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Aiming to describe frustrated quantum magnets with nonmagnetic singlet ground states, we have extended
the Rokhsar-Kivelson �RK� loop expansion to derive a generalized quantum dimer model containing only
connected terms up to arbitrary order. For the square-lattice frustrated Heisenberg antiferromagnet �J1-J2-J3

model�, an expansion up to eighth order shows that the leading correction to the original RK model comes from
dimer moves on length-6 loops. This model free of the original sign problem is treated by advanced numerical
techniques. The results suggest that a rotationally anisotropic plaquette phase �A. Ralko, D. Poilblanc, and R.
Moessner, Phys. Rev. Lett. 100, 037201 �2008�� is the ground state of the Heisenberg model in the parameter
region of maximum frustration.
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I. INTRODUCTION

Over the last decades theoretical efforts have been de-
voted to study quantum phases of two-dimensional frustrated
quantum magnets, motivated by the discovery of experimen-
tal antiferromagnets showing the absence of long-range mag-
netic ordering down to very low temperatures.1–5 In such
systems a gap to magnetic excitation traditionally opens up
while the spin-SU�2� symmetry remains unbroken. Two
classes of “singlet” phases have been distinguished. Valence-
bond crystals �VBC� where some spatial symmetries are
spontaneously broken and spin liquid for which all symme-
tries remain unbroken �e.g., the resonating valence-bond
liquid.6�.

However, it is usually difficult to characterize the singlet
phases in simple microscopic S=1 /2 models. For example,
in the well-known J1-J2 Heisenberg S=1 /2 antiferromagnet
on the square lattice, where frustration is controlled by the
next-nearest interaction J2, no definitive answer has been
given on the nature of the nonmagnetic Ground State �GS�
for maximal frustration at J2 /J1�0.5. Mambrini et al.7 re-
cently addressed a work to this task, studying the J1-J2-J3
model, containing an extra next-next-nearest neighbor J3
frustrating antiferromagnetic,

H = J1�
�i,j�

Si . S j + J2 �
��i,j��

Si . S j + J3 �
���i,j���

Si . S j . �1�

Interestingly, in this model the description in terms of
nearest-neighbor valence-bond �NN VB� coverings8 is excel-
lent in some extended region of parameter space, in particu-
lar, around the point J2=J3=1 /4, with some significant ex-
tension along the line �J2+J3�=J1 /2. This model is therefore
one simple canonical case where a truncation within the
nearest-neighbor singlet configuration basis is legitimate and
can be used as a simpler and convenient framework.

In this paper, we have extended the Rokhsar-Kivelson
�RK� loop expansion to derive a generalized quantum dimer
model �QDM� acting in the space of hardcore NN dimer
coverings of the lattice. We show that this expansion based
on the hierarchy of the overlap matrix elements between the
dimer coverings leads to an effective Hamiltonian that con-
tains a sum of dimer moves, each involving only a single
closed loop or loops at finite distances �connected term�. In
other words, all disconnected terms cancel out order by or-
der. We apply this procedure to the J1-J2-J3 model and show
that the leading contributions are of the form of a simple
generalized QDM on the square lattice which, in addition to
original QDM,9 contains an additional loop-6 term which
brings kinetic competition in the system. The effective
Hamiltonian then reads

Heff = v
∑

p p

− t4
∑

p p

− t6
∑

p p

. �2�

where the sums run, respectively, over all square or rectan-
gular plaquettes of the square lattice. Here we use the fol-
lowing convention: �i� white plaquettes denote kinetic �off-
diagonal� operators that flip dimers around the thick contour
and �ii� yellow plaquettes stand for potential �diagonal� op-
erators that leave configurations unchanged with a factor 1 if
it is flippable around the thick contour and 0 in the opposite

case. In the following, the omission of p indices in the dia-
grammatic notation is a shortcut notation for an implicit
summation over all inequivalent plaquettes with a given
shape. For example,

=
∑

p
p

.
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Guided by a variational approach and combining numeri-
cal techniques such as exact diagonalizations �ED� and zero-
temperature Green’s-function Monte Carlo, we compute the
phase diagram of this model. More specifically, we give evi-
dence in favor of a mixed columnar-plaquette phase first pro-
posed in Ref. 10 and, since, evidenced in number of other
contexts.11 Remarkably, this phase is found to be stable even
in the presence of the loop-6 fluctuations. Hereafter, using
the relation between the effective and microscopic models,
we argue in favor of the SU�2�-invariant version �i.e., appli-
cable to a spin-1/2 model instead of a dimer model� of the
above mixed columnar-plaquette phase in the J1-J2-J3 micro-
scopic model along the maximally frustrated line J2+J3
=J1 /2 where an approach restricting to the short-range VB
basis has been justified previously.7

II. DERIVATION OF THE MODEL

A systematic way to derive the generalized QDM Hamil-
tonian �1� consists of �i� projecting the Heisenberg model in
the manifold formed by NN VB coverings of the square lat-
tice and �ii� perform a transformation that turns the nonor-
thogonal VB basis into the orthogonal quantum dimer basis.
The key ingredient of the calculation is the overlap matrix
O�,�= �� 	��, where 	�� and 	�� are two NN VB states. Step
�i� is equivalent to solving H	��=E	��, where 	�� is re-

stricted to the NN VB subspace. Writing 	��=�i�i	�i�,
where the sum runs over the NN VB states 	�i�, the original
eigenvalue problem turns into a generalized one
� j��i	H	� j�� j =E� j��i 	� j�� j. In turn, this problem is equiva-
lent to the conventional eigenvalue problem Heff	��=E	��
with Heff=O−1/2HO−1/2 which provides the transformation
required by step �ii�.

Using a convention where all bond singlets are oriented
from sites A to sites B according to the canonical bipartition
of the square lattice, the overlap matrix can be written as
O�,�=�N−2nl��,��, where N is the size of the system, nl�� ,��
are the number of loops in the overlap diagram obtained by
superimposing the two configurations, and �=1 /
2. On the
other hand, ��	Si .S j	��=��� 	�� with �=−3 /4 �respectively,
�=+3 /4� if i and j belongs to the same loop of the overlap
diagram but belong to distinct sublattices �respectively, be-
long to the same sublattice� and �=0 if i and j belongs to two
distinct loops. Using a convenient scaling and shifting H
→ �4 /3�H+J1N /2 of Hamiltonian �1�, the matrix elements
��	H	�� can be expressed as H�,�=h�,�O�,�, where h�,�
only depends on the loops configuration. In particular, this
convention enforces h�,�=0 for all �.

It is then possible to expand O and H in powers of � and
compute Heff=O−1/2HO−1/2 accordingly as shown in Table I
up to �6. The expansion up to �8 as well further technical
details of the calculation are given in the Appendix B. It is

TABLE I. �Color online� Expansion of O, H, and Heff up to order �6. Note that the effective Hamiltonian
contains only local �connected� processes. Some processes �marked as 0”� does not appear in O or H but are
produced in Heff by contractions of the generically noncommuting terms of the expansion �see Appendix B
for details�.

Processes O H Heff = O−1/2HO−1/2

Id 1 0 0

∅ ∅ 2(J1 − J2)α4

α2 2(−J1 + J2)α2 −2 (J1 − J2) α2
(
1 + α4

)

α4 2(−2J1 + 2J2 + J3)α4 2 (−J1 + J2 + J3) α4

α4 4(−J1 + J2)α4 0

α6 2(−3J1 + 3J2 + J3)α6 0

α6 (−6J1 + 7J2 + 4J3)α6 (−2J1 + 3J2 + 2J3)α6

α6 2(−3J1 + 3J2 + 2J3)α6 (−J1 + J2 + 2J3)α6

α6 6(−J1 + J2)α6 0

∅ ∅ (J1 − J2 − J3) α6
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worth mentioning two peculiarities of this expansion: �i�
contrary to several previous approaches9,12,13 our expansion
is not controlled by the length of the loops but by the actual
amplitudes of the overlap matrix elements that only depend
on the overall number of loops in the overlap diagrams and
�ii� all nonlocal and disconnected processes appearing in
both H and O cancel in the expression of Heff.

Let us discuss the results of this expansion. When trun-
cated up to order �2, we recover the usual Hamiltonian ob-
tained in Ref. 9 with v / 	t4	=�2=1 /2. Note that such a drastic
truncation appears a bit pathological in the sense that it does
not capture any aspect of the frustration of the original
model, v / 	t4	 is indeed independent of J2 /J1. In the perspec-
tive of a justification of QDM model from the Heisenberg
model, nontrivial effects emerge from order �4. Furthermore,
considering the last column of Table I it is quite easy to see
that, in the maximally frustrated region of the phase diagram
�J2+J3�J1 /2�, where the validity of the NN VB approach
have been established,7 the three processes retained in Eq.
�2� are larger by at least a factor of 2 compared to the higher-
order kinetic processes �see Table IV�. Importantly, we find
that t4�0 and t6�0 which enable the use of efficient sto-
chastic methods not applicable to the original frustrated spin
model which suffers from the so-called “minus sign” prob-
lem. Note that the next-leading corrections are diagonal
terms �see Table IV� and, hence, could also be added in
future developments.

III. VARIATIONAL ANALYSIS

We now turn to the investigation of the effective Hamil-
tonian �2�. We start with some discussion of the expected
VBC phases shown in Fig. 1. Regular columnar and
plaquette phases have been introduced in the context of the
frustrated J1-J2 model and of the QDM.14 More recently, an
anisotropic mixed columnar-plaquette phase has been
introduced.10 We consider here the possibility of such phases
which interpolate between the simple higher-symmetry VBC
�such as columnar or plaquette�. Because of the presence of
loop-6 dimer moves, we also consider the possibility of a
trimerization of the columns of dimers. We summarize the
quantum numbers of the degenerate GS of the various VBC
in Table II. This will be used further in this paper to analyze
the low-energy spectrum of Hamiltonian �2�.

Before showing the results of an extensive numerical
analysis, we first start with a simple variational analysis. In-
deed, variational ansatze for the VBC phases of Fig. 1 can be
easily constructed as tensor products of resonating plaquette
states �see Appendix A� and the knowledge of their relative
stability provides a useful guide for the numerical search of
VBC �but is also subject to some artifact of the variational
method�. For convenience, let us map the two-dimensional
parameter space on a sphere by expressing the Hamiltonian
parameters in terms of two Euler angles 	 and �, as v
=cos���sin�	�, t4=cos���cos�	�, and t6=sin���. The varia-
tional phase diagram �Appendix A� in the �	 ,�� plane con-

TABLE II. Quantum numbers of the eigenstates collapsing to-
ward the same degenerate GS for each of the ordered phases con-
sidered in this paper. When applicable, we used the standard nota-
tions for the irreducible representations of the C4v and C2v point
groups, whose elements are defined w.r.t. a plaquette center. Defi-
nitions of the 
, M, and K points in the Brillouin zone are given in
Fig. 2. ��2� denotes an additional first-excited level �denoted by �

in the text� in the �M ,A1� sector. The states with momenta QB

= ��2
 /3,0�, �0, �2
 /3�, �
 , �2
 /3�, �
 , �2
 /3�, Q2

= ��
 /2,
�, �
 , �
 /2�, and Q3= ��
 /2, �
 /2� are even under
reflection w.r.t. the momentum directions. The degeneracy of the
pure columnar or plaquette �mixed� phases is 4 �8� and it is 12 for
the trimerized phase.
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FIG. 1. �Color online�. VBC states considered in this work.
Generalized anisotropic VBC states labeled by CPa �mixed
columnar-plaquette phases� and T �trimerized phase� interpolate be-
tween the most symmetric limits shown in the figure.
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FIG. 2. �Color online�. Typical ED low-energy spectra on a 8
�8 cluster �the GS energy is set to zero� for �a� 	=−0.3
 and �b�
	=tan−1�0.5� as a function of �. Levels of special symmetries �see
text� are highlighted as colored symbols, from bottom to top:
�
 ,A1� �corresponding to the GS�, �M ,A1�, �
 ,B1�, �K ,A1�, and
�M ,A1��. The arrow indicates the level crossing that marks the limit
of the region where the latter levels correspond to the lowest exci-
tations. Inset: Brillouin zone and its high-symmetry points 

= �0,0�, M = �
 ,0�, and K= �
 ,
�.
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tains three phases, �i� a RK region, �ii� the well-known com-
pletely isotropic four-site plaquette phase, and �iii� a large
domain covered by the trimerized VBC with a six-site unit-
cell interpolating between the columnar phase and the pure
six-site plaquette phase. For zero loop-6 kinetic term ��
=0�, the phase diagram is the same than the one obtained in
Ref. 11 �for 	�−0.25
�. Once � is turned on, kinetic fluc-
tuations due to 6-loop kinetic terms suppress, at a given
point, the standard four-site plaquette and RK phases. Nev-
ertheless, the latter phases are rather robust under the addi-
tional t6 kinetic term in the vicinity of the RK point �see
thick lines in Fig. 5�. However, the variational approach

overestimate the stability of the RK phase �in fact limited to
a single point with algebraic dimer correlations� and of the
trimerized phase �the corresponding wave function has more
four-site flippable plaquettes than plaquette counterpart�. In
contrast, no mixed anisotropic VBC phase is found. A careful
numerical approach is therefore necessary.

IV. NUMERICAL RESULTS

We now move to ED of clusters up to 8�8 sites. More
especially, we compute the lowest-energy spectrum in each
symmetry sectors, using both translations and point-group
symmetries. Our analysis is based on the symmetry classifi-
cation of the tour of states in the �	 ,�� plane. In other words,
each symmetry-breaking VBC phase is characterized by a
finite degeneracy of the GS with a set of well-defined quan-
tum numbers �see table� separated by a gap from the con-
tinuum. On a finite-size cluster, the degenerate GS is split but
a close inspection of the low-energy spectrum can provide
informations on the VBC phase �if the cluster is large
enough�. For t6=0 �i.e., �=0�, previous results �extrapolated
to the thermodynamic limit� show that a phase transition
between the columnar phase and a mixed columnar-plaquette
phase �in fact the CP1 phase of this paper� occurs around 	
�−0.03
. Such a phase can be obtained via an in-phase
spontaneous dimerization in the direction of the columns of
dimers of the columnar phase or, equivalently, via a sponta-
neous rotation symmetry breaking of the pure plaquette
phase. To simplify the discussion, we describe here two rep-
resentative set of parameters that contain these two phases,
	=a tan�0.5� �v / t4=0.5� and 	=−0.3
, for which we have
computed, as a function of �, the spectrum of the effective
model by full ED. The spectra �defined w.r.t. the respective
GS energies� are displayed in Fig. 2. Special symbols have
been used to label five of the six low-energy levels �seven
states over eight� associated to the mixed CP1 columnar-
plaquette phase. We do not consider the last one, the �K ,B1�
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FIG. 3. �Color online�. Extrapolations in the thermodynamic
limit of the order parameters defined in the text characterizing the
mixed CP1 columnar-plaquette phase. Insets: finite-size scaling of
both M+�
 ,
� and M−�0,0� as a function of the inverse linear
cluster size, using 36 sites �6�6�, 64 sites �8�8�, 100 sites �10
�10�, 144 sites �12�12�, and 196 sites �14�14� square clusters.
The chosen value of 	 corresponds to the case of the J1-J2-J3 model
studied in this work.
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FIG. 4. �Color online�. Phase diagram in the �	 ,�� plane ob-
tained from numerical simulations. The previous knowledge of the
�=0 case �Ref. 10� has been used, in particular, to estimate the
limit of the columnar phase as an approximate �black� straight line.
The boundary of the pure plaquette �CP1 mixed� VBC phase ob-
tained from the finite-size scaling of the associated order parameter
is indicated by large circles �triangles�. The �red� thick segment
corresponds to the parameter region of the frustrated quantum anti-
ferromagnet with J2+J3=J1 /2 according to the mapping described
in the text. Crude ED estimates of the boundaries of the columnar
phase and of the CP1 phase are indicated by a thin dashed line and
by small �blue� circles, respectively. The �light blue� region marked
by a question mark has not been identified.
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FIG. 5. �Color online� �a� Variational wave functions �associated
to their respective VBC states� considered in this appendix. Gener-
alized anisotropic VWF labeled by 	CPa� and 	T� interpolate be-
tween the most symmetric limits shown in the figure. �b� Variational
phase diagram as a function of 	 �x axis� and � �y axis�. The
topographic map of � is depicted by the continuous gray lines. The
line joining the Columnar phase and the trimerized one means that
these regions are continuously connected in terms of �. The thick
red line shows the region of parameters of the effective model that
maps to the J1-J2-J3 model along the J2+J3=J1 /2 line for which
the ground state is well described by singlet coverings.
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level, which is believed to be more affected by finite-size
effects. The plots show wide intervals of �, where the above
five levels are the true lowest eigenenergies, hence pointing
toward the mixed phase as a possible GS. The level crossing
at which the low-energy spectrum becomes not anymore
compatible with such a phase is indicated by an arrow. This
level crossing can be used as a first crude estimator of the

range of stability of the mixed phase. Surprisingly enough,
the spectrum at 	�0 is not drastically affected by a finite
value of t6 ���0�, showing that the mixed phase is rather
stable w.r.t an extra loop-6 term, up to ��0.3
. This range
of stability will be corroborated by our thermodynamic limit
extrapolations of the order parameters �see below�. In con-
trast, at 	=−0.3
 and small �, one can see that the very
lowest levels of the spectrum �i.e., those really separated by
a sizable gap from the rest� are compatible with the columnar
phase whose symmetries are given in Table II. A narrow
region of mixed columnar-plaquette phase might however
exist at intermediate � values before the level crossing in-
volving the �M ,A1

�� state occurs. To finish this ED analysis,
let us mention that, apart from the pure columnar and the
mixed CP1 columnar-plaquette phases, no region in param-
eter space could be found where the low-energy spectrum is
compatible with the other VBC phases described above. In
particular, for large �relative� t6 the spectrum becomes quite
dense at low energies preventing any VBC phase
identification.15

In order to give a more quantitative determination of the
region of stability of the mixed CP1 columnar-plaquette or-
der, we have computed the related plaquette structure factors,

I��q� =
��0	P��− q�P��q�	�0�

��0	�0�
, �3�

where P��q� is a diagonal operator with the same symmetry
as the degenerate GS listed in Table II that we aim to target,
defined as Fourier transform of plaquette operators intro-
duced in Ref. 10. For positive t4 and t6 values, such quanti-
ties can be computed efficiently using Green’s-function
quantum Monte Carlo �GFQMC�. A Bragg peak of I+�q� at
momentum �
 ,
� �K point� and a divergence of I−�q=0� �

point� reflect spontaneous translation and rotation symmetry
breaking of the mixed phase, respectively. Related order pa-
rameters M��q�=
I��q� /L can be conveniently defined and
results are displayed in Fig. 3 showing size scalings of both
M+�
 ,
� and M−�0,0� up to cluster size of 196 sites. These
data correspond to the line v / t4=0.5, i.e., originating from
the expansion of the microscopic model J1-J2-J3 under con-
sideration here. Our results reveal that the Bragg peak at the
K point survives up to ��0.3
, in good agreement with the
ED criterion above. Interestingly, for increasing �, the co-
lumnar order parameter I− vanishes before the plaquette one;
hence rotation symmetry is first recovered and a narrow re-
gion of pure plaquette order is stabilized between the mixed
phase region and the more complicated �unknown� phase at
larger t6. The extension of the GFQMC calculation to the 	
�0 region which do not have ergodicity problems limita-
tions, has enable to draw the phase diagram depicted in
Fig. 4.

V. CONCLUDING REMARKS

To finish, let us summarize our findings and their impli-
cations. First we have extended the QDM to the case with a
finite t6 amplitude for the loop-6 kinetic processes. Although
we have also extended the search for VBC phases, we found

TABLE III. Expansions of O and H up to order �8.

Processes O H

Id 1 0

α2 2 (J2 − J1) α2

α4 4 (J2 − J1) α4

α4 2 (−2J1 + 2J2 + J3) α4

α6 6 (J2 − J1) α6

α6 2 (−3J1 + 3J2 + J3) α6

α6 (−6J1 + 7J2 + 4J3)α6

α6 2 (−3J1 + 3J2 + 2J3) α6

α8 8 (J2 − J1) α8

α8 2 (−4J1 + 4J2 + J3) α8

α8 4 (−2J1 + 2J2 + J3) α8

α8 4 (−2J1 + 2J2 + J3) α8

α8 (−8J1 + 9J2 + 4J3)α8

α8 2 (−4J1 + 4J2 + 3J3) α8

α8 (−8J1 + 9J2 + 6J3)α8

α8 (−8J1 + 10J2 + 6J3)α8

α8 (−8J1 + 10J2 + 6J3)α8
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that the previously known columnar, plaquette, and mixed
�here called CP1� columnar-plaquette phases are stable when
a moderate t6 is added. This conclusion is first obtained by a
close inspection of the low-energy spectrum of the model on
finite clusters �ED�. The quantitative determination of the
extensions of the three previous phases is made possible by
GFQMC simulations which do not suffer from the sign prob-
lem when t6�0. Still, it has not been possible to characterize
the GS in the whole parameter space, in particular, when t6

dominates �accumulation of low-energy states� or when v
�0 �i.e., 	�0� where the GFQMC encounters numerical
limitations �both cases being physically irrelevant anyway�.
Our present work on the generalized QDM turns out to be
very useful to make progress in the understanding of the
frustrated S=1 /2 quantum antiferromagnet on the square lat-
tice. Indeed, it was previously argued that, in the vicinity of
J2�J3�J1 /4 and along the J2+J3=J1 /2 line, a truncation in
the NN SU�2�-singlet basis was legitimate. Using this argu-

TABLE IV. �Color online� Expansion of Heff up to order �8.

Processes

Heff = O−1/2HO−1/2

Analytic J3 = J1/2 J2 = J1/4 J2 = J1/2

expression J2 = 0 J3 = J1/4 J3 = 0

2 (J1 − J2) α4
(
1 + α4

)
0.625 0.46875 0.3125

−2 (J1 − J2) α2
(
1 + α4

)
-1.25 -0.9375 -0.625

(
+ -0.226562 -0.242187 -0.257812

(−2J1 + 3J2 + 2J3)α6 -0.125 -0.09375 -0.0625

(−J1 + J2 + 2J3) α6 0. -0.03125 -0.0625

(J1 − J2 − J3)α6 0.0625 0.0625 0.0625

(3J1 − 3J2 − J3) α8 0.15625 0.125 0.09375

1
2 (−5J1 + 5J2 + J3) α8 -0.140625 -0.109375 -0.078125

4 (J1 − J2) α8 0.25 0.1875 0.125

1
4 (3J1 − 5J2 − 3J3) α8 0.0234375 0.015625 0.0078125

1
4 (2J1 − 2J2 − 3J3) α8 0.0078125 0.0117187 0.015625

1
4 (6J1 − 6J2 − 5J3) α8 0.0546875 0.0507812 0.046875

1
4 (7J1 − 7J2 − 3J3) α8 0.0859375 0.0703125 0.0546875

(3J1 − 3J2 + J3) α8 0.21875 0.15625 0.09375

−1
4 (3J1 − 5J2 − 6J3)α8 0. -0.00390625 -0.0078125

1
4 (−5J1 + 9J2 + 6J3)α8 -0.03125 -0.0195312 -0.0078125

1
2 (3J1 − J2 + 4J3)α8 0.15625 0.117187 0.078125

α42 )(J3− J1 J2+4α 5J3 − J1 J2+1
4( ))
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ment and generalizing the RK expansion in terms of the
magnitudes of the overlaps of the elements of the truncated
�nonorthogonal� basis we have made a link between the mi-
croscopic model and some small region of parameter space
of the generalized QDM where, fortunately, a precise char-
acterization of the phase can be made. We can therefore de-
duce that the frustrated S=1 /2 quantum antiferromagnet ex-
hibits in the vicinity of J2�J3�J1 /4 the same type of lattice
symmetry breaking as the mixed columnar-plaquette phase
�CP1� of the QDM. In the language of the quantum antifer-
romagnet, it is a eightfold degenerate SU�2�-symmetric
phase with a 2�2 unit cell �such as the plaquette phase� and
rotation symmetry breaking �such as the columnar phase�.
While a previous investigation of the microscopic model on
a 6�6 cluster has indeed provided evidence of plaquette
correlations,7 only the mapping to the effective model �which
can be studied on much larger clusters� provides enough ac-
curacy to show the spatially anisotropic nature of this spin-
singlet plaquette VBC phase.
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APPENDIX A: VARIATIONAL ANALYSIS

The effective generalized quantum dimer model on the
square lattice originated from the microscopic frustrated
Heisenberg Hamiltonian studied here can be first investi-
gated by a variational method. Indeed, it is possible to con-
struct variational ansatze for valence-bond crystal phases
�see inset of Fig. 5� as simple tensor products of resonating
plaquette states, extending the number of possible phases
arising in the standard QDM. Variational energies can then
be computed analytically. Despite its simplicity, this ap-
proach reveals itself to be a useful guide for the numerical
search of VBC �although artifacts due to its variational na-
ture are expected� and can easily incorporate the symmetry
analysis provided in the paper. In other words, there is a
one-to-one correspondence between these variational wave
functions �VWF� and the VBC states defined in the paper by
the set of spontaneously broken symmetries.

We shall consider a set of five different VWF, �i� the
well-known 	RK� one provided by Rokhsar and Kivelson9 as
an equal weight superposition of all dimer configurations, �ii�
three VWF based on four-site plaquette tensor products
�	CPa�, a=1,2 ,3� and �iii� one with a six-site unit-cell inter-
polating between the columnar phase and the pure six-site
plaquette phase �e.g., 	T� in Fig. 5�. Excepted for 	RK�, all
these VWF depend on a parameter � which allows a continu-
ous interpolation between pure singlet crystals and highly
resonating VBC. To illustrate this construction, here is the
expression of one of the anisotropic four-site plaquette
phases and the above-mentioned six-site plaquette one,

|CP1� =
�

⊗p

cos( )| �p + sin( )| �p

|T� =
�

⊗p�
sin( )| �p� +

cos( )√
2

(| �p� + | �p�) ,

�

�

�

�

�A1�
where the product is performed over the set of separate
plaquettes p or p� as suggested in Fig. 5.

In order to describe the stability of these phases w.r.t. the
parameters, the expectation value of the effective generalized
QDM Hamiltonian is computed. The only off-diagonal terms
of H contributing to �
	H	
�, with 	
� being one of those
VWF, are plaquette flips on occupied plaquettes and the di-
agonal potential term. This leads to contributions propor-
tional to cos���sin��� for all the VWF, plus one in cos2���
for the six-site plaquette one. For the diagonal terms, both
occupied and nonoccupied plaquettes yield nonzero contri-
butions to the expectation value of H. It is worth to empha-
size that the 	RK� WF requires a special analysis. Using well-
defined Pfaffian techniques, one can compute analytically the
probability of flipping a four-site and a six-site plaquette,
which are, respectively, P4=1 /4 and P6=0.0330112�1�. Fi-
nally, these expectation values, as a function of the Hamil-
tonian parameters v�	 ,��, t4�	 ,��, and t6�	 ,��, are given by

ERK = v − t4 − 4t6P6,

ECP1
= v�1 + cos4��� + sin4���� − 2t4 cos���sin��� ,

ECP2
= v�1 + cos4���� − 2t4 cos���sin��� ,

ECP3
= v�1 + 2 cos2���sin2���� − 2t4 cos���sin��� ,

ET = v�2 cos2��� + 4 sin2��� + 3 cos4���/2 + 2 sin4����/3

− t4
8 cos���sin���

3
2
− t6

2 cos2���
3

. �A2�

These energies are then minimized w.r.t. � and the varia-
tional phase diagram displayed in Fig. 5 as obtained in the
�	 ,�� plane. This phase diagram is discussed in the paper.
The colors correspond to different values of the � parameter,
�=
 /2 �blue� for the pure columnar phase, �=0 �purple� for
the pure six-site resonating plaquette phase and �=
 /4 �or-
ange� for the isotropic four-site plaquette phase. The RK re-
gion has an arbitrary color.

APPENDIX B: DERIVATION OF THE HAMILTONIAN

This appendix is devoted to a technical description of the
generalized QDM derivation scheme.

1. Choice of a small parameter and disconnected processes

As briefly described in the paper, the generalized QDM is
obtained by developing Heff=O−1/2HO−1/2 according to the
matrix element hierarchy of both O and H in the VB basis.
Indeed, the amplitude of O�,� �with � and � two VB con-
figurations� only depends on the number of loops nl of the
overlap diagram g= �� ,�� obtained by superimposing the
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two configurations: Og=�N−2nl�g� with �=1 /
2 and N the
total number of sites �see Fig. 6�.

The maximal number of loops is obtained for �=�. In
this case g is just a collection of N /2 trivial loops with length
Ll=2 and Og=1. The next term is obtained by considering

one nontrivial loop with length Ll=4� � while all

remaining �N−4� /2 loops are chosen trivial which leads

to Og=�2. In the same spirit, one Ll=6 loop� � and

�N−6� /2 trivial loops is an �4-order process �see the
fourth line of Tables I and III�. Such a construction
suggests that a quite natural driving parameter for the
expansion is the length Ll of a unique nontrivial loop
surrounded by �N−Ll� /2 trivial loops: such a process
indeed appears at order �Ll−2. However the total length
of loops is a constraint quantity ��l�gLl=N� and other
�nonconnected� terms indeed appear in O at the same order.

For example, formed by two disconnected squares

also occurs in O with the amplitude �4 despite the fact the

nontrivial contour length is different from, e.g., .

For this reason, in the derivation scheme presented
here, we chose the overall number of loops as the
driving parameter for the expansion of O rather than
the commonly used length of the loops.9,12,13 The key
difference lies in the presence of disconnected processes

such as : as we will see, they cancel at every

order of the final effective Hamiltonian but are crucial in the
calculation because they are responsible for the emergence of
nontrivial diagonal and off-diagonal connected processes.

In the expansion of O, we use the following notation:

O = �
p�0

�2p�p, �B1�

where �p are combinations of �p
g process on graphs g,

�p = �
g

�p
g . �B2�

For a full list of �p
g up to order �8, see Table III.

2. Heisenberg Hamiltonian expansion

The action of each term of the Heisenberg Hamiltonian
�1� of a VB state consist in a reconfiguration of dimers. Thus,
��	H	�� can be deduced form inspecting the topology of the
overlap diagram �� 	�� as recalled in Fig. 7. This allow H to
be expanded in power of � �see Ref. 16� similarly to O,

H = �
p�0

�2p�
g

hp
g�p

g . �B3�

Note that it is convenient here to rescale the Hamiltonian by
a factor 4/3. Furthermore, evaluating ��	�4 /3�Si .S j	�� ge-
nerically involves an extensive number of length-2 loops
which only effect is to produce a trivial extensive contribu-
tion to the matrix element. This can be removed by scaling
and shifting H to �4 /3�H+J1N /2. Using this convention, the
expansion of H contains only kinetic terms. For a full list of
hp

g up to order �8, see the last column of Table III.

3. Fusion rules and effective Hamiltonian

The first step to compute the effective Hamiltonian Heff

=O−1/2HO−1/2 is to derive the expression of O−1/2. To
achieve this, we use the formal expansion,

O� = �
k�0


�1 + ��

�1 + � − k�
�1 + k�

�O − 1�k. �B4�

Powers of O and products with H generically involve
symmetric products of diagrams �see Table III� that do not
commute, e.g,{

,
}

= ⊗ + ⊗ .

Evaluating these products requires establishing fusion rules
that �i� governs algebraic properties of diagrams and �ii� gen-
erate, order by order, extra diagonal and off-diagonal pro-
cesses. We give below, the minimal set of rule that are
needed up to order �8.

Order 4 fusion rule,

1

2

{
,

}
= + + 2

0
+1

-1

FIG. 7. �Color online�. The matrix element ��	�4 /3�Si .S j	�� ex-
pressed as f ij�� 	��. Bond �i , j� is represented as a solid black line.
Red and blue bonds represent 	�� and 	��. f ij =+1 �respectively,
f ij =−1� if i and j belong to the same loop at even �respectively odd�
distance along the loop. f ij =0 if �i , j� connects two sites on distinct
loops �see Ref. 16�.

�ϕ|ψ�ϕ ψ

FIG. 6. �Color online�. Overlap �� 	�� between two VB configu-
rations � ad �. Closed loops that appear in the overlap diagram g
are represented as yellow shades.
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Order 6 fusion rules,
{

,
}

= 2 + 6 + 2 +
{

,
}

= 2 + 2 +

{
,

}
= + 2 + 2 + 2

Order 8 fusion rules,

1

2

{
,

}
= + 2

+ 2

{
,

}
= 4 + 2 + +

1

2

{
,

}
= + 2 + + 6

+ 2 + + +

1

2

{
,

}
= + + 2 +

+

+

{
,

}
= + + 2 + 2

+ 2 + + + +

{
,

}
= 2 + 8 + 2 +{

,
}

= + 2 + 4 + 4

+ 2 + 2 + 2 +

{
,

}
= + + 2

+ 2 + +

{
,

}
= + 2 + + 2 + 2

{
,

}
= 4 + 4 + 4 +

+ 2 +

{
,

}
= + 2 + 2 + + +

= +

{
,

}
= 2

+

+

+ 2
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Note that contractions of diagrams not only produce poten-
tial �diagonal� terms but also nontrivial assisted off-diagonal

operators such as, e.g., that flip a plaquette only if

a dimer is present next to it. Special process also appear such

as �respectively � which simultaneously

flip two neighboring plaquettes with parallel �respectively,
perpendicular� dimers. In Table IV, we summarize the result

of the expansion up to order �8. Interestingly enough, all
disconnected terms vanish after simplifying the product
O−1/2HO−1/2. The demonstration of this generic property is
beyond the scope of the present paper and will be presented
elsewhere.17 At this level, let us remark that this absence of
nonlocal terms in the generalized QDM Hamiltonian is
physically satisfactory and is a strong indication of the
internal consistency of the derivation scheme presented here.
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