcell effect)

The motivation behind investigating slow-light
waveguides in the context of enhanced spontaneous emission
is that, quite generally, the relevant contribution to the LDOS
from a lossless waveguide mode is inversely proportional to
the group velocity*® and so slow-light modes may lead to
significant PFs. In the field of planar photonic crystal
waveguides, GF calculations*’ and recent measurements*®
have obtained PFs greater than 30 for group velocities that
are about 40 times slower than c. This enhancement leads to
an increase in the degree of light-matter interaction and is
important for fundamental processes such as nonlinear op-
tics, and for applications such as single-photon sources. The
major difference with lossless photonic crystal waveguides
and NIM waveguides is that the NIM losses will likely mean
that they are unlikely to find practical application as efficient
photon sources since the photon emission is probably domi-
nated by nonradiative decay. Nevertheless, it is fundamen-
tally interesting to calculate the emission enhancements rates
and to connect these to a measurement that would allow
direct access to this enhanced light-matter interaction re-
gime.

For our PF calculations, we first investigate the behavior
of the spontaneous emission as a function of frequency. The
GF is obtained directly using the multilayer GF technique
described above. Figure 4 shows the spectral distribution of
the PF, when the emitter is placed above the slab [z,=z, (see
Fig. 1) =h/10=28 nm] and the loss rate /27 of the
metamaterial is 2 and 0.2 THz for (a) and (b), respectively. A
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height of 28 nm corresponds to a normalized distance of
20/ Ng=0.02, where we can reasonably expect the dipole ap-
proximation to hold (the spatial dependence will be shown
below).

Our material loss numbers (y/ wy=0.01-0.001) are close
to the state of the art for metamaterials but they are signifi-
cantly greater than those used in some previous waveguide
studies, where enhanced PFs were demonstrated with y/w,
~107'°-1073,% or no loss at all.>* For metamaterial appli-
cations, a useful figure of merit (FOM), is FOM=
—Re(n)/Im(n), with a larger FOM indicating a less lossy
metamaterial. The current FOM for typical metamaterial is
of order 100 at GHz frequencies and drops to 0.5 at optical
frequencies (380 THz).*> However, there are methods to im-
prove these FOMs as they are not fundamental material
properties; for example, Soukoulis et al. have suggested that
the FOM can be improved by a factor of 5 at optical frequen-
cies, and after optimizing their fishnet design, they have
demonstrated that the FOM can be around 10 at 380 THz (cf.
Fig. 5(c) in Ref. 50). Recently, they also demonstrated a new
design where the FOM is about 60 at 40 THz.>' For the
proposed structure with y/27=2 THz, we have a FOM of
0.72 at the resonance frequency, and a maximum FOM of
26.25 at 220 THz, which is similar to the state-of-the art
FOMs at optical frequencies.

The PF [Eq. (18)] is enhanced at the frequency of w/2
~189 THz(=wy/27), and the enhancement for a
z-polarized dipole is larger than that for an x- or y-polarized
dipole; part of the reason that the PF is larger for the
z-polarized dipole is that it couples to the TM modes, which
are more strongly influenced by material losses (through u);
we have verified that the TM and TE PFs approach one an-
other as vy in u tends to zero, and this trend can partly be
seen by comparing the TE and TM PFs in Figs. 4(a) and
4(b). In the presence of the larger loss (y/27=2 THz) the
peak F, (TM PF) is about 240 and the peak F,;, is about 120.
When y/27 is decreased to 0.2 THz, the PF increases sig-
nificantly to I',=720 and I',;,=350. The physical origin of
these large PF enhancements comes from the slow energy
velocities of the propagation modes. This can be seen from
the dispersion curves (Figs. 2 and 3), where upon close in-
spection, we realize that we are obtaining the odd mode reso-
nances, as is expected from dipoles near the surface where
the local field is larger near the NIM surface; for example,
the resonance around 207 THz corresponds to the v,—0
region of the TE3 mode [cf. Fig. 2(c) on the complex-w band
structure]. In the complex-B dispersion curves [Fig. 3(b)],
this same resonance is seen as the point where the two
branches of the TE3 mode split apart near 207 THz (B
=7 um). The series of peaks below 200 THz and above w
are due to the slow energy velocity region of the various odd
modes, which approach one another at w.

In addition, we note that for the TE modes, there is a PF
peak due to the plasmon resonance around 223 THz that has
also been highlighted elsewhere, e.g., Refs. 23-25. What is
particularly interesting, is that for reduced losses, this reso-
nance splits into two [cf. Fig. 4(b)]; moreover, by inspection
of the band structure [cf. Fig. 3(b)], the lower-lying peak of
this pair is actually due to the bound propagation modes
(e.g., TE5), which is only visible in the complex-8 band
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FIG. 5. (Color online) (a) The dependence of the maximum
values in the PF on position z, for a loss factor of y/27w=2 THz.
The solid blue and red curves correspond to the PF at w, for TM
and TE modes, respectively, and the dashed red curve corresponds
to the TE SPP mode. The upper and lower dashed gray curves show
the scaling of l/z(l,'5 and l/zg, respectively. Even at the smallest
distances from the NIM surface (~7 nm), the electrostatic limit
(where a scaling of 1/ zg would occur) has still not been reached at
the chosen frequencies (see text). (b) The maximum PFs as a func-
tion of damping factor for the dot located at zo=h/20. The curve
labeling is the same as in (a). All curves are obtained at a fixed
frequency.

structure. For larger losses, these individual peaks cannot be
resolved, and one must then assume that the broadened peak
near 223 THz for y/27=2 THz, is due to a combination of
the TE SPP and bound modes contained within the light
lines. We emphasize that this resonance, which is below the
SPP frequency, is not observable within the complex-w band
structure, as discussed earlier; it is also unique to the NIM
structure.

Next, the PF for different dot positions z, is investigated.
Similar to what happens near metal surfaces, as the dot is
brought closer to the NIM slab surface, the PF will increase
rapidly and formally diverge at the surface of the NIM slab.
In fact, it is a straightforward exercise to show analytically
that the electrostatic G at the surface of a half-space lossy
structure has an imaginary part that diverges. One finds for
the nonretarded terms (quasistatic approximation):3?

G(rs’rs) = Go(rs’rs) + Go(rs7_ rs) (SNIM - 1)/(8NIM + 1)7

where the minus and plus signs refer to TE and TM polar-
izations, respectively, G° is for free space, and ey is the
permittivity of the NIM medium. Because Re{G'(r,,r,)} di-
verges, any amount of loss in expy, no matter how small, will
lead to a divergent LDOS at the surface. Consequently, the
quasistatic approximation will not work at the surface and in
general we should consider distances significantly larger than
the emitter size if we are to employ the dipole approxima-
tion.

Figure 5(a) shows the dependence of the values of the PF
at three different resonance peaks on the position z,. Because
of the expected LDOS divergence at the surface, we only
show the behavior down to distances of &/40(z/\y=0.005);
we expect the dipole approximation to work to distances of
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around A/ 10(zg/\y=0.02). In obtaining these graphs we have
fixed the frequency. The PF enhancements are found to de-
crease as a function of distance, as expected, but large values
can still be obtained at distances (~0.4h) or more. For ex-
ample, the TM peak has a PF of 10 at a distance of 100 nm
from the surface. For metal surfaces, the TM SPP mode PF
scales as 1/ ZS for small distances (e.g., see Ref. 21), which
we have also verified for our structure [see Fig. 5(a)]. This
behavior is due to the electrostatic scaling of the evanescent
contribution from the SPP, and for our structure, this scaling
dominates for distances of around z,=0.04h. However, the
scaling of the metamaterial modes is quite different: we ob-
tain a scaling of around 1/ z(l)'s for the PF peak at w, and also
for the TE SPP mode peak. In the limit of u=1, we again
recover the 1/ zg scaling for these modes. Also in the case of
the metamaterial, significant PFs can still be achieved for
much larger distances away from the surface, even for z,
=h. The reason for this unexpected scaling is that the chosen
resonance frequencies have not yet recovered the electro-
static limit, even for dipole distances as small as 7 nm from
the surface; if we choose frequencies away from the wave-
guide peaks, then we indeed get the 1/ zg scaling from the
NIM, as expected.

The dependence of spontaneous emission on the damping
factor is plotted in Fig. 5(b), which shows that increasing the
damping factor decreases the peak spontaneous emission
rate, while increasing the full width at half maximum of the
PF resonance. However, even in the presence of very large
losses (e.g., y/2m=10 THz), we see that large PFs are still
achievable. As expected, clearly there is also a large PF en-
hancement if the nominal losses can be improved by an order
of magnitude.

B. Lamb shift and far-field spectrum of spontaneous emission

The Lamb shift is another fundamental quantum effect
whereby the vacuum interaction with a photon emitter can
cause a frequency shift of the emitter.>® Cavity QED level
shifts of atoms near a metallic surface have been shown to be
significant as one approaches the surface.?’ For optimal cou-
pling, usually these are studied at high frequencies (e.g.,
fiw>4 eV), so as to couple to the TM SPP resonance; as a
function of frequency, the level shift changes sign as we
cross the resonance.?’ For lower frequencies, a 1/ z?) van der
Waals scaling again occurs.’® Given the complicated modal
structures of NIM waveguides, it is not clear what the Lamb
shifts will look like.

The QED frequency shift of the emitter can be directly
calculated via the real part of the scattered GF [Eq. (19)].
Experimental dipole moments for semiconductor quantum
dots vary from around 30 D (D=debye) to 100 D,** so
here we adopt a dipole moment of d=50 D. The results for
z polarization and x/y polarization are shown in Figs. 6(a)
and 6(b), respectively. Our calculations indicate that the fre-
quency for a dipole above the NIM slab will be significantly
redshifted relative to vacuum, with rich frequency oscilla-
tions as one sweeps through the NIM waveguide resonances.
The Lamb shift at the w,y resonance frequency for different
loss factors 7y are identical and are not zero; the nonzero shift
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FIG. 6. (Color online) Frequency shift due to the inhomoge-
neous scattering when y/27=2 THz (solid curves) and /2
=0.2 THz (dashed curves). The dipole strength is d=50 D (see
text). (a) The dot polarization is perpendicular to the slab surface
(TM). (b) The dot polarization is parallel to the slab surface (TE).

at the main resonant frequency w is due to the asymmetry of
the PF, namely, the series of waveguide resonances at the
higher frequency end of wy. The frequency shift at w, for
TM modes is 6.3 GHz, and for TE modes is 3.5 GHz, and the
difference between them mainly comes from TM SPP modes
at wpe/ V2=490 THz. When the loss is reduced, the various
modal contributions become more pronounced. It is worth
highlighting that this frequency shift, which is completely
unoptimized, is already comparable to some of the largest
shifts reported for the real-index photonic crystal environ-
ment, e.g., |dw|/ w=4X 1073 In normalized units, we ob-
tain frequency shifts around |Sw|/w=5X 107, over a wide
frequency range. This ratio is even larger for smaller dis-
tances (and larger dipole moments), however one must watch
that the dipole approximation does not breakdown.

We also remark that these NIM Lamb shift features are
substantially different to those predicted in typical metals.
For example, we have calculated the Lamb shift from a half
space of Aluminum and find that the Lamb shift in the same
optical frequency regime is only —0.1 GHz, for an identical
dipole and position. Although closer to the SPP resonance
(which is at 2780 THz), much larger values (PF=322 at z,
=7 nm) can be achieved, the frequency dependence is rela-
tively featureless, in contrast to that shown in Fig. 6 and the
spontaneous emission is very strongly quenched in metals
near the SPP resonance.

Finally, we turn our attention to the spontaneous emission
radiation that can actually be measured. In the following, we
use Eq. (21) to investigate the emitted spontaneous emission
spectrum for two different exciton frequencies, w,;=w,; and
w4, which are indicated in Fig. 6(a). The polarization of the
quantum-dot exciton is assumed to be along z and the loss
factor is y/2m=2 THz. The frequency dependence of the
emitted radiation is shown in Fig. 7 for the two different dot
frequencies. For w;=w,, the shift at peak emissions is
—6.3 GHz and the enhancement in spontaneous emission
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FIG. 7. (Color online) Detected spontaneous emission spectrum
from a dot above the metamaterial (thick blue curve), compared
with the emission from the same dot in free space (thin black
curve). The dot location is zp=28 nm above the surface and the
detector position is 2\y=~2800 nm above the quantum dot. The dot
polarization is perpendicular to the slab surface. (a) The exciton
frequency is w,;=189.1 THz. (b) The exciton frequency is wy,
=190.7 THz.

rate is 240. For w;=w,,, the shift is —4.7 GHz and the en-
hancement in the spontaneous emission rate is 135. Usually,
with a large dipole moment of d=50 D and a spontaneous
emission enhancement on the order of 100, the photon-dot
interaction will enter the strong-coupling regime and the
emitted spectrum will show a typical spectral doublet. How-
ever, because there is quenching in the emitted photons that
will be hardly reabsorbed by the emitter, strong coupling is
not observable in the far field from the NIM waveguide.
These features depend upon the properties of the GF propa-
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gator appearing the spontaneous emission formula [Eq. (21)].
Comparing with the free space emission spectrum, the inte-
grated emission in Figs. 7(a) and 7(b) is 1.8 X 10™* and 1.6
X 1073, respectively. Thus, the predicted far-field spectra,
which obtain Purcell factor and Lamb shift signatures,
should certainly be observable experimentally.

VI. CONCLUSION

In summary, we have employed a rigorous medium-
dependent theory and a stratified GF technique, to investigate
the enhanced emission characteristics of a single-photon
emitter near the surface of the NIM slab waveguide in the
optical frequency regime. The origin of the predicted Purcell
factor peaks is primarily due to slow-light propagation
modes which have been analyzed by calculating the complex
band structure of this waveguide. Correspondingly, we also
predict a significant Lamb shift with rich frequency charac-
teristics. All of our predictions are based on a realistic
metamaterial model that includes both material dispersion
and loss and scales to any region of the electromagnetic
spectrum. The role of material loss and dipole position has
also been investigated in detail. It is further shown that the
unusual emission characteristics at the surface can act as a
sensitive and nonperturbative probe of below-light-line
waveguide mode characteristics. These predicted medium-
dependent QED effects are fundamentally interesting and
may find use for applications in quantum information science
and optical sensing.
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