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We investigate the momentum distribution associated with quantum phase transitions between a superfluid
and a charge-density-wave state in the one-dimensional hard-core extended boson Hubbard model at half
filling by using the Lanczos exact diagonalization method. The momentum distribution shows distinct features
in different regions. At the Heisenberg point, it shows a universal behavior. In the superfluid phase, the
Luttinger-liquid parameters are easily obtained from the finite-size scaling behaviors of the zero-momentum
occupancy. Also the signature of a charge-density wave can be identified in the insulating phase.
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I. INTRODUCTION

Interacting bosons hopping around on a lattice show
quantum phase transitions in the ground state. Typically,
strong on-site repulsions lead to a commensurate Mott-
insulating phase while, in the opposite limit, a superfluid
�SF� phase is stable.1 In dilute bosonic gases at an incom-
mensurate density, however, the increase in on-site repulsion
does not destabilize the SF phase; it rather suppresses the
Bose-Einstein condensation �BEC� onto the lowest-energy
single-particle state. In one dimension, the extreme of this
situation is described by the impenetrable Tonks-Girardeau
gas.2 Residual longer-range repulsive interactions then play a
crucial role in bringing a quantum phase transition into the
system. Strong repulsive interactions drive the ground state
into a charge-density-wave �CDW� phase.

In experiments, momentum distributions have been used
to identify the ground-state phase. For example, in a ballistic
expansion measurement of ultracold atoms in an optical
lattice,3–5 where a reversible transition between a Mott-
insulating and a SF phase are controlled by just tuning the
intensity of an imposing laser, the appearance of a sharp peak
at the zero-momentum state is regarded as the advent of the
SF phase.6 A crossover to the Tonks-Giradeu regime in a
one-dimensional boson gas by increasing the ratio of the
interaction energy to the kinetic energy is also investigated
through momentum distributions.7 In bosonic gases with
longer-range interactions, such as ultracold gases of 52Cr at-
oms with a dipole moment,8 momentum distributions will
also be useful to investigate the transitions between a SF and
a CDW state.

The hard-core extended boson Hubbard model with near-
neighbor repulsion is a minimal model to investigate the
longer-range interaction effects. At half filling, strong near-
neighbor repulsions stabilize a CDW ground state. The
ground state turns into a SF phase as the interaction de-
creases. It is well known that this model is equivalent to the
spin-1/2 XXZ model. The absence of the supersolid phase in
the hard-core model can be readily understood in the lan-
guage of the spin model; either the planar spin order �SF
phase� or the antiferromagnetic order �CDW phase� is al-

lowed, separated by the SU�2� symmetry point �Heisenberg
point�. Thus the phase space of the model is divided into
three different regions: the SF phase, the CDW phase, and
the Heisenberg point. Identifying traces of different symme-
tries in the momentum distributions will be very useful to
figure out these different regions.

In this work, we study the momentum distributions of the
one-dimensional hard-core extended bosonic Hubbard model
at half filling via exact diagonalizions of the model Hamil-
tonian. Even though the analytic Bethe-ansatz solution is
available,9 derivation of the ground-state wave function is
too complicated to perform in practice. We calculate the
ground-state wave functions and then their momentum dis-
tributions by the Lanczos method on lattices up to 32 sites
with a periodic boundary condition. Exact results free from
statistical errors and the boundary conditions fixed allow us
to do finite-size scaling analysis even in small-size systems.
We find that the Luttinger-liquid parameter, which governs
the power-law decay of the correlation, can be easily ob-
tained from the finite-size scaling of the zero-momentum
occupancy in the SF phase. At the Heisenberg point,
the momentum distribution has a universal form
n�k��−�1 /2�ln��k� /��, where k is the momentum in the unit
of the inverse lattice constant. The formation of the CDW in
the insulating phase can also be identified.

II. MODEL

The hard-core extended bosonic Hubbard model is given
by the Hamiltonian,

H = − t�
i

�bi
†bi+1 + H.c.� + V�

i

nini+1, �1�

where bi
†�bi� denotes the creation �destruction� operator, and

ni �ni=0 or 1� is the number of bosons at site i, t is the
hopping matrix element, and V is the near-neighbor interac-
tion strength. Here we study the systems consisting of N
bosons on L sites at half filling �N /L=1 /2�.

By mapping Si
+= �−1�ibi

† and Si
z=ni−1 /2, it is easy to

show that this model is equivalent to the spin-1/2 XXZ chain,
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Hspin = 2t�
i

�Si
xSi+1

x + Si
ySi+1

y � + V�
i

Si
zSi+1

z . �2�

Thus the Heisenberg point is defined by the condition
V=2t, where the isotropic antiferromagnetic spin chain has
the SU�2� symmetry. For V�2t, the easy-plane phase �SF
phase� is stable while, for V�2t, the easy-axis phase �CDW
phase� occurs.

Momentum distributions are defined by the formula

nL�k� =
1

L
�
i,j=0

L−1

�bi
†bj�eik�i−j� �3�

for momentum k= �2� /L�l �l=0,1 , . . . ,L−1�, where the av-
erage �¯ � is taken over the ground-state wave function.
Here we set the lattice constant a=1. nL�k� is equivalent to
the spin-correlation function of the spin chain with a shift of
the momentum by �. At the SU�2� symmetry point, nL�k� is
associated with the spin structure factor, SL�k�, of the spin
chain by the relation

SL�k� =
1

L
�
i,j=0

L−1

�Si
zSj

z�eik�i−j� =
1

2
nL�k + �� . �4�

Hence, throughout the momentum distributions of the ex-
tended hard-core boson model, we are also able to investi-
gate the correlation functions of the spin chain.

III. RESULTS

Figure 1 shows the momentum distributions, nL�k�, for
different V on lattices of size L. We set t=1 as an energy
unit. They show distinct features in different regions. In the
SF phase for V�2, they have peaks at the zero-momentum
state whose height strongly depends on L. However, nL�0� is
not proportional to L. We find that, from the size dependence
of nL�0�, the Luttinger-liquid parameter can be obtained eas-
ily. At the Heisenberg point �V=2�, nL��� vanishes due to the
SU�2� symmetry, and nL�k� for �k��1 /L has a universal be-
havior independent of L. In addition, the size dependence of
nL�0� is consistent with the asymptotic long-range behavior
of the spin-1/2 Heisenberg chain. In the deep CDW phase for
V�2, we have nL�k��0.5+A cos�k� with a parameter

A�1 /V. This means that the ground state consists of a per-
fect CDW and small fluctuations due to hoppings. More de-
tails are discussed below.

In the SF phase, the momentum distributions have peaks
at k=0, reminiscence of the BEC of free bosons. How inter-
actions alter this singularity at the origin is an intriguing
question. The dependence of nL�0� on L has been discussed
in relation with the existence of the BEC. Figure 2 shows
nL�0� as a function of the size L for different V. Even for
V=0, it increases more slowly than the linear dependence on
L. This implies that the BEC is suppresed in the sense that
the condensation fraction nL�0� /L vanishes in the thermody-
namic limit. For V=0 in the presence of hard-core repul-
sions, Girardeau suggested2 nL�0��L / ln L based on an ap-
proximation, which was later proved to be incorrect through
more rigorous analytic derivations.10 Our exact calculations
also do not support the Girardeau’s form.

The dependence of nL�0� on L can be understood within
the Luttinger-liquid picture. Interacting SF bosonic gases in
one dimension are Luttinger liquids9,11,12 whose low-energy
properties are governed by an effective Hamiltonian com-
posed of the density and phase fluctuations characterized by
the sound velocity and the Luttinger-liquid parameter. The
Luttinger-liquid parameter K, then, determines the
asymptotic behavior of the correlation function

�bi
†bj� � �i − j�−1/2K. �5�

By combining Eqs. �3� and �5�, we expect

nL�0� = C1 + C2L1−1/2K �6�

with fitting parameters C1 and C2. Figure 2 shows that this
expression fits well the data for V�2. Dotted lines are fitting
curves of this form. The inset shows the value of K obtained
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FIG. 1. �Color online� The momentum distributions for different
V.
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FIG. 2. �Color online� nL�0� as a function of L for different
interaction strengths. In the critical region for V�2, the behavior of
nL�0� supports that the long-range correlations characterized by K,
which varies continuously as a function of V �see Inset� so that we
expect nL�0�=C1+C2L1−1/2K. Dotted lines are fitting curves of this
form. At V=2, the logarithmic corrections with K=1 /2 strongly
supports a scaling form nL�0�=B ln1+��L /�0�, which well fits the
data with �=0.45, as denoted by the solid line. Those fittings fail
for V�2.
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by fitting as a function of V. The Luttinger-liquid parameter
has K=1.02 at V=0, consistent with the analytically ex-
pected result K=1 for noninteracting fermions. The value
approaches K=1 /2 for the spin-1/2 Heisenberg chain as V
comes closer to 2. K’s obtained from fitting are consistent
with the analytical solution,9 V=−2 cos�� /2K�, which is
shown by the solid line in the inset, though there are small
deviations due to subleading finite-size corrections to Eq.
�6�, especially near the Heisenberg point where marginally
irrelevant operators bring logarithmic corrections.

By using this finite-size scaling properties of the zero-
momentum occupancy nL�0�, we can therefore find out the
value of K more easily even in small-size systems. It has
been calculated9 so far by computing the compressibility and
the spin stiffness via the Bethe ansatz or the numerical exact
diagonalization. This process needs changing number of par-
ticles and twisting the boundary condition, which are unnec-
essary in our calculations. The value of K can be obtained11

more directly from the correlation function in Eq. �5�. This
method, however, requires a quite large system, for example,
L�100, to achieve the asymptotic form in a log-log plot.

For V�2, Eq. �6� does not fit the data. For V=2, nL�0� is
closely related with the asymptotic behavior of the spin-
correlation function in the spin-1/2 Heisenberg chain. In the
spin model of Eq. �2� at the Heisenberg point, it has been
proposed that the asymptotic spin-correlation functions be-
have as

�S0
zSr

z� � �− 1�r ln��r�
r

�7�

with the logarithmic correction, characterized by the expo-
nent �, due to marginally irrelevant operators. This implies13

that SL���� ln1+��L�. Whether �=0 �Refs. 13 and 14� or �
has a finite value15–17 has been a controversial issue. In gen-
eral, however, Eq. �7� should carry a nonuniversal
constant9,18 so that we expect SL���� ln1+��L /�0�, where �0
defines the distance over which the correlation reaches the
asymptotic form. We use this scaling expression to fit nL�0�,
which is equivalent SL��� as shown in Eq. �4�, and find that
it fits the data well as denoted by the solid line in Fig. 2 with
�=0.45. This result is consistent with the analytical9,19 value
�=1 /2 within our accuracy neglecting subleading
corrections.19,20

Figure 3 shows nL�k� as a function of ln k for finite k.
They show distinct features in different regions. For V�2,
R�k�	d2nL�k� /d�ln k�2�0 in the interval 0� �k���
whereas, for V�2, R�k� becomes negative for small k. R�k�
vanishes at V=2. At this point, nL���=0 because of the
SU�2� symmetry. Therefore we expect nL���� ln��k� /�� at
the Heisenberg point. By fitting the data, we find that the
slope is very close to 1/2 �the solid line in the inset�, inde-
pendent of L. This strongly suggests that the momentum dis-
tribution has a universal form n�k�=−�1 /2�ln��k� /�� at the
Heisenberg point for 1 /L	 �k�
�. Actually this form was
found21 in the exactly solvable hard-core boson model with
the long-range interaction v�r�=2 /r2. This means that our
linear fitting is only approximately correct. The slight devia-
tions from the straight fitting line shown in Fig. 3 indicate
the difference between two models. On the whole, these

above properties will be very useful to distinguish different
phases by measuring the momentum distributions.

In the deep CDW phase for V�2, the ground state is the
superposition of the CDW state and the perturbation due to
hopping up to the first order in t: ��0�= ��CDW�+ �t /V���1�.
The correlation sustains in a single hopping distance so that
��1���i�bi

†bi+1+H.c.���0�. One can then easily find, by in-
serting the wave function in Eq. �3�, that the momentum
distribution of this ground state has a sinusoidal form
nL�k�=1 /2+A cos k, where a parameter A� �1 /V� in
the unit of t. This property can be observed by
measuring the visibility22 v, which is defined by
v= �nmax−nmin� / �nmax+nmin�, where nmax and nmin are the
maximum and the minimum value of the momentum distri-
bution. For V�2, we expect v�2A, vanishing linearly in
1 /V. Figure 4 shows this behavior. The visibility has its
maximum value v=1 for V=2 and diminishes in the CDW
phase. For V�2, it vanishes linearly in 1 /V as V increases
where the momentum distribution has the sinusoidal form.

IV. SUMMARY

The momentum distribution of the one-dimensional hard-
core boson Hubbard model with near-neighbor repulsive in-
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FIG. 3. �Color online� The distinct features of nL�k� in different
regions. Inset: at the Heisenberg point, it shows a universal behav-
ior n�k��− 1

2 ln��k� /�� for finite k.
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FIG. 4. �Color online� The visibility has its maximum v=1 at
V=2 and vanishes linearly for small 1 /V in the deep CDW phase
where the momentum distribution has a sinusoidal form
nL�k�=1 /2+A cos k.
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teraction is investigated. We find that it is a convenient tool
to identify the ground-state phases and their properties. Es-
pecially, in the SF phase, the Luttinger-liquid parameter can
be obtained from the finite-size scaling behaviors of nL�0�
even in rather small-size systems. A similar analysis at the
Heisenberg point allows us to find the exponent for logarith-
mic corrections, which is consistent with the analytic solu-
tion. At this point, our numerical investigation strongly sug-
gest that the momentum distribution has a universal form for
finite k. The momentum distributions also provide a mark for
the CDW state: the sinusoidal form of the distribution and
the associated visibility v�1 /V. We believe that these prop-
erties of the momentum distributions will be useful to iden-

tify the phases of dipolar atoms in an optical lattice whose
system size may be characterized by the oscillator length in
the presence of the shallow trapping potential.23
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