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The description of an impurity atom in a Bose-Einstein condensate can be cast in the form of Fröhlich’s
polaron Hamiltonian, where the Bogoliubov excitations play the role of the phonons. An expression for the
corresponding polaronic coupling strength is derived, relating the coupling strength to the scattering lengths,
the trap size and the number of Bose condensed atoms. This allows to identify several approaches to reach the
strong-coupling limit for the quantum gas polarons, whereas this limit was hitherto experimentally inaccessible
in solids. We apply Feynman’s path-integral method to calculate for all coupling strengths the polaronic shift
in the free energy and the increase in the effective mass. The effect of temperature on these quantities is
included in the description. We find similarities to the acoustic polaron results and indications of a transition
between free polarons and self-trapped polarons. The prospects, based on the current theory, of investigating
the polaron physics with ultracold gases are discussed for lithium atoms in a sodium condensate.
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I. INTRODUCTION

Quantum gases are used as an excellent testbed for many-
body theory, and are particularly useful to investigate strong-
coupling regimes or strongly correlated regimes that have
remained out of reach in the solid state.1 The current work
focuses on the physics of an impurity in a Bose-Einstein
condensate �BEC�, as this system opens a promising avenue
to investigate long-standing problems in polaron theory.2 In
1952, Fröhlich, inspired by Landau’s concept of the polaron,
derived a Hamiltonian that describes a charge carrier �elec-
tron, hole� interacting with its self-induced polarization, in
an ionic crystal or a polar semiconductor.3,4 The Fröhlich
polaron Hamiltonian has resisted exact analytical diagonal-
ization since 1952 and became a laboratory to test methods
of quantum field theory.2 Tomonaga’s canonical transforma-
tion was applied to study the weak-coupling regime. Bogo-
liubov tackled the polaron strong-coupling limit with one of
his canonical transformations. Feynman used his path inte-
gral formalism �and an ad hoc variational principle� to de-
velop a superior all coupling approximation for the polaron.5

These studies were addressing the self-energy, the effective
mass and the mobility of Fröhlich polarons. Studies of the
optical absorption of a Fröhlich polaron were initiated by
Evrard et al.6 for strong coupling and by Gurevich et al.7 for
the weak-coupling limit. Devreese et al.8 calculated the op-
tical absorption of the Fröhlich polaron at all coupling using
Feynman path integrals and the response formalism intro-
duced in Ref. 9. The results of Ref. 8 reveal the internal
excitation structure of the Fröhlich polaron that is absent in
Ref. 9.

However the largest Fröhlich polaron coupling constant
established in any solid by experiment is not large enough to
reveal the rich internal excitation structure of the optical ab-
sorption predicted in Ref. 8. The possibility to tune the cou-
pling strength in the BEC-impurity system presents a mar-
velous challenge and opportunity to experimentally reveal

the internal excitation structure and its related resonances
and scattering states “contained” in the Fröhlich field-
theoretical polaron Hamiltonian. Quantum gases could there-
fore reveal important and subtle characteristics �eigenstates,
resonances,…� of a Hamiltonian devised for a solid, how-
ever, that cannot be realized in a solid. The observation of
the spectra of the BEC-impurity Hamiltonian at large cou-
pling would be all the more interesting in view of recent
studies of the spectrum of the Fröhlich polaron Hamiltonian
with diagrammatic quantum Monte Carlo numerical
techniques10 and with a strong coupling model11 that explore
the validity of the Franck-Condon principle with increasing
coupling strength. Similarly, the transition between quasifree
polarons and self-trapped polarons predicted for acoustic
polarons13 is expected to occur in a coupling regime hitherto
inaccessible in the solid state. Finally, a better understanding
of the intermediate and strong-coupling regimes is needed to
further elucidate the role of polarons and bipolarons in un-
conventional pairing mechanisms for high-temperature
superconductivity.14

The Hamiltonian of an impurity in a Bose-Einstein con-
densate can be mapped onto the polaron Hamiltonian when
the Bogoliubov approximation is valid.15,16 The polaronic ef-
fects comes about through the coupling of the impurity with
the Bogoliubov excitations, as shown in Sec. II. We apply the
path-integral formalism, valid at all values of the coupling
strength, to describe the polaronic effect in a condensate in
Sec. III. As a concrete example, we use the parameters for a
lithium impurity in a sodium condensate, and derive an ex-
pression linking the experimental parameters to a dimension-
less coupling constant analogous to the Fröhlich coupling
constant for electrons in polar crystals. The polaronic energy
shift, the effective mass increase and the polaron radius are
studied for all values of this coupling strength and at all
temperatures where the Bogoliubov approximation is valid,
in Sec. IV.
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II. POLARON HAMILTONIAN FOR AN IMPURITY
IN A CONDENSATE

The Hamiltonian of a single atom, in the presence of a
Bose gas is given by:

Ĥ =
p̂2

2mI
+ �

k
�kâk

†âk +
1

2 �
k,k�,q

VBB�q�âk�−q
† âk+q

† âkâk�

+ �
k,q

VIB�q��̂I�q�âk�−q
† âk� �1�

The first term represents the kinetic energy of the ”impurity”
atom with mass mI. The operators âk

† , âk create and annihilate
a boson with mass mB, wave number k, and energy �k
= ��k�2 / �2mB�−� where � is the chemical potential. These
bosons interact, and VBB�q� is the Fourier transform of the
boson-boson interaction potential. The interaction between
the bosonic atoms and the impurity atom is described by a
potential VIB�q� coupling the boson density to the impurity
density �̂I�q�, which can be expressed as a function of the
impurity position operator r̂ as

�̂I�q� =� d3re−iq·r��r − r̂� . �2�

Bose-Einstein condensation is realized when the single-
particle density matrix has an eigenvalue N0�1 comparable
to the total number of bosons.19 For a homogeneous conden-
sate, this is expressed by the Bogoliubov shift,20 which trans-
forms the Hamiltonian �1� into

Ĥ = EGP + N0VIB�0� +
p̂2

2mI
+ �

k�0
Ekb̂k

†b̂k

+ �
k�0

��kN0

Ek
VIB�k��̂I�k��b̂k + b̂−k

† � . �3�

Here, the operators b̂k
† , b̂k create, respectively, annihilate Bo-

goliubov excitations with wave number k and dispersion

Ek = ��k��k + 2N0VBB�k�� , �4�

where �k= ��k�2 / �2mB�. The first term in Eq. �3� represents
the Gross-Pitaevskii energy21

EGP = N0�0 +
N0

2

2
VBB�0� +

1

2 �
k�0

N0VBB�k� , �5�

and the second term is the interaction shift due to the impu-
rity. For both the boson-boson interaction and the boson-
impurity interaction we will assume contact pseudopoten-
tials: VBB�r−r��=gBB��r−r�� and VIB�r−r��=gIB��r−r��.
The interaction strengths gBB and gIB are related to the
boson-boson scattering length aBB and the boson-impurity
scattering length aIB, respectively, through the Lippmann-
Schwinger equation. For the boson-boson interaction, the
first-order result gBB=4��2aBB /mB will suffice. For the
boson-impurity interaction, the Lippmann-Schwinger equa-
tion needs to be treated correctly up to second order to obtain

valid results for the polaron problem, since as we shall see,
gIB

2 will appear in the expressions.
The resulting Hamiltonian �3� maps onto the Fröhlich po-

laron Hamiltonian4

Ĥpol =
p̂2

2mI
+ �

k�0
�	kb̂k

†b̂k + �
k�0

Vkeik·r̂�b̂k + b̂−k
† � �6�

with

�	k = ck�1 + ��k�2/2 �7�

Vk = �N0� ��k�2

��k�2 + 2
	1/4

gIB. �8�

In these expressions �=1 /�8�aBBn0 is the healing length of
the Bose condensate with n0=N0 /V the condensate density
�in the present calculations for the homogeneous gas we
work with unit volume� and c=� / ��2mB�� is the speed of
sound in the condensate. The operator structure of the BEC-
impurity Hamiltonian and that of the Fröhlich polaron
Hamiltonian is identical. Depending on the analytical form
of the scalar functions multiplying the field operators, the
Fröhlich polaron Hamiltonian, originally devised to describe
the electron/hole—longitudinal optical phonon interaction,
can depict as well the acoustopolaron,12,13 the
piezopolaron,17 the ripplopolaron,18, etc. However, a
formalism/method that diagonalizes the Fröhlich Hamil-
tonian at all coupling, does so for all those different types of
polarons, including the BEC-impurity polaron.

This mapping of the BEC-impurity problem onto the
Fröhlich Hamiltonian, and the resulting possibility of po-
laronic self-trapping of an impurity in a condensate, has been
the subject of recent theoretical investigations at strong
coupling,15,16 and at low coupling with the Lee-Low-Pines
scheme.22 For small polarons in an optical lattice, a pertur-
bative study exists.23 As is also known from the study of the
polaronic problem for slow electrons in a polar crystal, these
approximations give qualitatively different results for differ-
ent regimes of coupling strength. These different character-
istics between weak-coupling and strong-coupling behavior
are even more pronounced in the case of an impurity in a
condensate. In this work, we present a calculation valid for
all coupling strengths, based on the Jensen-Feynman varia-
tional scheme first successfully applied by Feynman5 to
study slow electrons interacting with optical phonons in po-
lar crystals. As discussed below, the present system will have
more similarities to acoustic polarons than to the Fröhlich
polarons.

III. JENSEN-FEYNMAN FREE ENERGY

A. General treatment

The calculation of the free energy F of the polaron is
based on the Jensen-Feynman variational inequality24,25

F 
 F0 +
1

��

S − S0�S0

�9�

where S is the action functional of the real system described
by the Hamiltonian �6�, and S0 is the action functional
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of a variational model system with free energy F0, and
�=1 / �kBT� with T the temperature. This variational principle
is an extension of the usual Gibbs-Bogoliubov variational

principle F
F0+ 
Ĥ− Ĥ0�, where Ĥ is the Hamiltonian of

the system under study and Ĥ0 is a model Hamiltonian, and
the brackets indicate statistical averaging. The inequality �9�
can be derived24,25 from the path-integral expression for the
partition sum:

e−�F =� Dre−S�r�t��/� =� Dre−�S�r�t��−S0�r�t��
/�e−S0�r�t��/�

= e−�F0
e−�S−S0�/��S0
� exp�− �F0 − 
S − S0�S0

/�� ,

�10�

where the inequality follows from the convexity of the ex-
ponential, and Dr represents the path-integral measure. The
peculiarity of this variational principle, in comparison to the
usual Rayleigh-Ritz variational approach, is that a variational
action functional is used rather than a variational wave func-
tion. One important strength of the Jensen-Feynman prin-
ciple is that it can be used at nonzero temperatures.24 An-
other strength, in comparison with the Gibbs-Bogoliubov
variational principle, is that it can treat systems that are hard
or impossible to describe in the standard Hamiltonian for-
malism, such as a collection of particles that interact through
a retarded potential, such as Lienard-Wiechert potentials in
electrodynamics, or the phonon-induced electron-electron
potential in polaron theory. In particular, the polaron Hamil-
tonian �6� after the elimination of the phonon degrees of
freedom leads to an action functional S containing retarda-
tion effects:

S = �
0

�� mI

2
ṙ2�
�d
 − �

k�0

�Vk�2

2�
�

0

��

d
�
0

��

d�

�G�k, �
 − ���eik·�r�
�−r����, �11�

with G�k ,u� the Bogoliubov excitation Green’s function,
given by

G�k,u� =
cosh�	k�u − ��/2��

sinh���	k/2�
. �12�

The action functional �11� is obtained by integrating out ana-
lytically the oscillator degrees of freedom corresponding to
the Bogoliubov excitations, a technique introduced in the
context of phonons in Ref. 5. This gives rise to a retarded
interaction �proportional to eik·�r�
�−r�����, mediated by the
Bogoliubov-excitation Green’s function, and with coupling
strength �Vk�2 / �2��.

The system under study here is modeled by a variational
trial system with free energy F0 described by the action func-
tional

S0 = �
0

�� mI

2
ṙ2�
�d
 +

MW3

8
�

0

��

d


��
0

��

d�
cosh�W��
 − �� − ��/2��

sinh���W/2�
�r�
� − r����2.

�13�

The model system corresponds to a mass mI that is coupled
by a spring with spring constant MW2 to a ”Bogoliubov”
mass M. Both M and W are variational parameters. The ex-
pectation value in the inequality is evaluated in the model
system. This model system is chosen partly because the ex-
pectation values can be calculated analytically for it. For
more details on the formalism, we refer to Refs. 5, 24, and
26:

F 

3

�
�ln�2 sinh����

2
�	 − ln�2 sinh���W

2
�	�

−
3

2�

M

mI + M
����

2
coth����

2
� − 1	

− �
k

�Vk�2

�
�

0

��

du�1 −
u

��
�G�k,u�MM,��k,u� .

�14�

Here �=W�1+M /mI, and the memory function is given by

MM,��k,u� = exp�−
�k2

2�mI + M��u −
u2

��

−
M

mI

cosh�����/2�� − cosh�����/2 − u��
� sinh����/2� �	 .

�15�

Rather than choosing W ,M as variational parameters, we can
choose � ,M as variational parameters.

B. BEC-impurity

Care should be taken when we substitute the interaction
amplitude �8� into these expressions. Since �Vk�2�gIB

2 , we
need to solve the Lippmann-Schwinger equation up to sec-
ond order to obtain the link between gIB and aIB correctly;
we find

2��2aIB

mr
= gIB − gIB

2 �
k��0

2mr

��k��2 , �16�

where mr is the relative mass �mr
−1=mB

−1+mI
−1�. From this,

we find that the term N0VIB�0�=N0gIB in Eq. �3� must also
contribute a renormalization factor since

N0gIB → N0�2��2aIB

mr
+ gIB

2 �
k��0

2mr

��k��2� . �17�

Substituting Eqs. �8� and �7� into Eq. �14� then yields
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F 

3

��ln�2 sinh���

2 �	 − ln�2 sinh� ��

2�1 + M
�	�

−
3

2�

M

1 + M���

2
coth���

2 � − 1	
+ �� m̃B + 1

m̃B
�2�

0

� dk

4��� 2m̃B

1 + m̃B
�

−
k3

�2 + k2�
0

�/2

G�k,u�M�k,u�du	 . �18�

In this expression,

� = aIB
2 /�aBB�� �19�

is the polaronic coupling strength. We use polaronic units, so
that �=mI=�=1. That means the free energy is in units
�2 / �mI�

2�, so that �=�2 / �mI�
2kBT� and m̃B=mB /mI. The in-

tegration variables k, u and the variational parameters M, �
in Eq. �18� are dimensionless. In these units, we find after
substitution of Eqs. �8� and �7�, that the Green’s function is
given by

G�k,u� =
cosh�k�k2 + 2�2u − ��/�4m̃B��

sinh��k�k2 + 2/�4m̃B��
,

and the memory function takes the form

M�k,u� = exp�−
k2

2�1 + M��u�� − u�
�

+ M
cosh����/2�� − cosh����/2 − u��

� sinh���/2� �	 .

�20�

The first term of the integrand of the k-integral in Eq. �18� is
due to a renormalization factor, which arises when we relate
gIB to the boson-impurity scattering length. This term is in-
dependent of the variational parameters M and � and does
not influence the optimization of the variational parameters;
it is however necessary for the k-integrals to converge. In the
case of the acoustic polaron, convergence in the variational
minimization of Eq. �18� is sped up by introducing a cutoff
Kc to the wave-number integral,12,13 for which there is a
natural choice, namely, the edge of the Brillouin zone. For
atomic gases, as we show in Sec. IV, the results do not
strongly depend on the value cutoff as long as it is on the
order of the �inverse� Van der Waals radius which we use as
a natural scale for Kc in the present case. Note that, although
these formulas are derived for any temperature �any ��, the
mapping onto the polaron Hamiltonian is only valid for tem-
peratures below the critical temperature, and low enough so
that the number of Bogoliubov excitations can be neglected
with respect to the number of atoms in the condensate, so
that Eq. �3� gives a good description of the quantum gas. In
the discussion, we will look at realistic experimental values
for � and other parameters.

C. Weak and strong coupling limits

From our central result �Eq. �18��, we can retrieve both
the weak-coupling and the strong-coupling results by a judi-
cious choice of variational parameters, or rather variational
trial actions. The weak-coupling limit is obtained by taking
the limit M→0 in the Jensen-Feynman treatment, which cor-
responds to a the trial action

S0
weak = �

0

�� mI

2
ṙ2�
�d
 �21�

of a free particle, as pointed out in the original work by
Feynman.5 In the limit of zero temperature, this corresponds
exactly to the second-order perturbation result Eweak���; we
find

Eweak = �
�1 + m̃B�2

m̃B

1

2�
�

0

�

dq� 1

1 + m̃B

−� q2

q2 + 2

q

m̃Bq + �q2 + 2
	 . �22�

Note that the variational energy becomes independent of �
in the limit M→0. The energy grows linearly with �, and the
proportionality constant depends on mB:

Epol
weak��� = ��/��2�� for mB → �

4�2�/�3�� for mB → 1

�/��2mB� for mB → 0
� . �23�

The strong-coupling limit is derived by taking the limit M
→� in the Jensen-Feynman treatment. In this limit, the
variational particle with mass M→� is fixed in place, and
we get a particle attached by a spring to a fixed point rather
than to a mobile variational mass. The resulting trial action
for strong coupling is5

S0
strong = �

0

�� �mI

2
ṙ2�
� +

mI�
2

2
r2�
��d


relating the strong-coupling limit to the variational approach
of Landau and Pekar27 for the polaron problem, based on a
Gaussian variational wave function. The variational energy
becomes

Estrong 

3

4
� + lim

�→�
�� m̃B + 1

m̃B
�2�

0

� dk

4��� 2m̃B

1 + m̃B
�

−
k3

�2 + k2�
0

�/2

G�k,u�M�k,u�du	 . �24�

Care must be taken with the limit �→�: since the conver-
gence of G�k ,u� to its �→� limit is not uniform the limit
cannot be interchanged with the integration.

IV. RESULTS AND DISCUSSION

A. Experimental realization

Before we turn to the results, it is useful to find typical
experimental values of the system parameters. Consider a
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sodium condensate of N0=105 atoms in a harmonic trap with
axial and radial trapping frequencies 	ax=2� ·50 Hz and
	rad=2� ·150 Hz, respectively. As scattering length for so-
dium in the �F ,MF�= �1,1� hyperfine state, we use aBB
=2.8 nm.28 The condensate is suitably described by the
Thomas-Fermi �TF� approximation. In our calculations we
have assumed spatial homogeneity. The density appears in
the theoretical results through the healing length, which is
the relevant length scale for the polaronic effect, and appears
in expression �19� for the coupling constant. As long as the
polaronic effects are restricted to a range considerably
smaller than the TF radius �9.5 �m�, we can use the local
density at the center of the trap, n0=7�1013 cm−3, to esti-
mate the appropriate healing length. In the current example,
it is �=450 nm at the center of the trap, indeed smaller than
the TF radius. Using �=1 /�8�n0aBB and the Thomas-Fermi
expression for n0 in the expression �19�, we find the useful
relation for the coupling constant

� = 151/5�N0aBB

āHO
�1/5 aIB

2

aBBāHO

, �25�

expressing the polaronic coupling constant as a function of
the number of condensate atoms N0, the oscillator length
āHO=�� / �m	HO�, associated with the geometrical average
trap frequency 	HO=�3 	ax	rad

2 , and the s-wave scattering
lengths aBB and aIB.

For the impurity, we consider a 6Li atom, so that

m̃B = mB/mI = 3.8. �26�

Using aIB=0.8 nm as the 6Li-23Na scattering length,29 � is
of the order of 10−3. For these values, the weak-coupling
expression �22� is suitable. To increase �, several strategies
are possible. One possibility is to increase aIB /aBB using Fes-
hbach resonances to either increase aIB or decrease aBB. One
could also increase aIB / āHO by tightening the trap. The re-
maining factor in expression �25� varies slowly as a function
of the TF parameter N0aBB / āHO.

We look in particular at two strategies for increasing � in
the case of lithium impurities in a sodium condensate. On the
one hand, one can minimize aBB using the zero-crossing near
the sodium Feshbach resonance at 907 G.30 The tunability of
aBB is limited by the magnetic field stability; we expect a
factor of 10 increase in � to be realistic. On the other hand,
one can increase aIB using a sodium-lithium Feshbach reso-
nance, for which the prime candidates are the already ob-
served resonance at 796 G31 or the predicted resonance at
1186 G.29 In this strategy, the limiting factor to the tunability
of aIB is the trapping lifetime of the lithium atoms. The main
loss process is three-body recombination, involving one
lithium and two sodium atoms, which is strongly enhanced
near the lithium-sodium resonance as the loss scales as aIB

4 .
We expect that an increase in � ��aIB

2 � up to a factor 1000
are still attainable. This leads to a maximal � of order unity,
which is in the crossover to the strong-coupling regime. In
addition, to avoid phase separation or collapse the trapping
potential and the number of lithium atoms have to be care-
fully chosen.

The energy scale �2 / �mI�
2� corresponds to a frequency of

2� ·8.1 kHz or a temperature of ca. 390 nK. With this
choice,

� =
390 nK

T�nK�
. �27�

The �ideal gas� critical temperature for the sodium conden-
sate is 220 nK, or �=1.8. As the lowest temperature we
estimate 0.5T� where T�=� /kB=53 nK. This corresponds to
�=15, so that the experimentally relevant window for this
parameter is �� �1.8,15�.

The Bogoliubov dispersion at low k is similar to that of
acoustic phonons rather than to that of optical phonons. For
the acoustic polaron, it is known that the variational
parameters—especially the polaron mass—depend on the
value of a cutoff in the Kc integral.13 For phonons in solids,
this cutoff is related to the edge of the Brillouin zone. In the
case of dilute quantum gases, a natural cutoff scale arises
from the range r0 of the interatomic potential: on scales
smaller than this the interaction amplitude cannot be repre-
sented any more by expression �8� and should be suppressed.
The range of the interatomic potential for sodium is esti-
mated through the Van der Waals radius r0=2.4 nm, related
by r0= 1

2 �mC6 /�2�1/4 to the Van der Waals coefficient C6
=1556.32 In units of �−1, this places the cutoff at Kc�200 for
the parameters listed in this section.

B. Free energy and critical coupling strength

Figure 1 shows the results for the free energy as a func-
tion of �, using mB /mI=3.8 and a wave number cutoff at
Kc=200, for different values of �, ranging from �=100 to
�=2, where thermal depletion of the condensate starts to be
appreciable. Standard cooling schemes, as mentioned, can
cool down to roughly �=15. The dashed line shows the

FIG. 1. �Color online� The polaronic contribution Eq. �18� to the
free energy of an impurity in a condensate is shown as a function of
the coupling constant �, for different values of the temperature.
From top to bottom, these are �=100, 50, 20, 10, 8, 6, 4, and 2,
corresponding in our example to T=3.5, 7, 18, 35, 44, 58, 88, and
175 nK, respectively. The dashed curve shows the strong-coupling
Pekar approximation. The inset zooms in on the small � region: the
dashed line in inset shows the second order perturbation result.

FEYNMAN PATH-INTEGRAL TREATMENT OF THE BEC-… PHYSICAL REVIEW B 80, 184504 �2009�

184504-5



weak-coupling perturbative result valid for temperature zero
�and without any wave number cutoff�. As predicted by Tim-
mermans and coworkers, at small ��1 and ��1 the po-
laronic contribution to the energy is positive. It reaches a
maximum around �=1.5–2.0 and then decreases. The po-
laronic energy contribution becomes negative �indicative of a
transition from an unbound state to a self-trapped state� at a
critical coupling strength �c�3 for T→0. This critical value
goes to zero for increasing temperatures. The perturbative
solution is seen to fit well at low coupling. At larger cou-
pling, the dashed curve indicates the strong-coupling varia-
tional result �Eq. �24��: it is significantly larger than the re-
sult of the full variation with M and � free parameters,
indicating that a Gaussian wave function may not be as suit-
able as it is for Fröhlich polarons in the solid state. We em-
phasize that the polaronic energy calculated here is the con-
tribution from Eq. �6� and does not contain the terms EGP
+N0VIB�0�, which have a known dependence on the various
tunable parameters N0, aIB and aBB, and which complicate
the experimental determination of the polaronic energy con-
tribution. To observe polaronic effects, it may be more
straightforward to measure the shift in effective mass of the
impurity.

C. Effective mass increase

The effective polaron mass mpol can be derived from the
path-integral propagation of a particle from r�0� to a nearby
point r�
�=r�0�+v
 by casting the resulting transition ampli-
tude in the form exp�−mpolv2
 /2
. Feynman notes that this
procedure gives a value for mpol, which is always within a
few percent of 1+M with M the variationally optimal mass
M of the trial model.24,26 Figure 2 shows the result for M as
a function of �, for different values of the temperature. For
small values of the coupling strength, the mass increases
linearly with � as predicted by perturbation theory. However,

near ��3.5, the behavior changes and the mass increases
rapidly.

The low-energy Bogoliubov excitations are sound waves,
with a dispersion qualitatively similar to acoustic phonons.
The effective mass of acoustic polarons—electrons interact-
ing with acoustic phonons—shows a jump of several orders
of magnitude in the effective mass �cf.13� above a critical
coupling strength. In the present case we also note a faster
increase in the mass above a critical coupling strength, even
though the interaction amplitude is different from that be-
tween acoustic phonons and electrons. In the dilute atomic
gas, the transition is much less dramatic, and becomes
smoother as temperature increases. We believe the smooth-
ness of the crossover is not an artifact of the path-integral
formalism, since in the case of the acoustic polarons it is the
same formalism that predicts a discontinuous jump. For
acoustic polarons, it is also predicted that the sharpness of
the transition depends strongly on the cutoff: above a critical
value of Kc a discontinuity appears in the mass as a function
of �. So it is worthwhile to study the dependence of M on
the value of a cut-off to the k integrations in Eq. �18� also in
the present case. We find that increasing the cutoff sharpens
the transition �as can be seen in the inset of Fig. 2�, but no
discontinuity arises as it does for the acoustic polaron. The
difference is due to the fact that although the Bogoliubov
excitation dispersion and the interaction amplitude show a
similar k-dependence as in the case of acoustic polarons, this
is only true in the limit k�1, and large deviations already
occur for k�1, the relevant length scale of the problem. Yet
even though the transition is not as abrupt as for acoustic
polarons, it is possible to distinguish two regimes. In con-
junction with the crossover from positive to negative values
of the free energy, this is again indicative of a transition
between an quasifree �unbound� impurity and self-trapping
for the impurity.

D. Polaron radius

The second variational parameter, �, is linked to the po-
laron radius. Within the model system described by the ac-
tion functional S0, expression �13�, the expectation value of
the square of the relative coordinate for the impurity—boson
mass system is given by


r2� =
3

2�

M

1 + M
coth���

2
� . �28�

The square root of this is a measure of the localization length
of the impurity wave function. For strong coupling, this ex-
pectation value converges to the expectation value with re-
spect to the variational wave function formulated by Landau
and Pekar.27

Figure 3 shows the polaron radius �
r2� as a function of
the coupling strength, for different values of �, at a cutoff
Kc=200. As the coupling strength is increased, the polaron
radius decreases, indicating a stronger confinement of the
impurity wave function. In particular the large � behavior
might still depend on the cut-off, although a 1 /� dependence
is expected independently of Kc. Near ��3–3.5, we find
that a local maximum develops and the behavior of the po-

FIG. 2. �Color online� The variational mass parameter M is
shown as a function of �. The effective polaron mass is to a good
approximation given by mpol=mI�1+M /mI�. The curves correspond
to different temperatures ��=100, 50, 20, 10, 8, 6, 4, and 2, from
top to bottom�, at cutoff Kc=200. The inset shows the effect of
cutoff �Kc=100, 200, 400, and 1000, from top to bottom�, at �
=10.
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laron size as a function of � becomes nonmonotonic. It is not
clear whether this local maximum is an intrinsic feature of
the BEC-impurity polaron, or whether it is an artifact from
the particular variational model used.

V. CONCLUSION

When the Bogoliubov approximation applies, the Hamil-
tonian describing the impurity in a condensate can be cast in
the form of the Fröhlich polaron Hamiltonian. The physics
becomes similar to that of a Fröhlich polaron, where for the
impurity in the BEC the Bogoliubov excitations have taken
the role of the phonons and the interaction strength is related
to the impurity-boson and boson-boson scattering lengths.
The most accurate description of polaron physics in the case
of electron-phonon interactions is given by Feynman’s varia-

tional treatment, which moreover allows to study the tem-
perature dependence of observables such as the effective
mass and the free energy. We have applied a Jensen-
Feynman path-integral type calculation to the case of the
impurity in a condensate and derived expression �18� for the
free energy. Both in the free energy and the effective mass, a
critical value of the coupling strength ��3.5 can be identi-
fied where the system crosses over from the weak-coupling
to the strong-coupling regime. These regimes show a quali-
tatively different behavior of the effective mass and free en-
ergy. The sharp increase in the effective mass in the strong-
coupling regime hints at a transition from an quasifree state
to a large-mass state similar to that for acoustic polarons. It
has been pointed out13 that a transition from the quasifree
regime to the large-mass regime is impossible to realize in
most semiconductors and III–V compounds, even in alkali
halides. However, the present results indicate that it might be
attainable in ultracold gases. For this purpose, we investi-
gated the experimentally relevant values of the system pa-
rameters, and derived a useful expression �25� relating � to
the various parameters in the case of a condensate in the
Thomas-Fermi regime. This opens up the prospect to reach
and investigate the strong-coupling regime in ultracold
gases, whereas this regime has hitherto be inaccessible in the
solid state.
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