PHYSICAL REVIEW B 80, 193401 (2009)

Coupling of graphene and surface plasmons
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We analyze the plasmon spectrum of a graphene sheet in the vicinity of a thick plasmalike substrate, finding

linear dispersion in some parameter ranges.
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I. INTRODUCTION

Recent intensive research!~® on the plasmon spectrum in
carbon nanotubes and graphene has revealed a linear 7 plas-
mon dispersion relation, which plays an important role in the
response of these materials to experimental probes of their
properties. Kramberger et al.! ascribe this linear plasmon dis-
persion to local field effects. In this Brief Report we examine
other possible sources of linear plasmon dispersion in
graphene, which may arise from interaction of the native
graphene plasmon (w~ ¢'’?) with the surface plasmon of a
nearby thick substrate hosting a plasma taken to be semi-
infinite (Fig. 1). The parallel two-dimensional (2D) plasma
of the graphene sheet alone has been thoroughly
examined,””'! and here, we study the effects of the Coulomb
interaction of the 2D graphene plasma with the semi-infinite
plasma of the nearby thick substrate,'*"'* whose local surface
plasmon is given by w,=w,/\2 (w§:471'e2p3D/m; psp 1s the
bulk electron density of the substrate), which is devoid of
linear character. However, the coupling of the graphene sheet
(at z5<0), which supports a two-dimensional plasma parallel
to the surface, with the semi-infinite plasmalike medium
somewhat removed from it, can induce linearity into the
plasmon dispersion at low wave number g. (Of course, such
a mechanism for linear plasmon dispersion is not available
for isolated graphene.)

The fullest description of such physical features is pro-
vided by the dynamic, nonlocal, and spatially inhomoge-
neous screening function, K(ry,#,;r,,#,), which is the space-
time matrix inverse of the direct dielectric function
e(ry,t,;15,1,) of the system

J d(S)XJ d7K(r 113X, De(X, Tiry 1) = 89(r) —1,) 81, — 1),
(1)

The frequency poles of K(r,,r,;w) define the plasmon
modes of the system and the residues describe the relative
excitation amplitudes (oscillator strengths) of these modes.
Rewriting Eq. (1) in the form of an integral equation, we
note that

er,t;r ) =8V -r)8t-1") + alr,t;x', 1),  (2)
where a(r,t;r’,1") is the combined polarizability of the
semi-infinite and two-dimensional plasma constituents of the

system. Thus, Egs. (1) and (2) lead to
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K(ry,ty510,1) = 8% (1) — 1,) 8(t; — 1)

—fd(‘”xf dra(r,t;;X, )K(X, 7:rs,1,).
(3)

Furthermore, when the energies of the quantum-well bound
state and the continuum of extended states of the bulk are
well separated (and transitions between them are energeti-
cally inaccessible),' it is an accurate and useful approxima-
tion to write the combined polarizability, a(r,,?,;r,,%), as
the sum of the polarizabilities of the semi-infinite plasma,
Qgomi(T1,11:15,1,), and the two-dimensional plasma,
aop(ry,11;1,,1,), with the result

K(rl,tl ;rz,tz) + J d(g)XJ dTasemi(rl,tl )X, T)K(X, T;rz,tz)

= 89(r; =) 81, — 1)

- J d(3)XJ dTaZD(rl,tl;X, T)K(X, T;rz,tz). (4)

Alternatively, the left-hand side of Eq. (4) may be written as

f d(3)Xf desem,-(rl,tl )X, T)K(X, T;l‘2,t2)

= 89(r -1y 81, — 1)

—Jd(3)XJ dTazD(rl,tl;X,T)K(X,T;rz,tz), (5)

where &,,,,; has the space-time matrix inverse Kj,,,;, which is
the screening function of the semi-infinite medium alone
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FIG. 1. Schematic of the geometry considered.
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f d(%)xf dTKSL'mi(rl’tl X, T)Ssemi(x’ 7 rz,tz)

= 8(r; - 1) 81, - 1), (6)
in full analogy to Eq. (1). Accordingly, Eq. (5) implies that

K(ry,t1312,85) = KX, 11310, 1)

fd(S) def d(3) ,f dr K&eml rpl5X, T)

XCYZD(X,T;X,,T’)K(X’,T’,rz,tz). (7)

II. SOLUTION OF THE INTEGRAL EQUATION

For a semi-infinite bulk plasma and a nearby parallel 2D
graphene sheet plasma, we Fourier transform in the surface
plane of translational invariance (r;—T,—q, where r=r,z)
and time (¢,—f, — w), obtaining (suppress q, w),

K(z1,25) = Ksemi(Zl ,22)

- f dz; J Az4K somi(21,23) aop(23,24) K (24,22) -

(8)

We have previously shown that the dynamic, nonlocal, and
spatially inhomogeneous screening function of the semi-
infinite medium (occupying z=0—) is given by'® [6(z)
=1 for z>0; 0 for z<0; 1/2 for z=0]

e
Koemi(z1,22) = 0(= Zl)l Nz —z9) — 1 Il 5(z,)
+ Sq
Ko(Zz)qu‘G(Zz)]
&g
Iql
+6(z1)) vo Zl) 5(22)

2ldleq Ty Kite e@)”

1+
+0(z;) [Ko(Zl +25) + Ko(z) = 2)]6(z2), (9)

where g¢(g,,7; ) is the bulk dielectric function of the semi-
infinite medium and

o

KO(ZZ) = (l/ﬂ-)J dqz COS(QZZZ)[So(C]p CY?“’)]_] s (10)
0

and

vo(20) = (2/7T)f dq. COS(CIZZz)[(Qg +7Meo(q.q; )17,
0

(11)
with s; =|g|vy(0). We further define

J(ZO) = f dZ3Ksemi(Z0’ Z3)6_@23' (12)
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For the thin 2D sheet of graphene located at z;, the three-
dimensional polarizability is described by!”

ap(21,22) = 8zp = zg)e ey, (13)

with the last factor on the right of Eq. (13), ayp=a,p(q, w),
as the planar 2D polarizablilty on the graphene sheet in 2D
wave-vector frequency representation. With this, we have
solved the integral equation for the combined screening
function of the two-component system, Eq. (8), exactly in
closed form as

aZDelq‘zo‘l(Zl)Kcemi(ZO’ ZZ)

1+ aZDemZOJ(ZO)

K(Zl aZZ) semz(zl 722) -

(14)

III. GRAPHENE PLASMON IN INTERACTION
WITH SURFACE PLASMON

Considering the local limit, we have g;=g((w) for the
semi-infinite medium, and

Ky(zp) = 8(z)/ (), (15)
with
v(z) = e 520 [ gl ) . (16)
This leads to K,,,;(z,25) in the local limit as'®
_ [ 1-¢gp(w
Koemi(21:20) = 0(=21)) 8z — 20) + 5(Zz)eqlzl<A>
1 +&p(w)
Sz1 —
+6(z)) (21— 22)

8o(w)

gL M)
+ dzg)e™ go(w) ( go(w) +1 (17)

The plasmon dispersion relation for the coupled system of
the graphene sheet and the nearby semi-infinite plasma is
given by the frequency poles of the second term on the right
of Eq. (14), namely,

1+ appel@0J(z) = 0. (18)

Determining J(z,) using Eq. (12) in the local limit of
K, omi(zo-23) given by Eq. (17), we have

_ 1-
1+a2D(1 +e2wo{—‘°’°D=o, (19)
l+80

where gy=1- wz/ w” for the local limit of the bulk dlelectrlc
function of the semi-infinite medium and arp=—wjp/ o’ for
the graphene sheet. In this analysis we first consider only
intraband polarizability terms for doped graphene since we
seek long wavelength modes w~g¢ at low wave numbers,
and interband contributions to the polarizability are relatively
small for such low frequency, low wave number terms with
hw,p/ u<<2, p being the Fermi energy; following this we
examine the role of interband corrections to the polarizability
approximately. Here, the local graphene plasma frequency is
given by’ !!
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(20)

2 2
WyHp = Wy =
where
N = ye*Vdmp,p/h, (21)

with 1y as the effective Fermi velocity and p,p is the 2D sheet
density. Thus, the plasma frequency for graphene depends on
the sheet density as p%, in contrast to usual p” 2
dependence.!! With these remarks in view, Eq. (19) yields

2
_ w
® = w§D<l + ez‘q‘z‘)—L2 2) . (22)
20" — w,

The two coupled plasmon frequencies given by the roots of
Eq. (22) are (wf:wﬁ/ 2)

wh = %[w% +wyp] = %\/[w% + w3p P — 4’ wip1 - k0],
(23)
For large separation,
completely, as
ol=w' and o=l (24)

whereas the two modes are fully hybridized for zero separa-
tion,

wi=w +wy, and @’=0. (25)

If wave number is also low in the sense that w3;=M\%|]
<w the w, plasmon is, approximately,

1\
W, = w;+ ETS’

(26)

which is linear in |g]|,
For arbitrary w%D/wf, and low but nonzero values of
|7]|z0| <1 (recall that z; is negative), we have

2w} ‘02[)
[f + @] zD]

in which the coupling hybridization of the two modes is
somewhat diminished, and

27

2 2. 2
w, =[] + wyp] -

2 2

2
W =
- 2
o) zD]
2

which is not specifically an acoustic mode because wjy,
~|g] is involved in the denominator on the right of Eq. (28),
as well as in the numerator. For very low wave numbers,
wyp << wy, the mode w_ is acoustic with

(28)

2 n 2 |o] —12
w” = 2w3p|qllzol ~ |71*. (29)
However, when w,p> w,, it is not acoustic, having the value

? = 20|z ~ |3]. (30)

To assess the role of interband corrections, we note that
the ratio, R, of interband terms to intraband terms in the
graphene polarizability is given by’ !!
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h 1-hw/2
R _w( | LR

1+hw2u

fiw\?
o J=-(32). o

where fiw/2u<<1 as discussed above. Accordingly, the po-
larizability is approximately given by

2 2 2
h
a2D=—“’—2§’+(ﬂ) =-L.5 (32
10} 21 10}
and we have defined 3 as
A 2
B= (ﬂ) <1. (33)
2u

(For example, with |g]=0.1g; [Fermi wave number], 8 is
about 0.04.) The resulting graphene-coupled plasmon disper-
sion relation, Eq. (19), may be rewritten as

[1+ Bl - 0w+ @l(1 + B+ wipwE=0, (34)
where £ is defined by
E=1- ko, (35)

The solutions of the quadratic dispersion relation are given
by

w

,  [wp+ j(1+ BH)]

2(1+B)
[
L V(wip + o1+ BED - 4(1 + Bwipwié 36)
B 2(1+B) '
The plasmons decouple as zo— — ({§— 1) with the results
2
wi: " -:],)8 and w’= wf, (37)

showing that the graphene mode is lowered somewhat by the
intersubband contribution, while the decoupled semi-infinite
bulk surface plasmon is unaffected by it. On the other hand,
when the graphene sheet is directly on the bounding surface

of the bulk, z,=0 and £=0, we obtain
2 2
w + w
wi=—— and w’=0, (38)
1+

showing that the fully coupled plasma modes are equally
affected by the intersubband contribution in this case. Fi-
nally, considering z, small in the sense that

2|£7|Z0< 1» or §=—2|§|Z0, (39)
we have
(w3p + w}[1 - 2Bz|g]])

2(1+B)

[( 2 2
L, Vlwpp + w[1-

2
W =

2B20/q|1)* + 8(1 + B)wrpw? ZO|CI|
2(1+p)

(40)

This result may be further expanded to examine particular
limits as done above. However, as B=(fw,p/2u)><<1, no
significant deviations are to be expected.
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IV. SUMMARY: DISCUSSION

The formulation of this calculation in Sec. II, including
Egs. (8)-(14), is sufficiently general to accommodate de-
tailed studies of a graphene sheet near a thick substrate rang-
ing from the nonlocal plasmon spectrum to static shielding,
including an ambient magnetic field if desired. Furthermore,
we have presented the exact, explicit solution for the screen-
ing function in closed form [Eq. (14)], and examined its
frequency poles [Eq. (18)] to determine the coupled plasmon
mode spectrum. The local results that we have obtained in-
dicate that complete hybridization of the two plasmon
modes, w, and w,p, occurs when the 2D graphene sheet is
directly on the bounding surface of the bulk medium, z,=0.
The completely hybridized upper mode at z,=0 exhibits lin-
ear dispersion [Eq. (26)] for wave number low in the sense
w3 < but it is not acoustic.
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The mode coupling is reduced when the 2D sheet is not
exactly at z,=0, and explicit results for the upper and lower
partially coupled modes are presented in Egs. (27) and (28)
for small, but finite, separation, |g ||zo| < 1. The lower mode is
not always an acoustic mode, although it becomes acoustic
when w,p<<w,. Of course, the two modes decouple com-
pletely for large separation, |g||zo|> 1. Finally, we have also
examined the role of interband (as well as intraband) polar-
izability terms in the coupled plasmon modes in Eqgs.
(30)-(40), finding it to be small.
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