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We analyze the plasmon spectrum of a graphene sheet in the vicinity of a thick plasmalike substrate, finding
linear dispersion in some parameter ranges.
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I. INTRODUCTION

Recent intensive research1–6 on the plasmon spectrum in
carbon nanotubes and graphene has revealed a linear � plas-
mon dispersion relation, which plays an important role in the
response of these materials to experimental probes of their
properties. Kramberger et al.1 ascribe this linear plasmon dis-
persion to local field effects. In this Brief Report we examine
other possible sources of linear plasmon dispersion in
graphene, which may arise from interaction of the native
graphene plasmon ���q1/2� with the surface plasmon of a
nearby thick substrate hosting a plasma taken to be semi-
infinite �Fig. 1�. The parallel two-dimensional �2D� plasma
of the graphene sheet alone has been thoroughly
examined,7–11 and here, we study the effects of the Coulomb
interaction of the 2D graphene plasma with the semi-infinite
plasma of the nearby thick substrate,12–14 whose local surface
plasmon is given by �s=�p /�2 ��p

2 =4�e2�3D /m; �3D is the
bulk electron density of the substrate�, which is devoid of
linear character. However, the coupling of the graphene sheet
�at z0�0�, which supports a two-dimensional plasma parallel
to the surface, with the semi-infinite plasmalike medium
somewhat removed from it, can induce linearity into the
plasmon dispersion at low wave number q. �Of course, such
a mechanism for linear plasmon dispersion is not available
for isolated graphene.�

The fullest description of such physical features is pro-
vided by the dynamic, nonlocal, and spatially inhomoge-
neous screening function, K�r1 , t1 ;r2 , t2�, which is the space-
time matrix inverse of the direct dielectric function
��r1 , t1 ;r2 , t2� of the system

� d�3�x� d�K�r1,t1;x,����x,�;r2,t2� = ��3��r1 − r2���t1 − t2� .

�1�

The frequency poles of K�r1 ,r2 ;�� define the plasmon
modes of the system and the residues describe the relative
excitation amplitudes �oscillator strengths� of these modes.
Rewriting Eq. �1� in the form of an integral equation, we
note that

��r,t;r�,t�� = ��3��r − r����t − t�� + 	�r,t;r�,t�� , �2�

where 	�r , t ;r� , t�� is the combined polarizability of the
semi-infinite and two-dimensional plasma constituents of the
system. Thus, Eqs. �1� and �2� lead to

K�r1,t1;r2,t2� = ��3��r1 − r2���t1 − t2�

−� d�3�x� d�	�r1,t1;x,��K�x,�;r2,t2� .

�3�

Furthermore, when the energies of the quantum-well bound
state and the continuum of extended states of the bulk are
well separated �and transitions between them are energeti-
cally inaccessible�,15 it is an accurate and useful approxima-
tion to write the combined polarizability, 	�r1 , t1 ;r2 , t2�, as
the sum of the polarizabilities of the semi-infinite plasma,
	semi�r1 , t1 ;r2 , t2�, and the two-dimensional plasma,
	2D�r1 , t1 ;r2 , t2�, with the result

K�r1,t1;r2,t2� +� d�3�x� d�	semi�r1,t1;x,��K�x,�;r2,t2�

= ��3��r1 − r2���t1 − t2�

−� d�3�x� d�	2D�r1,t1;x,��K�x,�;r2,t2� . �4�

Alternatively, the left-hand side of Eq. �4� may be written as

� d�3�x� d��semi�r1,t1;x,��K�x,�;r2,t2�

= ��3��r1 − r2���t1 − t2�

−� d�3�x� d�	2D�r1,t1;x,��K�x,�;r2,t2� , �5�

where �semi has the space-time matrix inverse Ksemi, which is
the screening function of the semi-infinite medium alone

FIG. 1. Schematic of the geometry considered.
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� d�3�x� d�Ksemi�r1,t1;x,���semi�x,�;r2,t2�

= ��3��r1 − r2���t1 − t2� , �6�

in full analogy to Eq. �1�. Accordingly, Eq. �5� implies that

K�r1,t1;r2,t2� = Ksemi�r1,t1;r2,t2�

−� d�3�x� d�� d�3�x�� d��Ksemi�r1,t1;x,��


	2D�x,�;x�,���K�x�,��,r2,t2� . �7�

II. SOLUTION OF THE INTEGRAL EQUATION

For a semi-infinite bulk plasma and a nearby parallel 2D
graphene sheet plasma, we Fourier transform in the surface
plane of translational invariance �r1−r2→q, where r=r ,z�
and time �t1− t2→��, obtaining �suppress q ,��,

K�z1,z2� = Ksemi�z1,z2�

−� dz3� dz4Ksemi�z1,z3�	2D�z3,z4�K�z4,z2� .

�8�

We have previously shown that the dynamic, nonlocal, and
spatially inhomogeneous screening function of the semi-
infinite medium �occupying z=0→�� is given by16 ���z�
=1 for z
0; 0 for z�0; 1/2 for z=0�

Ksemi�z1,z2� = ��− z1����z1 − z2� −
�q̄

1 + �q̄
e	q̄	z1��z2�

+
2�q̄

1 + �q̄
K0�z2�e	q̄	z1��z2�


+ ��z1���0�z1�� 	q̄	�q̄

1 + �q̄
��z2�

−
2	q̄	�q̄

1 + �q̄
K0�z2���z2�
�

+ ��z1��K0�z1 + z2� + K0�z1 − z2����z2� , �9�

where �0�qz , q̄ ;�� is the bulk dielectric function of the semi-
infinite medium and

K0�z2� = �1/���
0

�

dqz cos�qzz2���0�qz, q̄;���−1, �10�

and

�0�z2� = �2/���
0

�

dqz cos�qzz2���qz
2 + 	q̄	2��0�qz, q̄;���−1,

�11�

with �q̄
−1= 	q̄	�0�0�. We further define

J�z0� =� dz3Ksemi�z0,z3�e−	q̄	z3. �12�

For the thin 2D sheet of graphene located at z0, the three-
dimensional polarizability is described by17

	2D�z1,z2� = ��z2 − z0�e−	q̄	�z1−z0�	2D, �13�

with the last factor on the right of Eq. �13�, 	2D=	2D�q ,��,
as the planar 2D polarizablilty on the graphene sheet in 2D
wave-vector frequency representation. With this, we have
solved the integral equation for the combined screening
function of the two-component system, Eq. �8�, exactly in
closed form as

K�z1,z2� = Ksemi�z1,z2� −
	2De	q̄	z0J�z1�Ksemi�z0,z2�

1 + 	2De	q̄	z0J�z0�
.

�14�

III. GRAPHENE PLASMON IN INTERACTION
WITH SURFACE PLASMON

Considering the local limit, we have �q̄=�0��� for the
semi-infinite medium, and

K0�z2� = ��z2�/�0��� , �15�

with

�0�z2� = e−	q̄		z2	/�	q̄	�0���� . �16�

This leads to Ksemi�z1 ,z2� in the local limit as16

Ksemi�z1,z2� = ��− z1����z1 − z2� + ��z2�e	q̄	z1
1 − �0���
1 + �0�����

+ ��z1����z1 − z2�
�0���

+ ��z2�e−	q̄	z1
1

�0���
�0��� − 1

�0��� + 1
�� . �17�

The plasmon dispersion relation for the coupled system of
the graphene sheet and the nearby semi-infinite plasma is
given by the frequency poles of the second term on the right
of Eq. �14�, namely,

1 + 	2De	q̄	z0J�z0� = 0. �18�

Determining J�z0� using Eq. �12� in the local limit of
Ksemi�z0 ,z3� given by Eq. �17�, we have

1 + 	2D
1 + e2	q̄	z0�1 − �0

1 + �0

� = 0, �19�

where �0=1−�p
2 /�2 for the local limit of the bulk dielectric

function of the semi-infinite medium and 	2D=−�2D
2 /�2 for

the graphene sheet. In this analysis we first consider only
intraband polarizability terms for doped graphene since we
seek long wavelength modes ��q at low wave numbers,
and interband contributions to the polarizability are relatively
small for such low frequency, low wave number terms with
��2D /��2, � being the Fermi energy; following this we
examine the role of interband corrections to the polarizability
approximately. Here, the local graphene plasma frequency is
given by7–11
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�2D
2 = �Gr

2 = �2	q̄	 , �20�

where

�2 = �e2�4��2D/� , �21�

with � as the effective Fermi velocity and �2D is the 2D sheet
density. Thus, the plasma frequency for graphene depends on
the sheet density as �2D

1/4, in contrast to usual �2D
1/2

dependence.11 With these remarks in view, Eq. �19� yields

�2 = �2D
2 
1 + e2	q̄	z0

�p
2

2�2 − �p
2� . �22�

The two coupled plasmon frequencies given by the roots of
Eq. �22� are ��s

2=�p
2 /2�

��
2 = 1

2 ��s
2 + �2D

2 � �
1
2
���s

2 + �2D
2 �2 − 4�s

2�2D
2 �1 − e2	q̄	z0� .

�23�

For large separation, 	q̄		z0	�1, the two plasmons decouple
completely, as

�+
2 = �s

2 and �−
2 = �2D

2 , �24�

whereas the two modes are fully hybridized for zero separa-
tion, 	q̄	z0→0

�+
2 = �s

2 + �2D
2 and �−

2 = 0. �25�

If wave number is also low in the sense that �2D
2 =�2	q̄	

��s
2, the �+ plasmon is, approximately,

�+ = �s +
1

2

�2	q̄	
�s

, �26�

which is linear in 	q̄	, but not acoustic.
For arbitrary �2D

2 /�s
2, and low but nonzero values of

	q̄		z0	�1 �recall that z0 is negative�, we have

�+
2 = ��s

2 + �2D
2 � −

2�s
2�2D

2

��s
2 + �2D

2 �
	q̄		z0	 , �27�

in which the coupling hybridization of the two modes is
somewhat diminished, and

�−
2 =

2�s
2�2D

2

��s
2 + �2D

2 �
	q̄		z0	 , �28�

which is not specifically an acoustic mode because �2D
2

�	q̄	 is involved in the denominator on the right of Eq. �28�,
as well as in the numerator. For very low wave numbers,
�2D��s, the mode �− is acoustic with

�−
2 � 2�2D

2 	q̄		z0	 � 	q̄	2. �29�

However, when �2D��s, it is not acoustic, having the value

�−
2 � 2�s

2	q̄		z0	 � 	q̄	 . �30�

To assess the role of interband corrections, we note that
the ratio, R, of interband terms to intraband terms in the
graphene polarizability is given by7–11

R =
��

4�

ln�1 − ��/2�

1 + ��/2�
�� � − 
��

2�
�2

, �31�

where �� /2��1 as discussed above. Accordingly, the po-
larizability is approximately given by

	2D = −
�2D

2

�2 + 
��2D

2�
�2

� −
�2D

2

�2 + � �32�

and we have defined � as

� � 
��2D

2�
�2

� 1. �33�

�For example, with 	q̄	=0.1qF �Fermi wave number�, � is
about 0.04.� The resulting graphene-coupled plasmon disper-
sion relation, Eq. �19�, may be rewritten as

�1 + ���4 − �2��2D
2 + �s

2�1 + ���� + �2D
2 �s

2� = 0, �34�

where � is defined by

� = 1 − e2	q̄	z0. �35�

The solutions of the quadratic dispersion relation are given
by

��
2 =

��2D
2 + �s

2�1 + ����
2�1 + ��

�
���2D

2 + �s
2�1 + ����2 − 4�1 + ���2D

2 �s
2�

2�1 + ��
. �36�

The plasmons decouple as z0→−� ��→1� with the results

�+
2 =

�2D
2

1 + �
and �−

2 = �s
2, �37�

showing that the graphene mode is lowered somewhat by the
intersubband contribution, while the decoupled semi-infinite
bulk surface plasmon is unaffected by it. On the other hand,
when the graphene sheet is directly on the bounding surface
of the bulk, z0=0 and �=0, we obtain

�+
2 =

�2D
2 + �s

2

1 + �
and �−

2 = 0, �38�

showing that the fully coupled plasma modes are equally
affected by the intersubband contribution in this case. Fi-
nally, considering z0 small in the sense that

2	q̄	z0 � 1, or � = − 2	q̄	z0, �39�

we have

��
2 =

��2D
2 + �s

2�1 − 2�z0	q̄	��
2�1 + ��

�
���2D

2 + �s
2�1 − 2�z0	q̄	��2 + 8�1 + ���2D

2 �s
2z0	q̄	

2�1 + ��
.

�40�

This result may be further expanded to examine particular
limits as done above. However, as �= ���2D /2��2�1, no
significant deviations are to be expected.
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IV. SUMMARY: DISCUSSION

The formulation of this calculation in Sec. II, including
Eqs. �8�–�14�, is sufficiently general to accommodate de-
tailed studies of a graphene sheet near a thick substrate rang-
ing from the nonlocal plasmon spectrum to static shielding,
including an ambient magnetic field if desired. Furthermore,
we have presented the exact, explicit solution for the screen-
ing function in closed form �Eq. �14��, and examined its
frequency poles �Eq. �18�� to determine the coupled plasmon
mode spectrum. The local results that we have obtained in-
dicate that complete hybridization of the two plasmon
modes, �s and �2D, occurs when the 2D graphene sheet is
directly on the bounding surface of the bulk medium, z0=0.
The completely hybridized upper mode at z0=0 exhibits lin-
ear dispersion �Eq. �26�� for wave number low in the sense
�2D

2 ��s
2 but it is not acoustic.

The mode coupling is reduced when the 2D sheet is not
exactly at z0=0, and explicit results for the upper and lower
partially coupled modes are presented in Eqs. �27� and �28�
for small, but finite, separation, 	q̄		z0	�1. The lower mode is
not always an acoustic mode, although it becomes acoustic
when �2D��s. Of course, the two modes decouple com-
pletely for large separation, 	q̄		z0	�1. Finally, we have also
examined the role of interband �as well as intraband� polar-
izability terms in the coupled plasmon modes in Eqs.
�30�–�40�, finding it to be small.
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