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We study theoretically the quantum Hall effect �QHE� on the kagome lattice with anisotropy in one of the
hopping integrals. We find an interesting quantum phase, in which the QHE exhibits the energy spectrum given
by E�n�= �vF

��n+1 /2��Be �n is an integer� being different from the known types, though its quantization
rule for Hall conductivity �xy =2ne2 /h is conventional. This phase evolves from the QHE phase with �xy

=4�n+1 /2�e2 /h and E�n�= �vF
�2n�Be in the isotropic case, which is realized in a system with massless

Dirac fermions �such as in graphene�. The phase transition does not occur simultaneously in all Hall plateaus
but occurs in a sequence from low to high energies, with the increase in hopping anisotropy.
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The quantum Hall effect �QHE� is a remarkable transport
phenomenon in condensed-matter physics.1 Up to know,
three known kinds of integer QHE have been found in ma-
terials. One is the conventional integer QHE occurring in
two-dimensional �2D� semiconductor systems, where the
successive filling of the Landau levels �LLs� leads to an
equidistant ladder of quantum Hall plateaus at integer filling
n=0, �1, �2,¯, with a quantized value �xy =2ne2 /h.1 The
second is the unconventional QHE observed in graphene,
where charge carriers mimic the massless Dirac fermions, so
that the Hall conductivity is half-integer quantized �xy =4
�n+1 /2�e2 /h due to a Berry phase shift � at the Dirac
points.2–8 The third occurs in bilayer graphene, where the
charge carriers have a parabolic energy spectrum but are chi-
ral with a Berry’s phase 2�. Therefore, the Hall conductivity
follows the same ladder as in conventional 2D electron
gases, but the plateau at zero level is absent.9,10

In this Brief Report, we demonstrate a topological quan-
tum phase transition from an unconventional QHE for the
massless Dirac fermions to a conventional one but with a
special-energy spectrum. The kagome lattice has recently at-
tracted considerable interest due to its higher degree of frus-
tration. It is the line graph of the honeycomb structure in
view of the graph theory.11 The three-band electronic struc-
ture �Fig. 1� is composed of one flat band and two dispersive
bands. The latter has the same form as that in graphene,4 and
the two bands touch at two inequivalent Dirac points forming
massless Dirac fermions. As a result, an unconventional
QHE with �xy =4�n+1 /2�e2 /h will be realized on the isotro-
pic kagome lattice. Assuming one of the three hopping inte-
grals, which is denoted by t23, can take a different value from
the two others, we find a quantum phase transition for the
Hall conductivity from the unconventional form �xy =4
�n+1 /2�e2 /h to �xy =2ne2 /h. Though the latter phase shows
the same Hall conductivity as that found in conventional 2D
semiconductors �free-fermion systems�, it has the following
nontrivial properties. �i� The phase is characterized by a
special-energy spectrum E�n�=vF

��n+1 /2��Be, in contrast
to E�n�= �n+1 /2���c with �c=eB /m for the free-fermion
QHE systems, E�n�=vF

�2n�Be for the single-layer
graphene8 and E�n�=�n�n−1���c for the bilayer
graphene.9,10 �ii� The quantum phase transition does not oc-

cur simultaneously in all Hall plateaus as expected usually
but occurs in sequence from low to high energies with the
increase in anisotropy. �iii� The quantum phase transition oc-
curs only in the case of t23� t12 �t12= t13�. In the other case of
t23� t12, the unconventional QHE realized in the isotropic
system remains at least for the largest anisotropy we consid-
ered here, namely t23=2t12. This kind of quantum phase
structures controlled by the anisotropy of the hopping param-
eters is also in stark contrast to that in the honeycomb lattice
�graphene�, where the unconventional QHE evolves into the
conventional one in the strong t23 �t23� t12� regime, while no
phase transition occurs in the weak t23 �t23� t12� regime.12–15

Therefore, the quantum phase transition demonstrated here
presents an intriguing case for experimental studies on QHE.
We start from the tight-binding model on a 2D metallic
kagome lattice,

Ĥ = − �
�ij�,�

�tijĉi�
† ĉj� + H.C.� , �1�

where ĉi� �ĉi�
† � annihilates �creates� an electron with spin �

��= ↑ ,↓� on site i and tij is the hopping integral between the
nearest neighbors �NNs�. Considering that there are three
sites in each unit cell �see Fig. 1�a��, we can write Eq. �1� in

the momentum space as Ĥ=�k��̂k�
† M�k��̂k�. Where

�̂��k�= �ĉk1� , ĉk2� , ĉk3��, and M�k� is a 3	3 matrix

M�k� = 	 0 
12�k� 
13�k�

21�k� 0 
23�k�

31�k� 
32�k� 0


 , �2�

with 
12�k�=
21�k�=−2t12 cos�k ·�1�, 
13�k�=
31�k�
=−2t31 cos�k ·�3�, and 
23�k�=
32�k�=−2t23 cos�k ·�2�. �1,
�2, and �3 are the nearest-neighbor vectors, �1= �1 /2�x̂, �2
= �1 /4�x̂+ ��3 /4�ŷ, and �3=−�1 /4�x̂+ ��3 /4�ŷ. For the iso-
tropic case �t12= t23= t31= t�, the energy bands are,

E��k� = − t � t�1 + f�k�, E3�k� = 2t , �3�

where
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f�k� = 8 cos�kx/2�cos�kx/4 + �3ky/4�cos�kx/4 − �3ky/4� ,

and the energy band structure is shown in Fig. 1�c�. The two
dispersive bands E+ and E− contact at the corners of the first
Brillouin zone �BZ� �named as Dirac points� such as K
= �4� /3,0� and K�= �2� /3,2� /�3�, etc. Near the Dirac
points, electrons behave as Dirac fermions with the approxi-
mate dispersion,

E� = − t � vF�q� + O��q/K�2� , �4�

and vF=3�2t /4 is the Fermi velocity. Thus, except for an
additional flat band E3, the two dispersive energy bands are
similar to those in graphene. As a result, an unconventional
QHE as that found in graphene is expected on the isotropic
kagome lattice around the Fermi level �=−t �corresponding
to the electron filling 1/3�.

We now turn to the numerical investigation of the QHE
on the anisotropic kagome lattice. In a perpendicular mag-
netic field, the tight-binding Hamiltonian is changed into,

Ĥ = − �
�ij�,�

�tije
iijĉi�

† ĉj� + H.C.� . �5�

Equation �5� will be diagonalized numerically on a finite
lattice with size N=3	L1	L2 �factor three counts the three
sites in each unit cell�. The magnetic flux per triangular is
chosen to be �=��ij =

2�
M , with M as an integer, then the

total flux �= 16�N
3M through the lattice is taken to satisfy the

periodic boundary condition. Typically, N=3	320	320
and �= 2�

2560 are used in numerical calculations. After the
diagonalization, the Hall conductivity �xy is calculated with
Kubo formula

�xy = A �

�EF

�

��EF

��vx������vy�� − ��vy������vx��
�
 − 
��2 ,

�6�

where A= i2e2 /S� with S being the area of the system, v is
the velocity, 
 and 
� are the corresponding eigenvalues of
the eigenstates �� and ���. In the following, the hopping
integrals t12= t31=1.0 are used as the energy unit and t23 to
account for the anisotropy.

In Fig. 2, the Hall conductivity �xy =�e2 /h and the elec-
tron density of states �DOS� are plotted for the different t23.
For the isotropic case with t23=1.0, the Hall plateaus satisfy
the unconventional quantization rule �= �n+1 /2�gs with a
degeneracy factor gs=4 for each Landau level to count two
spin components and two Dirac points. The 1/2 shift in the
Hall plateaus is due to a nonzero Berry phase around Dirac
points,16 or can be explained simply as arising from the ex-
istence of a zero mode as seen from the DOS shown in Fig.
2�a�. This numerical result is consistent with the above ana-
lytical calculation, showing that the QHE on the isotropic
kagome lattice exhibits the same behavior as that in
graphene.

Decreasing t23 to introduce the anisotropy in the hopping
integral, one will find that the steps in Hall conductivity split
at the mid point gradually, as shown in Figs. 2�b� and 2�c�.
Concomitant with the splitting, a new Hall plateau emerges
between every two Hall plateaus and the degeneracy factor
gs changes from four to two. Basically, one might expect
that, upon the introduction of the anisotropy, the rotational
symmetry of the isotropic kagome lattice will be broken, and
consequently the degenerate energy levels will be separated.

FIG. 1. �Color online� �a� Lattice structure of the kagome lattice.
The region enclosed by the dashed lines represents the Wigner-Seitz
unit cell. a1 and a2 are the lattice unit vectors. The lattice sites in
each unit cell are labeled as 1, 2, and 3. �b� The first BZ. b1 and b2

are the reciprocal-lattice vectors, K�K�� and K1�K1�� are the two sets
of Dirac points. �c� The electronic dispersion for t12= t23= t31=1.0.

FIG. 2. �Color online� �a�–�c� Hall conductivities vs Fermi en-
ergy for different t23 and the corresponding DOS denoted by red
vertical lines. �a�, �b�, and �c� correspond to t23=1.0, 0.4, and 0.15,
respectively. The red horizontal arrows in �b� and �c� indicate the
transition point from gs=4 to gs=2. �d� Phase diagram showing the
gradual splitting of the Hall plateaus with the decrease in t23. The
solid lines denote the original plateaus and the dashed lines denote
the new plateaus induced by the anisotropy. The numbers on each
plateau and in panel �d� denote � in �xy =�e2 /h.
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Indeed, at the energy levels, where the step splitting in Hall
conductivity occurs, the peak of DOS �denoted as red verti-
cal lines in Fig. 2� is split into two adjacent peaks with half
a previous height. However, two nontrivial characters exhibit
here. One is that the splitting does not happen as a whole
simultaneously, but gradually from low energies to high en-
ergies with the decrease in t23 �corresponding to the enhance-
ment of the anisotropy�. Moreover, whenever a splitting oc-
curs, a new Hall plateau emerges. But, the next splitting does
not happen in succession with the further decrease in t23,
instead the emerging plateau will grow first until it satisfies
the new quantization rules for the Landau Level, which will
be addressed in the following. This process can also be
clearly seen from the peak splitting in DOS. In this way, the
QHE on the anisotropic kagome lattice exhibits a sequent
quantum phase transition from low to high energies, and the
phase diagram is presented in Fig. 2�d�. Second, in the case
of t23�1, we find that the peaks in DOS do not split at any
energy level in the reasonable parameter regime. For ex-
ample, at least for the largest anisotropy t23=2 considered
here �see Fig. 3�a��, the QHE shows the same behavior to the
isotropic case.

The quantum phase transition demonstrated above is in
contrast to that on the honeycomb lattice �graphene�,12–15

where the unconventional QHE changes into the conven-
tional QHE with �xy =2ne2 /h in the strong t23 �t23�1� re-
gime, while no phase transition occurs for the weak t23 �t23
�1� regime. In addition, the phase transition on the aniso-
tropic honeycomb lattice starts symmetrically from both the
low and high energies, and gradually approaches the zero-
energy level, so that it exhibits a particle-hole symmetry.

Next, let us study the character manifested by the new
phase emerging in the quantum phase transition. This is ac-
cessible easily in the limit t23=0, where the kagome lattice is
topologically equivalent to the lattice in Fig. 3�c� with only

the nearest-neighbor hoppings. The three energy bands on
this lattice can be found as, E�

= �2t�cos2�kx /2�+cos2�ky /2� and E3=0, as shown in Fig.
3�d�. Around K0= �� ,��, the bands E� have the linear dis-
persion E��q�= �vF�q� with vF=�2t. Because the flat band
E3 crosses the K0 point, the electrons do not behave as mass-
less Dirac fermions. In this respect, the Hall conductivity
shows a conventional behavior �xy =2ne2 /h. However, the
LL spectrum exhibits a different form. This can be obtained
analytically by solving the low-energy Hamiltonian of the
system, as given by

Ĥ =
vF

�2	 0 p̂x p̂y

p̂x
† 0 0

p̂y
† 0 0


 , �7�

under a magnetic field B �correspond to replace the momen-
tum operator p̂ by p̂+eA with A=B�−y ,0��. The result is,

E�n� = � vF
��n + 1/2��Be, n = 1,2,3, ¯ . �8�

This LL spectrum leads to a distinct distribution of Hall pla-
teaus, as shown in Fig. 3�b�. It is quite different from that in
free-fermion systems exhibiting equidistant Hall plateaus
�n+1 /2���c and in bilayer graphenes with almost equidis-
tant plateaus �n�n−1���c.

9,10 It is also different from that in
graphenes with vF

�2n�Be.8 Though this difference is hard to
distinguish numerically, the two differ remarkably in the Hall
conductivity �xy as addressed above. These comparisons
suggest that the energy spectrum of the QHE demonstrated
here has no known analogs and may be distinguished on the
basis of the QHE measurements.

To understand the property of the quantum phase transi-
tion, we show in Fig. 4 the evolution of the energy band with
the hopping integral t23 along two high symmetrical direc-
tions. First, we point out that the unconventional QHE is
found numerically to be limited to a finite-energy range �not
shown here�, which is the region from A to A� �points of the
van Hove singularity� in the dispersions shown in Fig. 4.
Outside this region, the QHE will exhibit a conventional be-
havior in Hall conductivity. For t23�1 �Fig. 4�a��, the two
Dirac points, which are at K and K� points in the isotropic
case, approach each other along the K-K� direction with the
decrease in t23. Interestingly, in this process, the energy band
around the A point is suppressed and lifted upward gradually,
while that around the A� point is not changed. As a result, the

FIG. 3. �Color online� �a� and �b� are the Hall conductivities
together with the DOS for t23=2.0 and t23=0, respectively. �c� The
square lattice, which is equivalent topologically to the kagome lat-
tice for t23=0, and its energy bands in �d�.

FIG. 4. �Color online� The energy bands for different t23. �a� In
weak t23 regime and �b� in strong t23 regime. For the momentum
directions in �a� and �b�, see Fig. 1�b� for illustration. The black,
blue, and red lines in panel �a� correspond to t23=1, 0.4, and 0.15.
The red dashed lines in panel �b� is for t23=2.0.
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low-energy part will be excluded out of the unconventional
regime. Therefore, the conventional Hall conductivity
emerges first at these energy levels. On the other hand, for
t23�1 �Fig. 4�b�� the two Dirac points approach each other
along the K1-�-K1� direction. Different from the case of t23

�1, the energy band around A now is shifted downward with
the increase in t23, so that the energy region exhibiting the
unconventional Hall conductivity is enlarged. Therefore, no
quantum phase transition is observed in the energy region
considered.

Finally, let us give a few comments on the possible ex-
perimental realization of our theoretical prediction. The an-
isotropy of the hopping integral can be realized by the mono-
clinic lattice distortion, such as in Cu�3�V2O7�OH�2 ·2H2O,17

or by the difference in orbital characters on the atomic sites
due to the Jahn-Teller effect, such as in Cs2Cu3CeF12.

18 The
kagome lattice has been proposed to be realized by imple-
menting an optical lattice for ultracold atoms.19–21 In this
regard, the ability to conveniently control the physical pa-
rameters facilitates the realization of the anisotropy. It is also
worth mentioning that the 2D lattice in the limit t23=0 as
shown in Fig. 3�c� may provide an interesting model system

for experimental investigation on the special quantum dy-
namics demonstrated above.

In summary, we have studied the quantum Hall effect on
the anisotropic kagome lattice. The anisotropy is introduced
by assuming one of the hopping integrals t23 taking a differ-
ent value. In the weak t23 �t23� t12� regime, we find an inter-
esting quantum phase, in which the QHE exhibits a special-
energy spectrum given by E�n�= �vF

��n+1 /2��Be, though
its Hall conductivity �xy =2ne2 /h is conventional. This phase
evolves from the unconventional QHE with �xy
=4�n+1 /2�e2 /h via a quantum phase transition, which oc-
curs successively from low to high energies with the de-
crease in the hopping integral. The quantum phase transition
is absent in the strong t23 regime.
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