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We present a simple phenomenological scaling theory for the pairing instability of a quantum critical metal.
It can be viewed as a minimal generalization of the classical Bardeen-Cooper-Schrieffer �BCS� theory of
superconductivity �SC� for normal Fermi-liquid metals. We assume that attractive interactions are induced in
the fermion system by an external “bosonic glue” that is strongly retarded. Resting on the small Migdal
parameter, all the required information from the fermion system needed to address the superconductivity enters
through the pairing susceptibility. Asserting that the normal state is a strongly interacting quantum critical state
of fermions, the form of this susceptibility is governed by conformal invariance and one only has the scaling
dimension of the pair operator as free parameter. Within this scaling framework, conventional BCS theory
appears as the “marginal” case but it is now easily generalized to the �ir�relevant scaling regimes. In the
relevant regime an algebraic singularity takes over from the BCS logarithm with the obvious effect that the
pairing instability becomes stronger. However, it is more surprising that this effect is strongest for small
couplings and small Migdal parameters, highlighting an unanticipated important role of retardation. Using
exact forms for the finite-temperature pair susceptibility from 1+1D conformal field theory as models, we
study the transition temperatures, finding that the gap to transition temperature ratios is generically large
compared to the BCS case, showing, however, an opposite trend as a function of the coupling strength
compared to the conventional Migdal-Eliashberg theory. We show that our scaling theory naturally produces
the superconducting “domes” surrounding the quantum critical points �QCPs�, even when the coupling to the
glue itself is not changing at all. We argue that hidden relations will exist between the location of the crossover
lines to the Fermi liquids away from the quantum critical points and the detailed form of the dome when the
glue strength is independent of the zero-temperature control parameter. Finally, we discuss the behavior of the
orbital-limited upper critical magnetic field as a function of the zero-temperature coupling constant. Compared
to the variation in the transition temperature, the critical field might show a much stronger variation pending
the value of the dynamical critical exponent.
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I. INTRODUCTION

The “mystery superconductors” of current interest share
the property that their normal states are poorly understood
“non-Fermi-liquids.” Experiments reveal that these are gov-
erned by a scale invariance of their quantum dynamics. The
best-documented examples are found in the heavy fermion
�HF� systems.1–9 As a function of pressure or magnetic field
one can drive a magnetic phase transition to zero tempera-
ture. On both sides of this quantum critical point �QCP� one
finds Fermi liquids characterized by quasiparticle masses that
tend to diverge at the QCP. At the QCP one finds a “strange
metal” revealing traits of scale invariance, while at a “low”
temperature a transition follows most often to a supercon-
ducting state with a maximum Tc right at the QCP. It is
widely believed that a similar “fermionic quantum critical-
ity” is governing the normal state in optimally doped cuprate
high-Tc superconductors. The best evidence is perhaps the
“Planckian” relaxation time observed in transport experi-
ments ���� / �kBT� �Refs. 10 and 11� indicating that this
normal state has no knowledge of the scale EF, since in a
Fermi liquid �= �EF /kBT���. Very recently, indications have
been found that even the iron-based superconductors might
be governed by quantum critical normal states associated
with a magnetic and/or structural zero-temperature transition,
giving rise to a novel scaling behavior of the electronic spe-
cific heat.12,13

The idea that superconductivity �SC� can be caused by a
quantum phase transition involving a bosonic order param-
eter has a long history, starting with the marginal Fermi-
liquid ideas of Varma14 in the context of cuprates of the late
1980s and the ideas of spin-fluctuation-driven heavy fermion
superconductivity dating back to Mathur et al.1 The bulk of
the large theoretical literature15–50 dealing with this subject
that evolved since then departs from an assumption dating
back to the seminal work of Hertz in the 1970s.51 This in-
volves the nature of the ultraviolet: at some relatively short
time scale, where the electron system has closely approached
a Fermi liquid, the influence of the critical order-parameter
fluctuations becomes noticeable. The Fermi surface and
Fermi energy of this quasiparticle system can then be used as
building blocks together with the bosonic field theory, de-
scribing the critical order-parameter fluctuations to construct
a perturbative framework dealing with the coupling between
these fermionic and bosonic sectors. The lowest order effect
of this coupling is that the Fermi gas of quasiparticles acts as
a heat bath damping the bosonic order-parameter fluctua-
tions, with the effect that the effective space-time dimension-
ality of the bosonic field theory exceeds the upper critical
dimension. These dressed order-parameter fluctuations than
“back react” on the quasiparticle system causing “singular”
interactions in the Cooper channel, yielding in turn a ratio-
nale for the generic “high-Tc” superconductivity at QCPs.
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The crucial assumption in this “Hertz philosophy” is that
the fermion physics is eventually controlled by the Fermi
gas. In the cases of empirical interest it is generally agreed
that in the UV the interaction energies are much larger than
the bare kinetic energies, while there is no obvious signature
in the experiments for a renormalization flow that brings the
system close to a weakly interacting fermion gas before en-
tering the singular “Hertz” critical regime. From the theoret-
ical side, the introduction of this UV Fermi gas can be
viewed as an intuitive leap. The only truly fermionic state of
matter that is understood mathematically is the Fermi gas
and its perturbative “derivative” �the Fermi liquid�: the fer-
mion sign problem makes it impossible to address fermionic
matter in general mathematical terms.52 However, very re-
cently, the “grip of the Fermi gas” has started to loosen spe-
cifically in the context of fermionic critical matter. A first
step in this direction is the demonstration of the proof of
principle that truly critical fermionic states of matter can ex-
ist that have no knowledge whatever of the statistical Fermi
energy scale: the fermionic Feynman backflow wave-
function Ansatz.53 The substantive development is the recent
work addressing fermion physics using the string theoretical
anti-de-Sitter space/conformal field theory �AdS/CFT� corre-
spondence. It appears that this duality between quantum field
theory and gravitational physics is capable of describing
Fermi liquids that emerge from a manifestly strongly inter-
acting, critical ultraviolet.54 In another implementation, one
finds an infrared �IR� physics describing “near” Fermi liq-
uids characterized by “critical” Fermi surfaces55 controlled
by an emergent conformal symmetry implying the absence of
energy scales such as the Fermi energy.56,57

This lengthy consideration is required to motivate the sub-
ject of this paper: a phenomenological scaling theory for a
Bardeen-Cooper-Schrieffer �BCS�-type superconductivity
starting from the postulate that the normal state is not a
Fermi liquid, but instead a truly conformal fermionic state of
matter. With “BCS-type” we mean the following: we assume
as in BCS that besides the electron system, bosonic modes
are present that cause attractive electron-electron interac-
tions. This “glue” is retarded in the sense that the character-
istic energy scale of this external bosonic system �B is small
as compared to the ultraviolet cutoff scale of the quantum
critical fermion system �c. Having a small Migdal param-
eter, the glue-electron vertex corrections can then be ignored
and the effects of the glue are described in terms of the
Migdal-Eliashberg time-dependent mean-field theory, reduc-
ing to the static BCS mean-field theory in the weak-coupling
limit.58 All information coming from the electron system that
is required for the pairing instability is encapsulated in the
electronic pair susceptibility. Instead of using the Fermi-gas
pair susceptibility �as in conventional BCS�, we rely on the
fact that conformal invariance fixes the analytical form of
this response function in terms of two free parameters: an
overall UV cutoff scale �T0� and the anomalous scaling di-
mension of the pair susceptibility, expressed in a dynamical
critical exponent z and correlation function exponent �p. The
outcome is a scaling theory for superconductivity that is in
essence very simple; much of the technical considerations
that follow are dealing with detail associated with modeling
accurately the effects of the breaking of conformal invari-

ance by temperature and the superconducting instability. This
theory is, however, surprisingly economical in yielding phe-
nomenological insights. Conventional BCS appears as a spe-
cial “marginal” case, and our main result is the generalized
gap equation, Eq. �10�. The surprise it reveals is the role of
retardation: when the Migdal parameter �B /�c is small
�where the mathematical control is best� we find at small

coupling constants �̃, a completely different behavior com-
pared to conventional BCS: the gap magnitude � becomes
similar to the glue energy �B. To illustrate the case with

numbers, a moderate coupling to phonons such as �̃=0.3
with a frequency �B=50 meV will yield, rather independent
of scaling dimensions, a gap of 40 meV and a Tc of 100 K or
so: these are the numbers of relevance to cuprate supercon-
ductors!

The theory has more in store. Incorporating the motive
that on both sides of the quantum critical point heavy Fermi
liquids emerge from the quantum critical metal as in the
heavy fermion systems, we show that the superconducting
“dome” surrounding the quantum critical point emerges
naturally without changing the coupling to the bosonic glue.
The form of this dome is governed by the correlation length,
but we find via the pair susceptibility a direct relation with
the effective mass of the quasiparticles of the Fermi liquids.
Last but not least, we analyze the orbital-limiting upper criti-
cal magnetic field, finding out that pending the value of the
dynamical critical exponent it can diverge very rapidly upon
approaching the QCP, offering an explanation for the obser-
vations in the ferromagnetic URhGe heavy fermion
superconductor.59

The scaling phenomenology we present here is simple and
obvious, but it appears to be overlooked so far. Earlier work
by Balatsky,60 Sudbo,61 and Yin and Chakravarty62 is similar
in spirit but yet quite different. These authors depart from a
Luttinger-liquid-type single-particle propagator to compute
the pair susceptibility from the bare fermion particle-particle
loop. Although this leads to pair susceptibility being similar
�although not identical� to ours, it is conceptually misleading
since in any non-Fermi-liquid, there is no such simple rela-
tion between two-point and four-point correlators. This is, in
particular, well understood for conformal field theories: for
the higher dimensional cases the AdS/CFT correspondence
demonstrates that two-point CFT correlators are determined
by kinematics in AdS while the four-point and higher point
correlators require a tree level computation.63–70 More seri-
ous for the phenomenology, this older work ignores the role
played by retardation; it is a priori unclear whether one can
construct a mathematically controlled scaling theory for BCS
without the help of a small Migdal parameter.

The remainder of this paper is organized as follows. In
Sec. II we review a somewhat unfamiliar formulation of the
classic BCS theory that makes very explicit the role of the
pair susceptibility. We then introduce the scaling forms for
the pair susceptibilities as follow from conformal invariance.
By crudely treating the modifications in the pair susceptibil-
ity at low energies associated with the presence of the pair
condensate we obtain the new gap equation Eq. �10�. This
catches already the essence of the BCS superconductivity of
quantum critical metals and we discuss its implications in
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detail. In Sec. III we focus in on intricacies associated with
determining the transition temperature. Conformal invari-
ance is now broken and one needs to know the scaling func-
tions in some detail. We use the exact results of 1+1 dimen-
sional conformal field theory as a model to address these
matters. In Sec. IV we turn to the harder problem of model-
ing the crossover from the large energy critical pair suscep-
tibility to the low energy, zero-temperature infrared that is
governed by conventional Bogoliubov fermions, as needed
to devise a more accurate zero-temperature gap equation.
The casual reader might want to skip both sections. The
moral is that information on the crossover behavior of the
pair susceptibility is required that is beyond simple scaling
considerations to address what happens when the conformal
invariance is broken either by temperature �as of relevance to
the value of Tc� or by the presence of the BCS condensate �of
relevance for the zero-temperature gap�. The conclusion will
be that although the gross behaviors are not affected, it ap-
pears to be impossible to compute numbers such as the gap
to Tc ratio accurately since these are sensitive to the detail of
the crossover behaviors. In Sec. V we explore the theory
away from the critical point, assuming that crossovers follow
to heavy Fermi liquids, where we address the origin of the
superconducting dome. Finally, in Sec. VI we address the
scaling behavior of the orbital-limited upper critical field.

II. BCS THEORY AND THE SCALING OF THE PAIR
SUSCEPTIBILITY

Let us first revisit the backbone of Migdal-Eliashberg
theory. We need a formulation that is avoiding the explicit
references to the Fermi gas of the textbook formulation, but
it is of course well known how to accomplish this. Under the
condition of strong retardation and small couplings, the ef-
fects of the glue are completely enumerated by the gap
equation71 ignoring angular momentum channels �s ,d waves,
etc.,� for the time being

1 − g�ret� �q� = 0, � = 0,�,T� = 0, �1�

where g is the effective coupling strength of the glue while
�ret� is the zero-frequency value of the real part of the re-
tarded pair susceptibility at a temperature T in the presence
of the gap �. This effective �ret� also incorporates the effects
of retardation. The textbooks with their focus on noninteract-
ing electrons accomplish this in a rather indirect way, by
putting constraints on momentum integrations. Retardation
is, however, about time scales and the general way to incor-
porate retardation is by computing �ret� by employing the
Kramers-Kronig relation starting from the imaginary part of
the full electronic pair susceptibility �p�. For a glue charac-
terized by a single frequency �B

�ret� ��� = P�
−2�B

2�B

d��
�p�����
�� − �

, �2�

with the full pair susceptibility given by the Kubo
formula71,72 �see also Ref. 73�

�p�q� ,�� = − i�
0

�

dtei��+i��t��b†�q� ,0�,b�q� ,t��� , �3�

associated with the pair operator b†�q� , t�
=	k�ck�+q�/2,↑

† �t�c−k�+q�/2,↓
† �t�. The imaginary part of the pair sus-

ceptibility is an odd function while the real part is an even
function.

The above treatment of retardation appears unconven-
tional compared to the usual formulation of the BCS theory
and also the Eliashberg theory. The standard textbook ap-
proach is to consider only pairing of electrons in a narrow
momentum shell near the Fermi surface, where the condition

E�k��−EF
	��B is satisfied. This approach obviously fails
at the fermionic quantum critical points, where the sharp
jump in the momentum distribution of electrons vanishes,
and the conventional notion of Fermi surface is no longer
valid. To consider retardation in quantum critical metals, we
bear in mind the following two important concepts. First,
retardation is about time/energy/frequency, while the mo-
mentum space constraints are derived from the energy/
frequency constraint, having the meaning that only in some
range of the glue frequencies the effective interaction be-
tween fermions is attractive. Second, retardation refers to the
pairs instead of the single electron or quasiparticle. For criti-
cal fermions we no longer have the picture of retardation,
where an electron emits a bosonic excitation that is later
reabsorbed by another electron. The electron-electron scatter-
ing is so strong that the concept of quasiparticles has lost its
meaning. Dealing with the pairing instability, however, we
can still consider the pair susceptibility upon which, there-
fore, constraints should be imposed to ensure retardation. As
we just argued, the constraints should be imposed in the
frequency domain. In fact, as we will show in Sec. IV, our
procedure Eqs. �1�–�3� is just equivalent to the textbook
treatment.

In the case of conventional superconductors the normal
state is a Fermi liquid, formed from �nearly� noninteracting
quasiparticles. One can get away with a “bare fermion loop”
pair susceptibility. The specialty of this pair susceptibility is
that its imaginary part is frequency independent at zero tem-
perature. It extends up to the Fermi energy of the Fermi
liquid and from the unitary condition

�
0

�

�p����d� = 1 �4�

it follows that at zero temperature �����=N0=1 / �2EF�. In
logarithmic accuracy the gap enters as the low-frequency
cutoff in Eq. �2� such that

�ret� �� = 0, �,T = 0� = �
�

2�B d��

EF��
=

1

EF
log

2�B

�
, �5�

and from Eq. �1� the famous BCS gap equation follows: �
=2�Be−1/�, where �=g /EF.

This formulation of BCS has the benefit that it makes very
explicit that all the information on the electron system re-
quired for the understanding of the pairing instability is en-
coded in the pair susceptibility. This is in turn a bosonic

BCS SUPERCONDUCTIVITY IN QUANTUM CRITICAL METALS PHYSICAL REVIEW B 80, 184518 �2009�

184518-3



response function of the electron system since it involves the
response of two fermions, much like the dynamical suscep-
tibilities associated with charge or spin densities. In addition,
one needs the fact that the pair density is a nonconserved
quantity, in the same sense as a staggered magnetization.
When the quantum system is conformal �i.e., the zero-
temperature quantum critical metal� the analytical form of
the dynamical pair susceptibility is fixed at zero temperature
by the requirement of invariance under scale
transformations74

���� = lim

→0

Z��− �� + i
�2�−2−�p/2z, �6�

as determined by the a priori unknown exponents �p and z,
the anomalous scaling dimension of the pair operator, and
the dynamical critical exponent, respectively. The normaliza-
tion constant Z� is via the unitary condition �Eq. �4�� deter-
mined by the UV cutoff scale �c. Because we invoke a small
Migdal parameter we are interested in the “deep infrared” of
the theory that is not very sensitive to the precise choice of
this UV energy scale. A reasonable choice is the energy,
where the thermal de Broglie wavelength becomes on the
order of the electron separation, i.e., the Fermi energy of an
equivalent system of noninteracting electrons. Defining �p

=
2−�p

z and using Eq. �4� with the cutoff scale �c, we find

Z� =
1 − �p

sin��

2
�p�

1

�c
1−�p

, �7�

observing that �p	1 in order for this function to be normal-
izable: this is the well-known unitary bound on the operator
dimensions. The real and imaginary parts of the zero-
temperature critical pair susceptibility are related by a phase
angle �

2 �p,

���� =
Z�

��p
cos��

2
�p� + i sin��

2
�p�� . �8�

According to general conformal wisdom, the pair operator
is called irrelevant when �p	0 such that �� increases with
frequency, relevant when 0	�p	1 when �� decreases with
frequency and marginal when �p=0, such that �p� is fre-
quency independent, see Fig. 1. From this scaling perspec-
tive, the Fermi-liquid pair operator is just the special mar-
ginal case, and the BCS superconductor with its
logarithmically running coupling constant falls quite literally
in the same category as the asymptotically free quantum
chromo dynamics in 3+1D and the Kondo effect. Another
familiar case is the pair susceptibility derived from the
“Dirac fermions” of graphene75,76 and transition-metal
dichalcogenides77,78 characterized by �p=−1: in this “irrel-
evant case” one needs a finite glue interaction to satisfy the
instability criterion.

The scaling behavior of the free-fermion case is special
and the pair operator in a general conformal fermionic state
can be characterized by a scaling dimension that is any real
number smaller than one. Obviously, the interesting case is
the relevant one where �p0 �Fig. 1�. Let us here consider
the zero-temperature gap equation. In Eq. �6� we have al-

ready fully specified �p� in the critical state. However, due to
the zero-temperature condensate the scale invariance is bro-
ken and the low-frequency part of �p� will now be dominated
by an emergent BCS spectrum including an s-wave or a
d-wave gap, Bogoliubov fermions and so forth. This will be
discussed in detail in Sec. V. Let us here introduce the gap in
the BCS style by just assuming that the imaginary part of the
pair susceptibility vanishes at energies less than �. Under
this assumption the gap equation becomes

1 − 2g�
�

2�B d�

�

Z� sin��

2
��p�

��2−�p�/z = 0, �9�

evaluating the integral this becomes our “quantum critical
gap equation”

� = 2�B1 +
1

�̃
�2�B

�c
��p�−1/�p

, �10�

with

�̃ = 2�
1 − �p

�p
, �11�

and ��g /�c. The numerator �1−�p� in �̃ comes from the
normalization constant Z� while the denominator �p comes
from integrating over �. Notice that � has the same meaning
of a conventional, say, dimensionless electron-phonon cou-
pling constant. The dimensionful coupling constant g param-
etrizes the interaction strength between microscopic elec-
trons and lattice vibrations, and �c has the same status as the
Fermi energy in a conventional metal as the energy scale that
is required to balance g. We argued earlier that �c is on the
order of the bare Fermi energy and, therefore, it make sense
to use here values, for e.g., the electron-phonon coupling
constant as quoted in the local-density approximation litera-
ture. Notice, however, that for a given �, the effective cou-

0.5 1.0 1.5 2.0 2.5 3.0
Ω

1

2

3

4

Χ''

Ising
BCS

Graphene

FIG. 1. Illustration of the imaginary part of the pair susceptibil-
ity, comparing the relevant �Ising class�, marginal �BCS case�, and

irrelevant �graphene class�. The scaling exponent �p=
2−�p

z is, re-
spectively, 0	�p	1, �p=0, �p	0. For the Ising class, the mag-
nitude of the imaginary part of the pair susceptibility becomes
larger and larger as one lowers the frequency. For the BCS case, the
magnitude stays constant as the frequency is changed. For the
graphene class, the magnitude decreases to zero in the low-
frequency IR region.
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pling constant �̃ that appears in Eq. �10� is decreasing when
�p is becoming more relevant, i.e., when �p→1. From the
frequency integral �d��−�1+�p�, one would anticipate that the
gap would increase for a more relevant pair susceptibility.
The unitary condition imposes, however, an extra condition
on the pair susceptibility. These two compensating effects
lead to the important result that the gap is rather sensitive to
the relevance of the pair susceptibility. All what really mat-
ters is whether the pair susceptibility is relevant rather than
marginal or irrelevant, and the degree of the relevance is
remarkably unimportant.

Equation �10� is a quite different gap equation than the
BCS one with its exponential dependence on the coupling �.
The multiplicative structure associated with the Fermi liquid
is scaling wise quite special while Eq. �10� reflects directly
the algebraic structure rooted in the scale invariance. The
surprise is that retardation acts quite differently when power
laws are ruling. In Fig. 1 we show the dependence of the
� /�B ratio on the coupling constant �, both for different
Migdal parameters and fixed �p, as well as for various scal-
ing dimensions and the fixed Migdal parameter. The com-
parison with the BCS result shows that drastic changes hap-
pen already for small scaling dimensions �p, especially in
the small � regime. Our equation actually predicts that the
gap to glue frequency ratio becomes on the order of one
already for couplings that are as small as �=0.1 when the
Migdal parameter is small. To place this in the context of
high-Tc superconductivity, let us assume that the pairing glue
in the cuprates is entirely rooted in the “glue peak” at �B
�50 meV that is consistently detected by photoemission,
tunneling spectroscopy, and optical spectroscopy.79–81 The
electronic cutoff in the cuprates is likely on the order of �c
=0.5 eV, such that the Migdal parameter �B /�c�0.1. A
typical gap value is 40 meV and we read of Fig. 1 that we
need �=0.45 or 0.43 for �p=3 /4,1 /4 while using the BCS
equation �=1.1! Taking this serious implies that in principle
one needs no more than a standard electron-phonon coupling
to explain superconductivity at a high temperature in cuprate
superconductors. Of course this does not solve the problem:
although one gets a high Tc for free it still remains in the
dark how to form a fermionic quantum critical state with a
high cutoff energy, characterized by a relevant pair suscepti-
bility.

Equation �10� is also very different from the gap equa-
tions obtained in the previous attempts to apply scaling
theory to superconducting transition by Balatsky,60 Sudbo,61

and Yin and Chakravarty.62 A crucial property of their results
is that even in the relevant case one needs to exceed a critical
value for � to find a superconducting instability. The present
scaling theory is in this regard a more natural generalization
of BCS theory, where the standard BCS is just the “marginal
end” of the relevant regime where the Cooper instability can-
not be avoided for attractive interactions. The previous
approaches60–62 start by considering the single-particle spec-
tral function, generalizing its analytic structure from simple
poles to branch cuts. This way of thinking stems from the
Fermi-liquid-type assumption that the single-particle Green’s
function is the only primary operator of the system, and all
the higher point functions are secondary operators, to be de-

termined by the single-particle Green’s function. But for
critical systems, such assumptions are generally not satisfied.
It is well known, for example, from the AdS/CFT correspon-
dence, that the four-point functions of strongly interacting
conformal fields are much more complex than the combina-
tion of two-point functions.63–70 Our basic assumption is that
the pair susceptibility is by itself a primary operator sub-
jected to conformal invariance, which is the most divergent
operator at the critical point.

Another important point, which needs to be clarified, is
under what physical situations we can have the above scale-
invariant pairing susceptibility. The first condition is the ab-
sence of any closeby scale for the electronic degrees of free-
dom �see, for example, Ref. 4�. In such a fermionic system,
this implies immediately the requirement that the Fermi en-
ergy vanishes EF→0. Thus the conventional Fermi-liquid
behavior must break down, which is evidenced by experi-
ments such as the T-linear resistivity in transport measure-
ments. The second condition is that the pair susceptibility is
the most divergent operator at the quantum critical point.
This might be justified by the universal occurrence of super-
conductivity around the quantum critical points discovered in
diverse materials, including heavy fermions, plausibly cu-
prates, and even possibly pnictides.

III. DETERMINING THE TRANSITION TEMPERATURE

Let us now turn to finite temperatures. A complicating fact
is that temperature breaks conformal invariance, since in the
Euclidean formulation of the field theory its effect is that the
periodic imaginary time acquires a finite compactification
radius R�=� /kBT. The pair susceptibility, therefore, acquires
the finite-size scaling form74

���� � ��q� = 0,�� = ZT−�2−�p�/z���

T
� , �12�

where � is a universal scaling function and Z is a UV renor-
malization constant, while �p and z are the anomalous scal-
ing dimensions of the pair operator and the dynamical criti-
cal exponent, respectively. At zero temperature this turns into
the branch cut as shown in Eq. �6�, while in the opposite high
temperature or hydrodynamical regime ����kBT� it takes
the form74

���� = Z�T−�2−�p�/z 1

1 − i��rel
, �13�

where �rel�� /kBT. The crossover from the hydrodynamical
�Eq. �6�� to the high-frequency coherent regime �Eq. �13��
occurs at an energy �kBT. The superconducting transition
temperature is now determined by the gap equation through
1−g�ret� �kBTc�=0. The problem is that �ret� is via the
Kramers-Kronig transformation largely set by the crossover
regime in �p�. One needs the full solutions of the CFTs to
determine the detailed form of � in this crossover regime
and these are not available in higher dimensions.

In 1+1D these are, however, completely determined by
conformal invariance, and for our present purposes these re-
sults might well represent a reasonable model since the gap
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equation is only sensitive to rather generic features of the
crossover behavior. Given the exponents �p and z, the exact
result for the finite temperature �� in 1+1D is well known
and can be easily derived from the universal two-point cor-
relator at an imaginary time � �Ref. 74�

C�x,�� = Z̃
T2s

�sin��T�� − ix��sin��T�� + ix���s , �14�

with 1−2s=
2−�p

2z . The analytical continuation to real time �
→ it yields the real-time two-point correlation function

C�x,t� = Z̃
T2s

�i sinh��T�t − x��i sinh��T�t + x���s , �15�

with a Fourier transform corresponding to the dynamic struc-
ture factor

S�k,�� = �
−�

�

dx�
−�

�

dtC�x,t�e−i�kx−�t�. �16�

A convenient way to perform the Fourier transform is by
factorizing C�x , t� into left-moving and right-moving modes,
C�x , t�=C−�t−x�C+�t+x�, to subsequently integrate over
t�x. The result is

S�k,�� = Ze�/2T 1

T2�1−2s�B�s + i
� + k

4�T
,s − i

� + k

4�T
�

�B�s + i
� − k

4�T
,s − i

� − k

4�T
� , �17�

where B is the beta function, and the overall numerical co-

efficient is given as Z=24s−3�2�s−1�Z̃. The fluctuation-
dissipation theorem

S�k,�� =
2

1 − e−�/T���k,w� �18�

then yields the imaginary part of the pair susceptibility

���k,�� = Z

sinh� �

2T
�

T2�1−2s� B�s + i
� + k

4�T
,s − i

� + k

4�T
�

�B�s + i
� − k

4�T
,s − i

� − k

4�T
� . �19�

The temperature and frequency dependencies of this function
for k=0 are illustrated in Fig. 3. Indeed �����→0 in a linear
fashion with � with a slope set by 1 /T, while for ��T the
temperature dependence drops out, recovering the power
law. The crossover occurs at ��2kBT /�, where ����� has a
maximum. In the absence of retardation, the real part can be
computed from the Kramers-Kronig transform

���k,�� =
Z�

T2�1−2s�� − i�

s − i
� + k

4�T

sin�2s� −
ik

2T
�

sinh� k

2T
�

��2s���2s −
ik

2�T
�

��1 −
ik

2�T
� 3F2�2s,s − i

� + k

4�T
,2s −

ik

2�T
;1 + s − i

� + k

4�T
,1 −

ik

2�T
;1�

+ �k → − k�� , �20�
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FIG. 2. �a� The ratio of gap to retardation frequency � / �2�B� as
a function of glue strength � for various retardation ranges �B /�c

with fixed scaling dimension �p=3 /4. �b� The same plot, but with
fixed retardation �B /�c=0.1 and various scaling dimensions �p.
The dotted lines are the standard BCS result.
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FIG. 3. �a� Illustration of the imaginary part of the pair suscep-
tibility ���k=0,� ,T� divided by the overall numerical factor Z, as a
function of frequency � for various temperatures. Here we have
chosen �p=3 /4, so s=5 /16. �b� The same plot, but �� is further
divided by �. At zero temperature one has the power-law scaling
form. At finite temperature ����� goes to zero, as � goes to zero
������ /�→constant, as �→0�, and approaches the same power-
law behavior at large frequency. As one increases the temperature,
the maximum of ����� goes down and the corresponding �max

shifts to a larger frequency.
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where F is the generalized hypergeometric function. We did
not manage to obtain an analytic form for the real part when
retardation is included, and we use numerical results instead.
When temperature goes to zero the limiting form of the beta
function becomes

lim
u→�

B�s + iu,s − iu� =
2�

��2s�
e−�uu2s−1, �21�

and the imaginary part of the pair susceptibility �Eq. �19��
acquires the power-law form

����� =
2�2�4���p

���2s��2 Z
1

��p
. �22�

Comparing this with Eq. �7� yields the normalization factor
in terms of the cutoff scale

Z =
���2s��2�1 − �p�
2�2�4���p�c

1−�p
. �23�

Combining Eqs. �1�, �2�, �19�, and �23� we obtain the equa-
tion determining the critical temperature

1 − C���2�B

�c
�−�p� Tc

2�B
�−�p

F�2�B

Tc
� = 0, �24�

where

F�y� = �
0

y dx

x
sinh� x

2
�B�s + i

x

4�
,s − i

x

4�
��2

, �25�

and x=� /T. The overall coefficient is

C� =
���2s��2�1 − �p�

�2�4���p
. �26�

We plot in Fig. 4 the ratio of Tc to retardation frequency
as a function of glue strength, retardation, and the scaling
dimensions. One infers that the behavior of Tc is very similar
to that of the zero-temperature gap, plotted in Fig. 2. We
observe that they are on the same order of magnitude Tc
��, and this can be understood from the behavior of �� /�
plotted in Fig. 3�b�. Since the large frequency behavior of
����� /� are the same for different temperatures, all what
matters is the low-frequency part. The gap imposes a cutoff

for the zero temperature ����� /�, and its value is deter-
mined such that the area under this curve including the low-
frequency cutoff is the same as the area under the curve
corresponding to Tc without a cutoff: by inspecting Fig. 3�b�
one infers directly that the gap and Tc will be of the same
order. The same logic is actually at work in the standard BCS
case. The finite-temperature Fermi-gas susceptibility is
�����= 1

2EF
tanh� 1

4���,71 and the familiar Tc equation follows:

1 − ��
0

2�B d�

�
tanh�1

4
��� = 0, �27�

such that Tc�1.14�Be−1/�, of the same order as the BCS gap
�=2�Be−1/�. Now the effect of temperature is encoded in the
tanh function. Although the Fermi gas is not truly conformal,
it is easy to check that this “fermionic” tanh factor adds a
temperature dependence to the �� that is nearly indistin-
guishable from what one obtains from the truly conformal
marginal case that one obtains by setting s=1 /2 in Eq. �19�.

We notice that conformal invariance imposes severe con-
straints on the finite-temperature behavior of the pair suscep-
tibility thereby simplifying the calculation of Tc. In the 1
+1-dimensional “model” nearly everything is fixed by con-
formal invariance. The only free parameters that enter the
calculation are the scaling dimension �p, the cutoff scale �c,
and the glue quantities. As we will now argue the situation is
actually much less straightforward for the zero-temperature
gap because this involves a detailed knowledge of the cross-
over to the physics of the superconductor ruling the low-
energy realms.

IV. THE GAP EQUATION: GLUING A QUANTUM
CRITICAL METAL TO A BCS SUPERCONDUCTOR

It is part of our postulate that when superconductivity sets
in BCS “normalcy” returns at low energies in the form of the
sharp Bogoliubov fermions and so forth. Regardless of the
critical nature of the normal state, the scale invariance gets
broken by the instability, where the charge 2e Cooper pairs
form, and this stable fixed point also dictates the nature of
the low-lying excitations. However, we are dealing with the
same basic problem as in Sec. III: in the absence of a solu-
tion to the full, unknown theory it is impossible to address
the precise nature of the crossover regime between the BCS
scaling limit and the critical state at high energy. This infor-
mation is, however, required to further improve the gap
equation Eq. �10� of Sec. II that was derived by crudely
modeling �� in the presence of the superconducting conden-
sate.

So much is clear that the crossover scale itself is set by
the gap magnitude �. However, assuming that this affair has
dealings with, e.g., optimally doped cuprate superconductors,
we can rest on experimental information: in optimally doped
cuprates at low temperatures the coherent Bogoliubov fermi-
ons persist as bound states all the way to the gap maximum.
Up to these energies it is, therefore, reasonable to assume
that �p� is determined by the bare fermion loops, and this
regime has to be smoothly connected to the branch cut form
of the �p� at higher energies. This implies that the standard
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FIG. 4. �a� The ratio of transition temperature to retardation
frequency Tc / �2�B� as a function of glue strength � for various
retardation ranges �B /�c, with fixed scaling dimension �p=3 /4. �b�
The same plot, but we fix the retardation �B /�c=0.1 while varying
the scaling dimensions �p. The dotted lines are the standard BCS
result. The magnitude and dependence on glue strength and retar-
dation are all similar to those of the gap.
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BCS gap singularities have to be incorporated in our zero-
temperature pair susceptibility. As a final requirement, the
pair susceptibility has to stay normalized according to Eq.
�4�, which significantly limits the modeling freedom.

Let us first consider the case of an isotropic s-wave gap
singularity. The high-frequency modes are still critical and,
therefore, the high-frequency limit of the imaginary part of
the pair susceptibility is determined by

lim
�→�

����,�,T = 0� =
A

��p
. �28�

In the presence of the superconducting condensate, the
low-energy modes below the gap have their energies raised
above the gap, since we require ����	� ,� ,T=0�=0. The
spectral weight is conserved according to Eq. �4�, and since
we assumed that the Bogoliubov excitations of the BCS fixed
point survive at energies on the order of the gap, we need to
incorporate a BCS s-wave-type power-law divergence right
above the gap in the imaginary part of the pair susceptibility.
The simplest function satisfying these conditions is

����,�� = A 1

��p
 �

��2 − �2�2��1+�p

��� − 2�� , �29�

with A= �1−�p��c
−�1−�p� �see Fig. 5�b��. We notice that the

BCS gap corresponds to the case �p=0,

�BCS� ��,�� =
1

2EF

�

��2 − �2��2
��� − 2�� . �30�

Actually in this case the full pair susceptibility can be
calculated directly by summing over the convolutions of
single-particle Green’s functions and the “anomalous”
Green’s functions: ���n�� iT	k�G�k ,�n�G�−k ,�n�
+F�k ,�n�F��−k ,�n��. First we integrate out the momenta,
then wick rotate the frequency i�n→�, and then make
the replacement �→� /2 to convert to our notation,
where � is used for the pair frequency, we get ����

= �1 /2EF�� /��2��2−�2. Consequently at zero temperature
in the presence of the gap, the real part of the
retarded pair susceptibility is ����=0, � ,T=0�
= �1 /EF�log��−1+�B

2 /�2+�B /��. One may notice that our
result differs from the standard textbook result �st� ��
=0, � ,T=0�= �1 /EF�log��1+�B

2 /�2+�B /�� by a minus
sign. The latter is actually subtly flawed, because Matsubara
and real frequency are mixed up, and a more careful treat-
ment gives the same result as ours �see, for example, Ref.
82�. For small �, the two ��s give essentially the same result
for the gap value. But when � is large, in our approach the
gap value saturates at strong coupling, ��Tc��B, in accor-
dance with the usual expectation at strong coupling, while
with �st� , the gap value increases linearly with coupling �
�Tc��, which is unphysical. The quantum critical gap
equation for the s-wave superconductor now becomes

1 − 2�1 − �p���2�B

�c
�−�p� �

�B
�−�p�

1

�B/� dx

�x2 − 1��1+�p�/2 = 0.

�31�

Turning to the d-wave case the gap equation becomes
necessarily a bit more complicated since we have to account
for massless Bogoliubov fermions. At low frequencies �
�2� the pair susceptibility is now governed by free fermion
loops and the Dirac-cone structure in the spectrum leads to a
linear frequency dependence in the pair susceptibility
�����=A1�. Near the gap, a logarithmic divergence is ex-
pected due to the Van Hove singularity, and, therefore,

�����=A2 log
qc+�2�−�+qc

2

−qc+�2�−�+qc
2 for �	2�, while �����

=A3 log
qc+��−2�+qc

2

−qc+��−2�+qc
2 for �2�, with qc as the cutoff. When

the frequency is high compared to the gap scale, the pair
susceptibility has the scaling form �����=A4�−�p. Matching
these regimes at 2�−�1 and 2�+�2, with 0	�1	2� and
0	�2	2�B−2�, and assuming continuity of the pair sus-
ceptibility both below and above the gap �see Fig. 5�b��, we
arrive at the gap equation for the d-wave case

1

2g
= A1�2� − �1� + A2

qc
2

2�
�

0

�1/qc
2 dx

1 − xqc
2

�2��

log
1 + �x + 1

− 1 + �x + 1

+ A3
qc

2

2�
�

0

�2/qc
2 dx

1 + xqc
2

�2��

log
1 + �x + 1

− 1 + �x + 1

+
A4

�p
��2� + �2�−�p − �2�B�−�p� . �32�

This contains a number of free parameters that are partially
constrained by the spectral weight conservation. This, how-
ever, does not suffice to determine the gap uniquely. In the
following we will make further choice of the parameters to
plot the gap. We choose the scaling dimension �p=3 /4, and
the cutoff in the logarithm to be on the order of the square
root of the gap, say qc /�2�=3, the width of the logarithmic
region to be 20 percent of the magnitude of the gap on both
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FIG. 5. Illustration of the imaginary part of the pair susceptibil-
ity without a gap and in the presence of an s-wave gap and a
d-wave gap for �a� the BCS case and �b� the quantum critical case
�here we have plotted using the parameter �p=3 /4�. In the absence
of gap, �� is a constant �for BCS� or has a simple power-law be-
havior �for critical fermions�. In the presence of an s-wave gap, the
states below the gap are gapped out and there is a power-law sin-
gularity right above the gap. When there is a d-wave gap, the low-
frequency part �way below the gap� is governed by a Dirac-cone
structure, thus a linear susceptibility, while near the gap a van Hove
singularity is at work, leading to logarithmic divergences on both
sides. The high-frequency region for both s-wave and d-wave gaps
goes over to the case without a gap.
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sides of the gap, that is �1 / �2��=�2 / �2��=0.2, the coefficient of the high-frequency part A4=1 / �4�c
3/4�, and further define

�1 /qc
2=�2 /qc

2�a, b��0
adx log 1+�x+1

−1+�x+1
, c� log 1+�a+1

−1+�a+1
, d� 4�1.21/4−1.2−3/4�9b/c

0.32+7.2b/c , thus the corresponding d-wave gap equation

reads

1 −
1

2
��2�B

�c
�−3/4� �

�B
�−3/4�0.8d + 7.2

d

c
�

0

a dx

1 + 9x
log

1 + �x + 1

− 1 + �x + 1

+ 9
1.2−3/4

c
�

0

a dx

1 + 9x
log

1 + �x + 1

− 1 + �x + 1
+

4

3
1.2−3/4 − � �

�B
�3/4�� = 0. �33�

We plot in Fig. 6 the behavior of the gap function in the
s-wave and d-wave cases, to be compared with the out-
comes, Fig. 2 of the approach taken in Sec. II, where the gap
simply entered as an IR cutoff scale, Eq. �9�. One can see
that in both cases the magnitude of the gap is enhanced by
treating the singularity more carefully, while in the d-wave
case this enhancement is even more pronounced than in the
s-wave case. These effects can be understood in terms of the
redistribution of the spectral weight, since the low-frequency
part is enhanced by the factor 1 /� in the Kramers-Kronig
frequency integral. The dependence of the gap on the glue
strength and retardation does not, however, change signifi-
cantly compared to what we found in Sec. II, which can be
understood from the fact that the gap depends on the combi-
nation ��2�B /�c�−�p. One also notices in Fig. 6 that the mag-
nitude of the gap saturates already at small � for modest
retardation. This is an artifact of the modeling. In real system
the power-law �s-wave� or logarithmic �d-wave� spectral sin-
gularities will be damped �see, e.g., Refs. 83–86�, and the
end points at finite � in Fig. 6 will turn into smooth func-
tions.

The gap to Tc ratio is expected to be a number on the
order of a unity number. However, it is quite sensitive to the
detail of the crossover regime between the high-frequency
critical behavior and the low-frequency superconducting be-
havior as of relevance to the zero-temperature gap. Numeri-
cally evaluating Eqs. �24�, �31�, and �33� we obtain the gap
to Tc ratios as indicated in Fig. 7. Different from the Migdal-
Eliashberg case we find that these ratios are rather strongly

dependent on both the Migdal parameter and the coupling
parameter, while the ratio becomes large for small coupling,
in striking contrast with conventional strong-coupling super-
conductivity. Invariably we find the ratio to be larger than the
weak-coupling BCS case, reflecting the strongly dissipative
nature of quantum critical states at finite temperature that
plays apparently a similar role as the “pair-breaking” phonon
heat bath in conventional superconductors.

V. AWAY FROM THE CRITICAL POINTS: THE
SUPERCONDUCTING DOME VERSUS T�

Our scaling theory yields a simple and natural explanation
for the superconducting domes surrounding the QCPs. This
is usually explained in the Hertz-Millis-Moriya
framework51,87–89 that asserts that the critical fluctuations of
the bosonic order parameter turn into glue with singular
strength while the Fermi liquid is still in some sense surviv-
ing. We instead assert that the glue is some external agent
�e.g., the phonons but not necessarily so� that is blind to the
critical point, but the fermionic criticality boosts the super-
conductivity �SC� instability at the QCP according to Eq.
�10�. By studying in detail the variation in the SC properties
in the vicinity of the QCP it should be possible to test our
hypothesis. The data set that is required is not available in
the literature and let us present here a crude sketch of what
can be done. In at least some heavy fermion systems90 a
rather sudden crossover is found between the high-
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FIG. 6. The ratio of the gap to retardation � / �2�B� as a function
of the glue strength � for various retardation ranges with �a� an
s-wave gap and �b� a d-wave gap. Here we have chosen �p=3 /4.
The dotted lines are the standard BCS result. The dependence on
glue strength and retardation is similar but the magnitude of the gap
is much enhanced compared to the previous treatment of gap as a
simple IR cutoff. The d-wave case is enhanced even more.
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FIG. 7. �a� The gap to Tc ratio 2� /Tc as a function of glue
strength � for various retardation ranges �B /�c with fixed scaling
dimension �p=3 /4, for s-wave pairing. The dotted line is the stan-
dard BCS result, where 2� /Tc=3.5. �b� The same plot for d-wave
pairing. The gap to Tc ratio decreases with increasing glue strength
and retardation for both s-wave and d-wave gaps. The ratios for
different retardation ranges approach the same constant as �→0.
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temperature critical state and a low-temperature heavy Fermi
liquid, at a temperature T��

−
c
�z, with � behaving like a
correlation length exponent ��

−
c
−� as a function of the
zero-temperature tuning parameter 
. Moving away from the
QPT this means for the SC instability that an increasingly
larger part of the frequency interval of �� below �B is gov-
erned by the Fermi-liquid “flow” with the effect that Tc de-
creases. We can crudely model this by asserting that the
imaginary part of the pair susceptibility acquires the critical
form for �T� and the Fermi-liquid form for �	T�, while
we impose that it is continuous at �=T�. This model has the
implication that the magnitude of �� in the Fermi-liquid re-
gime is determined by T� and �p and we find explicitly that
N0�m�� 

−
c
−��2−�p�. We notice that this should not be
taken literally, since this crossover behavior can be a priori
more complicated. In fact, from thermodynamic scaling it is
known91,92 that m��

−
c
��d−z�. Figure 8 would imply that
�p=1−d /z. This is not implied by scaling. Given these as-
sumptions, the gap equation away from the quantum critical
point becomes

1 − 2g�
�

T� d�

�
�BCS� ��� + �

T�

2�B d�

�
�crit� ���� = 0. �34�

We are interested in the superconducting transition tem-
perature, which has been shown in Sec. IV, to be approxi-
mately the gap magnitude Tc��. The imaginary part of the
pair susceptibility in the critical region has still the power-
law form �crit� ���=Z� sin��p� /2��−�p, while in the BCS re-
gion it is a constant determined by a continuity at �=T� and,
therefore, �BCS� ���=Z� sin��p� /2��T��−�p. Consequently we
find in the regime Tc	T�	2�B the solution for the gap
equation

Tc = 2�Bx�z exp� 1

�p
1 − x��2−�p� −

1

�̃
�2�B

�c
��p

x��2−�p��� ,

�35�

where x�z=T� / �2�B�. For T�	Tc a plateau is found since
only the critical modes contribute to the pairing, while for

T�2�B the BCS exponent takes over since only the �heavy�
Fermi-liquid quasiparticles contribute having as a conse-
quence

Tc = 2�B exp− �2�B

�c
�2−�p/zx��2−�p�

�p�̃
� . �36�

The outcomes are illustrated in Figs. 9 and 10. One no-
tices in all cases that the dome shapes are concave with a
tendency for a flat “maximum.” This is automatically im-
plied by our starting assumptions. When Tc is larger than T�

only the critical regime is “felt” by the pairing instability and
when this criterion is satisfied Tc does not vary, explaining
the flat maximum. When Tc starts to drop below T� the su-
perconductivity gets gradually depressed because the Fermi-
liquid regime increasingly contributes. Eventually, far out in
the “wing,” one would still have superconductivity but with
transition temperatures that become exponentially small. The
domes reflect just the enhancement of the pairing instability
by the critical fermion liquid relative to the Fermi liquid.

The trends seen in Fig. 9 are easily understood. When the
scaling dimension �p is increasing, i.e., the pair operator is
becoming more relevant, the maximum Tc increases while
not much happens with the width of the dome �Fig. 9�a��, for
the simple reason that the critical metal becomes more and
more unstable toward the superconductor. When the coupling
strength � increases one finds, in addition, that the dome gets
broader �Fig. 9�b�� because the “contrast” between Fermi
liquid and quantum critical BCS is becoming less, illustrat-
ing the surprise that especially weakly coupled quantum
critical superconductors are much better than their traditional
cousins. The same moral is found back when the Migdal
parameter is varied �Fig. 9�c��, illustrating that at very strong
retardation the differences are the greatest. Finally, in Fig.
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FIG. 8. Illustration of the imaginary part of the pair susceptibil-
ity away from the critical point. For �T�, it has the critical scal-
ing behavior, while for �	T�, it retains the BCS form. T� is the
crossover scale. The effective mass m� is identified as the magni-
tude of the imaginary part of the pair susceptibility in the BCS
region. The gap � acts as a low-energy cutoff, and the retardation
2�B acts as a high-energy cutoff. When T� lies between � and 2�B,
as is the case shown above, both the critical modes and Fermi-liquid
modes contribute. When �T�, only the critical modes contribute.
When 2�B	T�, only the Fermi-liquid modes contribute.
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9�d� the evolution of the domes are illustrated when one
changes the exponents relating T� to the reduced coupling
constant. We find that the dome changes from a quite “box-
like” appearance to a “peak” pending the value of �z. The
mechanism can be deduced from Fig. 10, comparing the situ-
ation that the quantum critical “wedge” is concave �Fig.
10�a�, �z	1� with a convex wedge �Fig. 10�b�, �z1�. Be-
cause T� is varying more slowly in the latter case with the
reduced coupling constant, the quantum critical regime be-
comes effectively broader with the effect that the quantum
critical BCS keeps control over a wider coupling constant
range. The trends in Figs. 9 and 10 are quite generic and it
would be interesting to find out whether by a systematic
experimental effort these behaviors can be falsified or con-
firmed.

It is also interesting to compare directly the dome struc-
ture in our model with that of the experimentally observed
superconducting domes. The gross feature is the same: Tc is
largest around the quantum critical point, and decreases as
one moves away from it. There are also two discrepancies.
One is that the experimental domes are smooth, while our
domes all have a plateau in the center. This discrepancy has
its origin in the crudeness of our modeling, where a single
energy scale is introduced, below which the modes are
treated as Fermi-liquid-type and above which as quantum
critical. In real systems, at least in cuprates, there is only a
crossover, not a sharp transition, around that energy scale. So
introducing a more delicate crossover function, perhaps in-
spired by phenomenological considerations,81 may solve this
discrepancy. The other discrepancy is that the experimental
domes are usually concave and decays to zero at finite dis-
tance away from the QCP, while our “dome” has a convex
form, decaying exponentially. For cuprates in the under-
doped regime our model is obviously not sufficient to de-
scribe the competing orders in the pseudogap phase. In the
overdoped regime and also in heavy fermion systems, where
the quantum critical phase gives way to the Fermi-liquid
behavior at low temperatures, it could be interesting to focus
on experimental effort to find out whether our exponential
tails are present. It is also possible that away from the critical

point, other interactions become important. The screened
Coulomb interaction can modify the exponential term
exp�− 1

� � to exp�− 1
�−�� �, and the running of �� may drive the

net four-Fermi interaction from attractive to repulsive, bring-
ing superconductivity to an end.

VI. SPATIAL DEPENDENCE OF THE PAIR
SUSCEPTIBILITY: UPPER CRITICAL FIELD

Another experimental observable that should be quite re-
vealing with regard to scaling behavior is the orbital-limiting
upper critical field. The orbital-limiting field is set by the
condition that the magnetic length becomes on the order of
the coherence length, and the latter relates to the “timelike”
Tc merely by the dynamical critical exponent z. In more de-
tail, assuming a gap of the form93

��r�� = �0 exp�−
r2

2l2� , �37�

the linearized gap equation in the presence of an orbital-
limiting magnetic field becomes94

1

�d−1g
= �

r0

�

K0�r,��exp�−
r2

2l2�rd−1dr , �38�

where �d−1 is the volume of the d−1-dimensional unit
sphere, l is the magnetic length related to the field by H
=�0 / �2�l2�, where �0=hc /e while K0�r ,�� is the real-space
pair susceptibility, which is the Fourier transform of ��.95,96

For free fermions, the real-space pair susceptibility is �see,
e.g., Ref. 95�,

K0�r,�� = � kF

2�r
�d−1 1

vF
2�

1

sinh�2�r

�vF
� , �39�

with a power-law behavior K0�r ,���r−d at short distances
or low temperatures where r	�vF, and an exponential de-
cay at large distances or high temperature. Let us consider
critical fermions at T=0, such that the pair susceptibility has
the power-law form ������−�2−��/z. The momentum depen-
dence can be determined by replacing � by kz, such that
��k��k−�2−��. It follows that the real-space pair susceptibil-
ity has the power-law form K0�r ,T=0�����k�exp�ik� ·r��ddk�
�r−�d−2+�p�. Associate with the retardation a short-distance
cutoff r0, and assume a scaling 2�B /�c= �r0 /ac�−z, where ac
is the lattice constant. The magnetic length acts as a long-
distance cutoff and, therefore,

1

�d−1g
= �

r0

l Ch

rd−2+�p
rd−1dr , �40�

with the normalization factor Ch�2z�1
−�p��−�d−1��c

−1ac
−�2−��, so that �1 /�d−1��ac

Kcrit�r�rd−1dr� 1
�c

,
to give the right scale. The zero-temperature upper critical
field has then the same form as the one for Tc except for the
occurrence of z
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FIG. 10. �a� The superconducting transition temperature Tc as a
function of the distance from the critical point, for a given crossover
temperature T� and retardation �B. The parameters are chosen as
z=2, �=1 /3, �p=1, �=0.05, �B /�c=0.1. �b� The same plot
for a different sets of parameters z=3, �=0.5, �=1 /2, �

=0.05, �B /�c=0.1. In between the two points 
c�
̃, at which the
transition temperature coincides with the crossover temperature

Tc�
c�
̃�=T��
c�
̃�, the critical temperature remains constant.
For T�2�B, Tc decays exponentially. The schematic behavior of
the effective mass m� is also included. It diverges when approach-
ing the critical point.

BCS SUPERCONDUCTIVITY IN QUANTUM CRITICAL METALS PHYSICAL REVIEW B 80, 184518 �2009�

184518-11



2�Hc2�0�
�0r0

−2 � 1 +
1

�̃
�2�B

�c
��p�−2/2−�p

, �41�

and it follows:

2�Hc2�0�
�0ac

−2 � � Tc

�c
�2/z

. �42�

In the BCS case one has Hc2�0� / �B�0kF
2�= �Tc /EF�2, with

B�3.26 for d=3.97 The moral is obvious: in Lorentz-
invariant �z=1� systems the relation between Hc2 and Tc is
the same as for standard BCS, but when the normal state is
governed by a universality class characterized by z1,
Hc2�0� will be amplified for a given Tc relative to conven-
tional superconductors because Tc /�c ,Tc /EF�1.

Modeling the variation in Hc2 in the vicinity of the QPT
as in the previous paragraph, where the critical modes govern
the short distance and BCS-type behavior is recovered at
large distance, while converting the crossover temperature to
a length scale r�, by T� /�c= �r� /ac�−z, we find that Hc2 is
determined by the equation

1

�d−1g
= �

r0

r� Ch

rd−2+�p
rd−1dr + �

r�

l Ch�

rd rd−1dr , �43�

with the matching condition Ch= �r��−2+�pCh�. We find that one
just has to replace the first two dynamic exponents z in Eq.
�35� by two while an extra factor of two has to be added to
the second term in the exponent

Hc2 =
�0ac

−2

2�
x2��2�B

�c
�2/z

exp� 2

2 − �p
1 − x��2−�p�

− �2�B

�c
��p x��2−�p�

�̃
�� . �44�

In the region, where only the Fermi-liquid quasiparticles
contribute, the upper critical field has still an exponential
form

Hc2 =
�0ac

−2

2� �2�B

�c
�2/z

exp− 2�2�B

�c
�2−�p/z x��2−�p�

�2 − ���̃
� .

�45�

The dependence of Hc2 on various parameters is shown in
Fig. 11, and one infers that Hc2 behaves in ways very similar
to Tc �Fig. 10�. The interesting part is illustrated in Fig.
12�b�, where we plot Hc2 /H0−Tc /�c as a function of the
distance away from the critical point for different dynamical
exponents, z, keeping all other quantities fixed, defining H0
��0ac

−2 / �2��. One infers that when z2, Hc2 /H0−Tc /�c
increases rapidly when approaching the critical point.

Using a “ferromagnetic” dynamical exponent z=3
and a Grüneisen exponent 1 /�z=2 /3 inspired by
recent experiments98,99 as well as by theoretical
considerations9,51,55,87–89 we obtain the results in Fig. 12�a�.
Compared to Tc, Hc2 peaks much more strongly toward the
QCP. This is in remarkable qualitative agreement with the
recent results by Levy et al.59 on the behavior of the orbital-
limiting field in URhGe exhibiting a ferromagnetic QCP,

where the highest Tc is about 0.5 K,100 while the upper criti-
cal field exceeds 28 T. It has also been observed in noncen-
trosymmetric heavy fermion superconductors CeRhSi3 �Refs.
101 and 102� and CeIrSi3,103,104 where the Pauli limiting
effect is suppressed due to the lack of an inversion center of
the crystal structures and the orbital-limiting effect plays the
main role of pair breaking. Near the quantum critical points,
Hc2 can be as high as 30 K, although the zero field Tc is on
the order of 1 K.105,106 This class of experiments can be
understood in our framework as resulting from the change in
the scaling relation between Hc2 and Tc. �See also Ref. 107
for a tentative explanation from the customary Hertz-Millis-
Moriya perspective.�
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FIG. 11. The upper critical field Hc2 over H0��0ac
−2 / �2�� as a

function of the distance away from criticality �a� for various scaling
exponents �p with �=0.06, �B /�c=0.1, �=1 /2, z=3, �b� for
various glue strengths � with �B /�c=0.1, �=1 /2, z=3, �p

=5 /6, �c� for various � with �=0.06, �B /�c=0.1, �p=5 /6, z
=3, and �d� for various retardation ranges with �=0.06, �
=1 /2, z=3, �p=5 /6.
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FIG. 12. �a� Illustration of the different behaviors of Tc and
upper critical field Hc2 as the QCP is approached. Hc2 increases
much faster than Tc. Thus for a small Tc one can still have a large
upper critical field. Here we plotted using the parameters �
=0.05, �B /�c=0.1, �=1 /2, z=3, �=−1. �b� The difference
Hc2 /H0−Tc /�c as a function of the distance away from the critical
point for different dynamical exponents z. Here H0��0ac

−2 / �2��,
�=0.06, �B /�c=0.1, �z=0.5, �p=0.4. For z=2, the difference
is zero. For z=3,4, the difference is positive and increases rapidly
when approaching the critical point. For the case with z=1, the
difference is negative.
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VII. CONCLUSIONS

Perhaps the real significance of the above arguments is no
more than to supply a cartoon, a metaphor to train the minds
on thinking about pairing instabilities in non-Fermi-liquids.
This scaling theory has the merit of being mathematically
controlled, given the starting assumptions of the “retarded
glue” and conformal invariance. The Migdal parameter plays
an identical role as in conventional BCS theory to yield a full
control over the glue-fermion system dynamics, while we
trade in Fermi-liquid principle for the even greater powers of
scale invariance. The outcomes are gap and Tc equations,
where the standard BCS/Eliashberg equations show up as
quite special cases associated with the marginality of the pair
operators of the Fermi gas. The difficulty is of course to
demonstrate that these starting assumptions have dealings
with either nature itself and/or microscopic theories of elec-
tron systems, where they should show up as emergent phe-
nomena at low energy. However, the same objections apply
to much of the current thinking regarding superconducting
instabilities at quantum critical points with their implicit re-
ferral to a hidden Fermi gas. In such considerations there is
an automatism to assume that eventually the superconductiv-
ity has to be governed by Eliashberg-type equations. At the
least, the present analysis indicates that such equations are
not divine as long as the Fermi liquid is not detected directly.
Stronger, in line with the present analysis one might wish to
conclude that superconducting instabilities will be generi-
cally more muscular in any non-Fermi-liquid. The Fermi liq-
uid is singular in the regard that its degrees of freedom are
stored in the Fermi sea, and this basic physics is responsible
for the exponential smallness of the gap in terms of the cou-
pling constant. This exponential smallness should be alien to
any non-Fermi-liquid.

How about experiment? Scaling theories have a special
status in physics because they guide the analysis of experi-
mental data in terms of a minimal a priori knowledge other
than scale invariance. The present theory has potentially the
capacity to produce high-quality empirical tests in the form
of scaling collapses. However, there is a great inconve-
nience: one has to be able to vary the glue coupling strength,
retardation parameters, and so forth at will to test the scaling
structure of the equations. These are the parameters associ-
ated with the materials themselves, and one runs into the
standard difficulty that it is impossible to vary these in a
controlled manner. What remain are the rather indirect strat-
egies discussed in Secs. V and VI: find out whether hidden
relations exist between the detailed shape of the supercon-
ducting and the crossover lines; are there scaling relations
between Hc2 and Tc as discussed in the last section? We look

forward to experimental groups taking up this challenge.
There appears to be one way to interrogate our starting

assumptions in a very direct way by experiment. Inspired by
theoretical work by Ferrell108 and Scalapino,109 Anderson
and Goldman110 showed quite some time ago that the dy-
namical pair susceptibility can be measured directly using
the ac Josephson effect—see also, Refs. 111 and 112. For a
recent review see Ref. 113. It would be interesting to find out
whether this technique can be improved to measure the pair
susceptibility over the large frequency range, “high” tem-
peratures and high resolution to find out whether it has the
conformal shape. It appears to us that the quantum critical
heavy fermion superconductors offer in this regard better op-
portunities than, e.g., the cuprates given their intrinsically
much smaller energy scales.

In conclusion, exploiting the motives of retardation and
conformal invariance we have devised a phenomenological
scaling theory for superconductivity that generalizes the
usual BCS theory to non-Fermi-liquid quantum critical met-
als. The most important message of this simple construction
is that it demonstrates the limitations of the usual Fermi-
liquid BCS theory. The exponential smallness of the gap in
the coupling is just reflecting the “asymptotic freedom” of
the Fermi liquid, and this is of course a very special case
within the landscape of scaling behaviors. Considering the
case that the pair operator is relevant, we find instead an
“algebraic” gap equation revealing that at weak couplings
and strong retardation the rules change drastically: as long as
the electronic UV cutoff and the glue energy are large, one
can expect high Tc already for quite weak electron-phonon-
like couplings. If our hypothesis turns out to be correct, this
solves the problem of superconductivity at a high tempera-
ture although it remains to be explained why quantum criti-
cal normal states can form with the required properties. It is,
however, not straightforward to device a critical test for our
hypothesis. The problem is the usual one that pair suscepti-
bilities, � or �2F, and so forth cannot be measured directly
and one has to rely on imprecise modeling. However, it ap-
pears to us that “quantum critical BCS superconductivity”
works so differently from the Fermi-liquid case that it even-
tually should be possible to nail it down in the laboratory. We
hope that the sketches in the above will form a source of
inspiration for future work.
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