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We study the Shannon entropy of the probability distribution resulting from the ground-state wave function
of a one-dimensional quantum model. This entropy is related to the entanglement entropy of a Rokhsar-
Kivelson-type wave function built from the corresponding two-dimensional classical model. In both critical
and massive cases, we observe that it is composed of an extensive part proportional to the length of the system
and a subleading universal constant S0. In c=1 critical systems �Tomonaga-Luttinger liquids�, we find that S0

is a simple function of the boson compactification radius. This finding is based on a field-theoretical analysis
of the Dyson-Gaudin gas related to dimer and Calogero-Sutherland models. We also performed numerical
demonstrations in the dimer models and the spin-1/2 XXZ chain. In a massive �crystal� phase, S0 is related to
the ground-state degeneracy. We also examine this entropy in the Ising chain in a transverse field as an example
showing a c=1 /2 critical point.
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I. INTRODUCTION

There has been growing interest in quantifying entangle-
ment in extended quantum systems to detect nontrivial cor-
relations existing in many-body ground states.1 A useful
measure of entanglement is the von Neumann entanglement
entropy SvN�A�ª−Tr �A log �A, defined from the reduced
density matrix �A of a subsystem A. �We use the natural
logarithm�. Its novelty lies in its universal behavior reflecting
the long-distance nature of the system. In one-dimensional
�1D� critical systems, for instance, the entanglement entropy
of a long interval of length � shows a universal scaling2–5

SvN�A�� c
3 log �+const, where c is the central charge of the

conformal field theory �CFT� describing the long-distance
correlations. Possible further information of CFT can be en-
coded in a multi-interval entanglement entropy.6–8 As an-
other example, the existence of topological order in gapped
systems can be detected by measuring a constant contribu-
tion to the entanglement entropy9,10 �with recent applications
to fractional quantum Hall states11,12 and Z2 spin
liquids13–17�.

Here we introduce an apparently different entropy as fol-
lows. Consider a 1D quantum model and its ground state �g�.
If one chooses an orthogonal basis ��i�� of the Hilbert space,
one gets a set of probabilities piª ��i �g��2, from which a
Shannon entropy can be defined,

S ª − 	
i

pi log pi. �1�

Note that this entropy depends on the choice of basis. For a
U�1�-symmetric model with the conservation of the particle
number or the magnetization, we use the local particle occu-
pations �nj� or magnetizations �� j

z� to define the basis. The
entropy S is small when the wave function �g� is dominated
by a particular crystal state �i0�. It becomes larger as more
basis states contribute to the wave function due to quantum
fluctuations. Thus, this entropy quantifies quantum fluctua-
tions or entanglement occurring in the given basis. Like
other entanglement measures, we will see that the scaling of

this entropy is controlled by the essential long-distance na-
ture of the system. We note that a similar entropy also ap-
pears in the context of dynamical systems,18,19 where it is
used to quantify chaos.20

At the same time, this entropy has an interpretation as the
entanglement entropy of a two-dimensional �2D� quantum
state, as we describe in detail in Sec. II. The basic idea goes
as follows. A 1D quantum Hamiltonian on a ring is related to
a 2D classical model on a cylinder in the transfer matrix
formalism. Then a Rokhsar-Kivelson �RK�-type wave
function21,22 �RK� can be constructed from this 2D classical
model. One can show that in the limit of a long cylinder, the
entropy S defined in Eq. �1� is precisely the entanglement
entropy SvN�A� of the 2D RK state �RK� for a half-cylinder A
shown in Fig. 1. More specifically, each probability pi be-
comes an eigenvalue of the reduced density matrix �A. This
correspondence allows us to apply a simpler 1D picture to
study the universal behavior of entanglement entropy in 2D
critical systems, a very active subject in recent literature.23–25

The purpose of the present paper is to unveil the generic
scaling properties of the Shannon entropy 
Eq. �1�� of 1D
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FIG. 1. Two dimensional system with a cylinder geometry, di-
vided into upper and lower parts, A and B.
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ground states �g� as a function of the ring length L. This
amounts to studying the entanglement entropy SvN of 2D RK
states �RK� defined on a cylinder of circumference L. In both
critical and massive systems, we observe that for large L, the
entropy is composed of an extensive part proportional to L
and a subleading constant

S�L� = �L + S0 + o�1� . �2�

The extensive part �L simply reflects the fact that a generic
wave function �g� spreads over an exponentially large num-
ber of microscopic configurations. In terms of the 2D en-
tanglement entropy, this can be interpreted as a boundary
contribution. Here, we are however interested in the sublead-
ing constant S0. As we will see, S0 is universal and is deter-
mined by the basic properties of critical or massive systems.

Our primary interest lies in the situation where a 1D quan-
tum or 2D classical system �used to build a RK state� is
described by a c=1 massless bosonic field theory

Tomonaga-Luttinger liquid �TLL�� with the Euclidean ac-
tion

A
�� =
1

8�
� � dxdy
��x��2 + ��y��2� . �3�

Here the bosonic field is compactified on a circle: �
�
+2�R. The boson compactification radius R is an important
scale-invariant number which controls the power-law behav-
ior of various physical quantities.26 We find that S0 is given
by a simple function of the radius

S0 = log R − 1
2 . �4�

We present detailed analyses to establish this result. In Sec.
III, we study the Dyson-Gaudin Coulomb gas model,27,28

which gives probabilities �pi� for the dimer model on the
hexagonal lattice and the Calogero-Sutherland �CS�
model.29,30 In particular, in Sec. III C, we analytically derive
Eq. �4� using a free field representation of the gas model. In
Sec. IV, we numerically demonstrate the same result in the
spin-1/2 XXZ chain.

At a certain value of R, the system undergoes a phase
transition to a massive crystal phase. As we show in Secs.
III D and IV, in the massive phase breaking a symmetry, S0 is
related to the ground-state degeneracy d,

S0 = log d . �5�

At the transition point, we observe a jump in S0, though it is
slightly obscured due to finite-size effects.

As an example showing the c=1 /2 criticality, in Sec. V,
we study an Ising chain in a transverse field 
Eq. �63��. We
calculate the entropies in �z and �x bases, corresponding to
the RK states built from an eight-vertex model and a 2D
Ising model, respectively. The extracted constants S0

�z��
−0.4387 and S0

�x��0.2544 at the critical point might be ge-
neric constants characterizing the c=1 /2 CFT, although we
do not have any analytical derivation of these numbers. In
the symmetry-broken phase, the constant takes S0

�z�=−log 2
in the �z basis, which is interpreted as a manifestation of Z2
topological order in the eight-vertex RK state.

As a related quantity, in Sec. VI, we study the scaling of
the largest probability p0ªmax pi. This maximum is at-
tained by crystal states �i0�, e.g., by Néel states �↑↓ ↑ ↓ . . .�
and �↓↑ ↓ ↑ . . .� for the XXZ chain in zero magnetic field. Very
similarly to the entropy S�L�, the logarithm of p0 has a domi-
nant linear contribution followed by a subleading constant

− log p0 = �̃L + � + o�1� . �6�

For c=1 critical systems, our numerical results in the Dyson-
Gaudin gas and the XXZ chain show that

� = log R . �7�

This result, together with Eq. �4�, gives a simple and univer-
sal way to determine the radius R from a ground-state wave
function.

Here we comment on closely related works. Using bound-
ary CFT, Hsu et al.24 also studied the entanglement entropy
of 2D RK wave functions for a half-cylinder. Their predic-
tion for the constant S0 differs from ours, although it matches
our calculation for a different constant � appearing in
−log p0. A quantity similar to p0 has also been studied by
Campos Venuti et al.31 in the context of fidelity, in agreement
with our result 
Eq. �7��.

II. CORRESPONDENCE BETWEEN SHANNON AND
ENTANGLEMENT ENTROPIES

In this section, we formulate the connection between the
entanglement entropy of Rokhsar-Kivelson states and the Sh-
annon entropy of the ground states of 1D quantum models.

A. Generalized Rokhsar-Kivelson states

We start from a discrete classical �spin� model on a 2D
lattice defined by Boltzmann weights e−E�c� for microscopic
configurations c of the system. The partition function is
given by

Z = 	
c

e−E�c�. �8�

The Hilbert space of a 2D quantum system is constructed by
associating a basis state �c� to each classical configuration c.
Then, one can define a generalized RK wave function as the
linear combination of all the basis states �c� with amplitudes
given by the square roots of the classical Boltzmann
weights,21,22

�RK� =
1

�Z	
c

e−�1/2�E�c��c� . �9�

The RK state shares the same correlations with the original
classical model as long as one focuses on the diagonal cor-
relations in the ��c�� basis. This type of state was first intro-
duced as the ground state of the quantum dimer model on the
square lattice, where �c� are fully packed dimer coverings of
the lattice. Later, the same type of states has been studied for
different lattices �hexagonal,32 triangular,33 kagome,34 etc.�
and for a modified dimer model.35 The RK states for the

STÉPHAN et al. PHYSICAL REVIEW B 80, 184421 �2009�

184421-2



eight-vertex model on the square lattice have also been
studied.36

B. Schmidt decomposition and entanglement entropy

We divide the system into two parts, A and B, as in Fig. 1.
The reduced density matrix �A is obtained from a state �RK�
by tracing out the degrees of freedom in B,

�A = Tr
B

�RK��RK� . �10�

We are interested in the �von Neumann� entanglement en-
tropy of A,

SvN�A� = − Tr �A log �A. �11�

Here we show that the calculation of SvN�A� for a RK state

Eq. �9�� can be recast as a fully classical calculation, pro-
vided that the boundary between A and B satisfies certain
geometrical conditions. This is done by deriving a Schmidt
decomposition of the RK state 
Eq. �9��.

1. Case with local constraints

We first consider the case where the classical model con-
tains certain local constraints. For simplicity, we assume that
the system consists of Ising variables � j sitting on the bonds
of the square lattice as in Fig. 2. �The same argument also
applies to a model on the hexagonal lattice.� Around each
site, the four Ising variables � j’s satisfy the following con-
straint: if three of them are specified, the last one is uniquely
determined. Dimer, six-vertex, and loop models satisfy this
condition. For example, in the case of a dimer model, we
assign � j = �1 to the presence or absence of a dimer on the
bond j. Then, there is strictly one bond with � j =+1 emanat-
ing from each site.

We define the system on a cylinder and divide it into A
and B, as shown in Fig. 2. Here, all spins at the boundary
belong to A. The spin configurations a and b inside A and B
must agree with the configuration i at the boundary. Let Ei

A

�Ei
B� be a set of such a’s �b’s�. Thanks to the local constraints,

such sets share no common element,

Ei
	 � Ei�

	 = 0” �	 = A,B;i � i�� . �12�

We assume that the classical model E�c� contains only local
interactions involving four bonds around each site. The en-
ergy can then be decomposed into two parts,

E�c� = EA�a,i� + EB�b,i� . �13�

The first term corresponds to all the interactions among spins
in A. The second corresponds to interactions among spins in
B and the boundary region. The important point is the ab-
sence of direct interaction between spins inside A and B.
Thanks to this property, the Boltzmann weight of the con-
figuration c= �a , i ,b� factorizes into two parts, which allows
us to rewrite Eq. �9� as follows:

�RK� =
1

�Z	
i � 	

a�Ei
A

e−�1/2�EA�a,i��a,i��

� 	

b�Ei
B

e−�1/2�EB�b,i��b�� . �14�

We define normalized RK states �boundary dependent� on A
and B as

�RKi
A� ª

1

�Zi
A 	

a�Ei
A

e−1/2EA�a,i��a,i� , �15a�

�RKi
B� ª

1

�Zi
B 	

b�Ei
B

e−1/2EB�b,i��b� , �15b�

with Zi
	 = 	

��Ei
	

e−E	��,i� �	 = A,B� . �15c�

Then we arrive at the Schmidt decomposition,

�RK� = 	
i

�pi�RKi
A��RKi

B�, with pi ª
Zi

AZi
B

Z
. �16�

Here, the mutual orthogonality �RKi
	 �RKi�

	�=�ii� is guaran-
teed by Eq. �12�. The reduced density matrix �	 �with 	
=A or B� is then37

�	 = 	
i

pi�RKi
	��RKi

	� . �17�

Therefore, we get

SvN�A� = − 	
i

pi log pi. �18�

The entanglement entropy can thus be computed from the
classical partition functions Zi

AZi
B with boundary spins fixed

in a state i. Similar formulations were used in Refs. 13–16
for exact, perturbative, and/or numerical calculations of en-
tanglement entropy in toric code, quantum eight-vertex, and
quantum dimer models.

2. General case

The above discussion relies on the presence of local con-
straints. Without them, any configuration b is allowed in B
irrespective of i, and states ��RKi

B�� defined in Eq. �15b� are
not mutually orthogonal in general. Even in such a general
case, one can slightly modify the model so that the entangle-
ment entropy can be computed in the same formulation.

For simplicity, we assume that the classical model is de-
fined on the square lattice, and a spin-S degree of freedom

....
…

.
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B
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2a

i

b
1b

2b

FIG. 2. �Color online� Spatial division of the square lattice into
regions A and B, corresponding to the procedure in Sec. II B 1. The
system is defined on a cylinder and is periodic in the horizontal
direction.
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lives on every site. We again assume that the energy E�c�
consists only of interactions between nearest-neighbor spins.
As illustrated in Fig. 3, each spin is duplicated and an infi-
nitely strong “ferromagnetic” interaction is added so that the
two copies of the original spin are always in the same state
�no spurious degrees of freedom are introduced�. Then the
two regions A and B are introduced in such a way that all the
spin-spin interactions in E�c� take place inside A or B. In
other words, the only allowed couplings between A and B are
the infinitely strong ferromagnetic interactions between cop-
ies of the same physical spin. If one prefers to think in terms
of the original spins only �not duplicated�, this amounts to
saying that regions A and B are overlapping around their
boundary.

In this setup, each state �c� can be labeled in the following
way:

�c� = �a,i� � �b,i� . �19�

Here, each original spin lying at the boundary is effectively
“split” and has one copy in �a , i� and the other in �b , i�. The
Schmidt decomposition 
Eq. �16�� is then constructed using
the following states:

�RKi
	� ª

1

�Zi
		

�

e−1/2E	��,i���,i� , �20a�

with Zi
	 = 	

�

e−E	��,i� �	 = A,B� . �20b�

Here, the difference from Eq. �15� is the presence of i inside
the ket �� , i� for both 	=A and B, which ensures the mutual
orthogonality of ��RKi

	��.

C. Transfer matrix calculation of the reduced density matrix
spectrum

In Sec. II B 2, the spectrum �pi� of the reduced density
matrix has been expressed in terms of the classical partition
functions with spins fixed in the boundary region. In the
cylindrical geometry of Fig. 1 with circumference L and
height 2h, we can relate this spectrum to the ground state of
a 1D quantum spin model using the transfer matrix formal-
ism.

Corresponding to the 2D classical model, we introduce
the transfer matrix T in the upward direction in such a way
that it connects spin configurations on neighboring “rings”
winding around the cylinder �e.g., a1 and a2 shown in Figs. 2
and 3�. The classical partition function 
Eq. �8�� is then ex-
pressed as

Z = 	
ah−1,. . .,a1

	
i

	
b1,. . .,bh−1

�21�

�ah�T�ah−1� ¯ �a2�T�a1��a1�T�i� �22�


�i�T�b1��b1�T�b2� . . . �bh−1�T�bh� �23�

=�ah�T2h�bh� . �24�

Here, the spin configurations, ah and bh, at the top and bot-
tom edges of the cylinder are fixed. In this setup, the classi-
cal probability to find a given configuration i on the ring
�boundary� is

pi =
1

Z
�ah�Th�i��i�Th�bh� . �25�

We now consider the limit of a long cylinder h
L so that
only the dominant eigenvector �g� of T �with the largest ei-
genvalue m0� contributes. Using Th�m0

h�g��g�, we get

pi � ��i�g��2. �26�

If the transfer matrix is related to 1D quantum Hamiltonian
H via T�e−�H �with � being a small time interval�, �g� is the
ground state of H. Then, Eq. �26� means that the complete
spectrum of the reduced density matrix �A is given by the
elements of the ground-state vector �g�.

In the rest of the paper, we will make an extensive use of
this property to calculate the entanglement entropy 
Eq.
�18��. We study several RK states �dimer, vertex, and Ising
models� defined on the infinite cylinder for relatively large
values of L �maximally, L=48 for the dimer models and L
=32 in the six-vertex models with no field�.

D. Thermodynamic extension

The spectrum �pi� of the reduced density matrix �A for a
RK state has a simple interpretation in terms of boundary
free energy of the classical model. Using Eq. �16�, we get

− log pi = Fi
A + Fi

B − F , �27�

where Fi
A
ª−log Zi

A �Fi
B� is the free energy of the subsystem

A �B� with its boundary with B �A� fixed in the configuration

…
.

....

A

B

a

b

1a
2a

i

1b

2b

i

FIG. 3. �Color online� Spatial division of the square lattice,
corresponding to the procedure in Sec. II B 2. Each spin of the
original model is replaced by a pair of spins. An infinitely strong
ferromagnetic interaction ensures that the two spins are always in
the same state. The �new� lattice is divided in two regions, A and B,
and the original sites which overlap with both regions are called
“boundary” sites. The RK state admits a simple Schmidt decompo-
sition �see text� if the only interactions between A and B take place
inside the boundary region. For general short ranged interactions
�not necessarily first neighbor�, this condition can be achieved by
choosing a sufficiently “fattened” boundary region.
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i. Also, F=−log Z is the free energy of the whole system,
without any constraint on the spin configuration at the
boundary between A and B. We now identify the right-hand
side �rhs� of Eq. �27� as an effective energy 2E�i� for the
boundary spins.38 Then the entanglement entropy SvN�A� in
Eq. �18� can be interpreted as the “thermal” entropy for the
boundary spins. We push further this thermodynamic inter-
pretation of SvN�A� by introducing a parameter � in order to
modify the probabilities pi,

pi = e−2E�i� → pi��� =
1

Z���
e−�E�i�, �28�

where Z���=	i e−�E�i� is a normalization factor 
with
Z��=2�=1�. Here, � plays the role of an effective inverse
temperature for the boundary spins 
but a priori not for the
bulk of the classical system defined by Eq. �8��. This allows
us to generalize the entropy S��=2�=SvN�A� to arbitrary �
�0. It can be computed through the standard thermodynami-
cal relation S���= �1−����logZ���. This formulation will be
useful in Sec. III. We note that a similar extension of en-
tanglement entropy has also been discussed by Li and
Haldane.39,40

III. FROM CRITICAL DIMER RK STATES TO DYSON-
GAUDIN COULOMB GAS

In this section, we study critical dimer RK states on bi-
partite lattices and a related 1D classical gas model. Using
the formulation of Sec. II, we compute the entanglement
entropies of the dimer RK states using the dominant eigen-
vectors of the transfer matrices. As described in Appendixes
B and C, the transfer matrices of the dimer models can be
expressed as free fermion Hamiltonians, and their dominant
eigenvectors are Slater determinants. In particular, for the
hexagonal lattice dimer model, the resulting probabilities �pi�
coincide with the Boltzmann weights of a 1D lattice gas
interacting via a repulsive logarithmic potential �Dyson-
Gaudin gas� at the inverse temperature �=2. This gas model
is also related to the discretized.41 Therefore, the entangle-
ment entropy of the dimer RK state and the Shannon entropy
of the discretized Calogero-Sutherland ground-state wave
function coincide with the thermal entropy of the gas model.
As we will demonstrate in Secs. III A and III B, this entropy
contains a nonextensive constant contribution 
Eq. �4��. In
Sec. III C, we derive it analytically using the free field rep-
resentation of the gas model in the continuum limit.

A. Critical dimer RK states

We start from the RK states 
Eq. �9�� constructed from the
dimer models on the hexagonal and square lattices. The en-
ergy E�c� takes zero for any fully packed dimer configuration
c and infinity otherwise. These RK states are the ground
states of quantum dimer models at special points and are
known to be critical.21,32 By associating an Ising variable
� j = �1 with the dimer occupation on each bond j, we can
adopt the formulation presented in Secs. II B 1 and II C to
compute the half-cylinder entanglement entropy SvN.

As described in Appendixes B and C, the transfer matrices
T of the dimer models are expressed as free fermion Hamil-
tonians. Their dominant eigenvectors �g� are Slater determi-
nants �Fermi sea�, and the weight pi= ��i �g��2 can be com-
puted by evaluating a determinant. Let us focus on the
hexagonal case, where a simple expression for �pi� is avail-
able. We here assume that L is a multiple of 6 for the sake of
simplicity. A generic configuration i of the boundary will be
given by a number n� �0, . . . ,L� of fermions living on the
vertical edges of the boundary and their positions,

0 � �1 � . . . � �n � L − 1. �29�

It is also shown in Appendix B that, in the limit h
L, the
only nonzero probabilities correspond to n=2L /3 fermions
and are given by a Vandermonde determinant, which simpli-
fies into

pi =
1

Ln �
1�j�j��n

4 sin2��

L
�� j − � j��� . �30�

This equation is invariant under n→L−n. Therefore it is
easier to compute it with n=L /3 fermions instead of n
=2L /3. As we will see in Sec. III B, these probabilities co-
incide with the Boltzmann weights of a 1D lattice gas. Note
that the present calculation is done without any constraint on
the configurations, ah and bh, at the top and bottom of the
cylinder. The number n of fermions leading to nonzero prob-
abilities can be controlled by imposing certain boundary con-
ditions.

Figure 4 shows the scaling of the entanglement entropy
S�L� for both the hexagonal and square cases. Here, in the
square case, the weight pi is computed by numerically evalu-
ating the determinant in Eq. �C19�. In the hexagonal case, we
examine different fermion densities �=n /L �or equivalently
flux and/or winding sectors in the dimer language�. In every
case, the scaling of S�L� appears to be approximately linear
in L. The slope is nonuniversal, as expected, and depends on
the details of the system. The most interesting result is the
existence of a finite constant S0. By fitting the large-L values
by S�L�=�L+S0+b /L, we find S0=−0.500�0.002 in all
cases. These results suggest that S0=−1 /2 is a universal
number for this family of RK wave functions.

B. Dyson-Gaudin gas on a circle

We consider a system of n charges Q=−1, living on a
periodic one-dimensional lattice with L sites as in Fig. 5.
These charges interact via a 2D Coulomb repulsive potential
equal to minus the logarithm of their mutual distance. For
convenience, we add a uniform background of L charges Q
=+1 /2 located on each site of the lattice. A configuration of
the system will be determined by the positions 1��1��2
� . . . ��n�L of the charges. Two charges cannot occupy
the same site. The energy of a given configuration i is

SHANNON AND ENTANGLEMENT ENTROPIES OF ONE-… PHYSICAL REVIEW B 80, 184421 �2009�

184421-5



E�i� = − 	
1�j�j��n

log�e�2�i/L��j − e�2�i/L��j�� +
n

2
log L ,

�31�

where the second term comes from the interaction of each
charge with the background. This may be viewed as a dis-
cretized version of the Dyson gas27 and has been studied by
Gaudin28 �hence we name it the Dyson-Gaudin gas�. As in
Sec. III A, the “particle-hole” symmetry n→L−n is worth
noticing. The classical 1D partition function is given by
Z���=	i e−�E�i� for an inverse temperature �, and the classi-
cal entropy can be calculated from it,

S��� = �1 − �
�

��
�log Z��� . �32�

Gaudin28 evaluated the partition function exactly in the
special cases where �=2� with � as an integer and �
�L / �n−1�,1

Zn
�L��2�� =

�n��!
n ! Ln��−1���!�n . �33�

The probabilities �pi� in Eq. �30� calculated for the hexago-
nal lattice dimer model coincide exactly with the Boltzmann
weights of the Dyson-Gaudin gas model with �=2: pi
=e−2E�i�.

Hence the entanglement entropy for this dimer model cor-
responds to the thermal entropy S��=2� of the gas model.
Note that Z��=2�=1 if we set �=1 in Eq. �33� because pi in

Eq. �30� is already normalized. In the spirit of Sec. II D, we
can generalize the entanglement entropy by changing the in-
verse temperature �. We define pi���= pi

�/2 /Z���
=e−�Ei /Z���, and the associated Shannon entropy

S��� = − 	
i

pi���log pi��� �34�

coincides with the thermal entropy 
Eq. �32�� of the gas
model. Notice that Gaudin’s solution �33� cannot be used to
compute the entropy S��� because it is valid only for special
values of �. Instead, we compute S��� numerically by ex-
plicitly summing over all the configurations.
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FIG. 4. �Color online� Entanglement entropy of RK states corresponding to dimer models on the hexagonal lattice �with fermion densities
�=1 /4,1 /3,1 /2� and the square lattice �with �=1 /2�. In all cases, the entropy scales as S��L+S0+b /L with S0=−0.500�2�. The inset
shows S0�, the subleading constant computed this time from a linear fit S�a�L+S0� on the interval 
12,L� as a function of 1 /L. The
convergence toward −0.500�1� can be seen.

FIG. 5. �Color online� System of n=4 charges Q=−1 on a circle
with L=12 sites. The left shows the configuration with highest
probability �degeneracy: 3� and the right shows a random configu-
ration. On each site, a “background” charge Q=+1 /2 is added.
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Here we mention the connections with other models. The
Dyson gas model emerges in the weights ��i �g��2 of the
Jastrow-type ground-state wave function of the CS
model.29,30 The inverse temperature � of the gas model is
related to the coupling constant of the CS model. The CS
model is described as a Tomonaga-Luttinger liquid at low
energies. According to a spectral analysis of the CS model,42

the boson radius R is related to � as

R =��

2
. �35�

This allows us to control R simply by changing �. This re-
lation will also be justified from a different viewpoint in Sec.
III C. The Haldane-Shastry model43,44 is a discretized version
of the CS model, and its Jastrow ground state �Gutzwiller-
projected Fermi wave function� has the weights exactly
obeying the Dyson-Gaudin gas with �=4. This model has
R=�2 because of the SU�2� symmetry in consistency with
Eq. �35�. Note also that the same wave function is known to
be an extremely good ansatz for the ground state of the
Heisenberg chain.

Now we analyze the thermal entropy S��� of the gas
model. We extract the nonextensive constant contribution S0
as in Fig. 4 and plot it as a function of R=�� /2 in Fig. 6. We
find that the data agree well with a simple relation

S0 = log R − 1
2 . �36�

This expression is derived analytically in Sec. III C. It should
be noted that the subleading constant 
Eq. �36�� is increasing
with �, contrary to the total entropy, which is decreasing
with �, as should be the case in classical thermodynamics.

C. Free bosonic field

In this section, we obtain the expression of the entropy S0
using a field-theoretical approach. Our goals are to obtain a

continuous expression for the partition function of the gas
studied in Sec. VII and deduce from it the expression of the
entropy.

We consider a continuous distribution, ����, of electric
charges on the unit circle. The expression of the electrostatic
energy 
Eq. �31�� is given by

E = −
1

2
�

0

2�

����d��
0

2�

�����d�� log�2 sin�� − ��

2
�� .

�37�

We define a field ���� measuring the amount of charge in the
interval 
0,�� in units of 2�,

���� = 2��
0

�

����d� . �38�

By performing partial integrations twice, the energy is re-
written as

E
�� =
1

64�2�
0

2�

d��
0

2�

d������� − �����

sin�� − ��

2
� �

2

. �39�

Since the functional integration is over �=��, the zero mode
of � is unphysical and should be discarded 
it can be re-
moved by adding an appropriate constant to Eq. �38��. By
expanding the field � over modes,

� = 2� 	
m�1

�xmeim� + x̄me−im�� , �40�

the energy 
Eq. �39�� reduces to
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FIG. 6. �Color online� The
subleading constant S0 in the ther-
mal entropy of the Dyson-Gaudin
gas with density �=1 /3 as a func-
tion of R=�� /2. At �=2, this co-
incides with the constant part in
the entanglement entropy of the
hexagonal dimer RK state shown
in Fig. 4. The data well obey Eq.
�36�.
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E =
�2��2

2 	
m�1

m�xm�2. �41�

Integrating the Boltzmann weight e−�E over the modes
dxmdx̄m, we obtain the partition function Zsphere of the gas,

Zsphere = �
m�1

2

2��m
. �42�

To find possible universal contributions to the corresponding
free energy, this expression of course needs to be regularized.
Following Nahm,45 we regularize the measure dxmdx̄m to
take into account the finiteness of the number of states. We
set �xm�=�m and take the measure to be d�2�
�m

2 � f�m/���,
where f�x�=1 in the interval 
0, 1� and decreases to f���
=0 sufficiently fast. We obtain

Zsphere = �
m=1

� � 1

�m�
� f�m/��

�
1 + f�m/��� . �43�

The Euler-MacLaurin formula yields

�
m=1

� � 1

��
� f�m/��

��1 + f�m

�
�� = ��� exp���

0

�

g��x�dx�


1 + o�1�� ,

g��x� = log �
1 + f�x�� − log����f�x� . �44�

Here we decompose f into the sum of a step function on 
0,
1� and a function vanishing on 
0, 1�,

�
m=1

� � 1

m
� f�m/��

=
1

�2�
exp�− ��

0

�

log��x�f�x�dx�
1 + o�1�� ,

�45�

where we have used the Stirling formula on the term corre-
sponding to the step function and the Euler-MacLaurin for-
mula on the other one. Putting everything together,

Zsphere =��

2
exp���

0

�

dx log �
1 + f�x��

− log����x�f�x��
1 + o�1�� . �46�

The regularized partition function is obtained after removing
the exponential factor, �−a���, which can be thought as the
“extensive” part

Zsphere =��

2
. �47�

This result is simply equal to the � regularization of Eq. �42�.
In this derivation, the normalization of the integration mea-
sure over the modes is adjusted so that Zsphere=1 at �=2, in
agreement with our microscopic definition of the partition
function, Zsphere���=	i pi

�/2, in the discrete model. From this
expression, we deduce the thermal entropy,

S0 =
1

2
log��

2
� −

1

2
, �48�

in agreement with our numerical result in Fig. 6.
Alternatively, we can normalize the field � differently so

as to include the inverse temperature � in its definition. We
introduce a radius R and set �=2R2. The field � is now
defined mod 2�R. We can extend its range of definition by
requiring it to be a harmonic function on the unit disk 	 and
express the energy as a Dirichlet integral,

�

2
E =

1

4�
� �

	

dzdz̄�z��z̄� , �49�

where z=x+ iy. This coincides with the action 
Eq. �3�� ex-
cept that the range of integration is limited to the unit disk 	.

One can view Eq. �49� as the action of a closed string46

propagating on a circle of radius R with a Regge slope ��
=2. Now, if we include the center of mass �zero mode� into
the definition of �, we see that the regularized measure 
d��
becomes invariant under rescaling of the field, so that we can
also take the field defining the measure to be defined
mod 2�R. The partition function Zsphere of the electrostatic
gas is obtained by sewing together two disks to form a
sphere and is given by the partition function of a closed
string propagating on a circle of radius R. Proceeding in this
way, the oscillators do not contribute and it reduces to the
center of mass integral,

Zsphere = R , �50�

in agreement with Eq. �47�.
To understand this result, consider a closed string ��� ,T�

propagating in the Euclidean time T. Its partition function on
the cylinder 
0,2��
 
0,T� with boundary fields equal to
�1,2 defines the propagator Z��1 ,�2�. We evaluate the torus
partition function Ztorus by taking the trace of the propagator
over �=�1=�2,

Ztorus =� 
d��Z��,�� . �51�

If we decompose the field � into the sum of a harmonic
function equal to �1 ,�2 at the two boundaries and a field
vanishing at the boundaries, we factorize the propagator into
two pieces: a classical one equal to e−��/2�E��1�−��/2�E��2� in the
limit of large T and the partition function Z00 with Dirichlet
boundary conditions. Thus, in the limit of large T, Ztorus
=ZsphereZ00. But Z00 /Ztorus=1 /R is the stationary probability
distribution of the center of mass of the string diffusing on a
circle of radius R and the result 
Eq. �50�� follows. This
formulation has the advantage to be easily generalizable to a
closed surface of characteristic �,

Z� = R�/2. �52�

We expect this formula also to apply to the case of open
boundary conditions with suitable chiral boundary condi-
tions.

Let us mention that Gaudin’s partition function 
Eq. �33��
has the same asymptotic expression as Zsphere in Eq. �42� if
we remove the nonuniversal extensive part. Indeed, by tak-
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ing n→� while keeping �=n /L constant, Stirling’s formula
n ! ��2�n�n /e�n applied to Eq. �33� gives

Zn
�L��2�� = ����nR, with ���� =

��−1��e�−1

�!
. �53�

Gaudin’s formula �33� is only valid at integer values of � and
we cannot use it to evaluate the entropy. However, the de-
nominator factor L��−1�n in Eq. �33� may be viewed as a
regularization of the Dyson partition function,27,47 where L
plays the same role as � defined above, and the entropy also
derives from the Dyson gas partition function.

The compactification radius of the �continuum� CS
ground state29,30 is known to be R=���=� /2� from Ref. 42.
On the other hand, our numerics on the discretized version of
the CS wave function indicate that the entropy constant is
equal �within our numerical accuracy� to S0=log��� /2�
−1 /2. From the analytical derivations presented above, this
entropy constant must be related to the boson radius. We
therefore conclude that the discretized CS state has long-
distance properties described by the same boson compactifi-
cation radius as the original continuum CS wave function. It
is interesting to notice that this identification has been made
through the ground-state structure of the CS model, i.e.,
without relying on the spectral properties unlike preceding
approaches.42

D. Phase transition toward a crystal state

The numerical results of Fig. 6 show that for not too large
values of �, the nonextensive contribution to the entropy is
given by S0=log R−1 /2. As should be clear from Sec. III C,
this can only be true if the system is described by a massless
�but compactified� free field. But for sufficiently large �, the
system undergoes a transition to a crystal state with sponta-
neous translation symmetry breaking. A simple way to un-
derstand that such a crystal is expected at large � is to notice

that for �→�, only the particle configurations i for which
the �original� probability pi is maximum survive. For a par-
ticle density 1 /d, this selects d periodic configurations with
equally spaced particles �see the left panel in Fig. 5�. Adding
fluctuations around these regular configurations will add ex-
tensive contributions to S�L� while keeping the subleading
constant

S0 = log d �54�

stable in a crystal phase with a d-fold spontaneous symmetry
breaking. Due to some finite-size effects, it turns out that the
liquid-crystal transition is easier to see in the nonextensive
part C of log Z �rather than that of S�. The data displayed in
Fig. 7 are consistent with

C = �log R , R � Rc = d

log d , R � Rc = d .
� �55�

Using S0= �1− R
2 �R�C, we can recover the subleading term S0

in the entropy,

S0 = �log R − 1/2, R � Rc = d

log d , R � Rc = d .
� �56�

It should be noted that the transition is only visible on the
subleading terms of S and log Z.

The crystallization can also be understood from a free
field point of view. Let us perturb the action 
Eq. �3�� by a
d-fold symmetry breaking boundary field,

Zhd
=�exp�hd�

0

2�

cos�d��d���
sphere

, �57�

where the integral is taken over the equator of the sphere. In
a spin wave approximation, the anomalous dimension of the
field hd is
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FIG. 7. �Color online� Liquid-
crystal transitions induced by the
boundary temperature �−1 in the
dimer models. Here, the sublead-
ing constant C in log Z is shown.
The critical radius is Rc=d ��c

=2d2�, where d is the degeneracy
of the ground state. The constant
C is expected to obey Eq. �55�.
The discrepancy slightly after Rc

is very likely due to finite-size
effects.
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xd = 1 −
d2

R2 . �58�

Thus, the perturbation becomes relevant when R�d in
agreement with our observations �Fig. 7�.

This transition is completely analogous to the localization
transition of a macroscopic degree of freedom coupled to a
dissipative environment in presence of a periodic potential.48

In this context, the inverse temperature �=2R2 is a friction
coefficient. A similar transition is observed in the XXZ chain
�see Sec. IV� but at a different value of the compactification
radius �R=�2�, compatible with the bulk roughening transi-
tion of the six-vertex model.

IV. SPIN-1/2 XXZ CHAIN AND SIX-VERTEX RK STATES

In this section, we consider the Shannon entropy 
Eq. �1��
defined from the ground state ��� of the spin-1

2 XXZ chain,

H = 	
j

�� j
x� j+1

x + � j
y� j+1

y + �� j
z� j+1

z � − h	
j

� j
z. �59�

This Hamiltonian is related to the transfer matrix of the clas-
sical six-vertex model on the square lattice.49,50 Thus, using
the argument of Sec. II, the Shannon entropy S here can also
be interpreted as the entanglement entropy of the RK state
built from this vertex model. Since the magnetization per site
M = 1

L	i �i
z is a conserved quantity, we can work in a sector

with fixed M. We calculate the ground state of H for finite
periodic chains using Lanczos diagonalization �up to L=32
for M =0 and L=40 for M =1 /2� and evaluate the Shannon
entropy S from it.

We first focus on the c=1 Tomonaga-Luttinger liquid
phase extending over a wide region in ��−1. The boson
radius R depends on � and M �see Refs. 51 and 52 for
details�. When M =0, R is related to � via a simple relation

R =�2 −
2

�
arccos �, − 1 � � � 1. �60�

When M �0, R can be determined numerically by solving
the integral equations obtained from the Bethe-ansatz
method.52–54 We set M at simple fractions 0, 1/5, 1/4, and 1/2
so that we can examine the dependence on the system size L.
As in the critical dimer models studied in Sec. III D, the
entropy S well obeys the scaling form S��L+S0+b /L. The
subleading constant S0 obtained by fitting the data is plotted
as a function of R in Fig. 8, which shows a remarkable agree-
ment with

S0 = log R − 1
2 . �61�

When increasing � at M =0, the system undergoes a
Kosterlitz-Thouless transition at �=1 from the critical phase
to a massive Néel phase with doubly-degenerate ground
states. In a finite-size system, the double degeneracy in the
Néel phase is slightly split, and the ground state can be ap-
proximated by a macroscopic superposition of ordered states.
When �→�, such a state is given by

�g� =
1
�2

��↑↓ . . .� + �↓↑ . . .�� . �62�

This state gives S=S0=log 2. As in the discussion of Sec.
III D, one can expect that quantum fluctuations around state
�62� occurring in ��� produce only extensive contributions
and that the constant S0=log 2 is stable in the massive phase
��1. Our numerical result for S0 is presented in Fig. 9. The
data show deviation from log 2 when decreasing �, but it is
likely due to finite-size effects. The peak and dip seen in the
figure move to the left as we use larger L’s for extracting S0.
In the thermodynamic limit, we expect a jump from S0
=log�2−1 /2 to S0=log 2 at the transition point �=1.
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FIG. 8. �Color online� The
subleading constant S0 in the en-
tropy S extracted from the critical
ground state of the XXZ chain

Eq. �59��. The examined values
of � range from −0.8 to 1 for M
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shows the fitting of the data with
the scaling form S=�L+S0+b /L.
The constant S0 well obeys the
proposed universal formula log R
− 1

2 . Close to the isotropic point
��=1 and M =0� with R=�2, a
small discrepancy from the pro-
posed formula can be seen, which
is very likely due to stronger
finite-size effect around this point.
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Finally, we note that the XXZ chain with �=1 /2 and h
=0 corresponds to the so-called ice model,49,50 where all the
configurations satisfying the ice rule �two in and two out
around every vertex� occur with equal probabilities. The RK
state built from the ice model has been studied for the spin
and fermionic models on the checkerboard lattice.55,56 The
result in this section shows that the half-cylinder entangle-
ment entropy of this state has a subleading constant S0
=log�4 /3−1 /2.

V. ISING CHAIN IN A TRANSVERSE FIELD

As an example showing a c=1 /2 critical point, in this
section, we study an Ising chain in a transverse field,

H = − �	
j=0

L−1

� j
x� j+1

x − 	
j=0

L−1

� j
z. �63�

This model is related to two types of 2D classical models
depending on which basis we work with.50 In the �x basis,
we have a 2D Ising model,

E = − 	
�j j��

� j
x� j�

x , �64�

where j j� runs over all the nearest-neighbor pairs of sites on
the square lattice. This model shows a low-temperature or-
dered phase and a high-temperature paramagnetic phase. On
the other hand, in the �z basis, we have an eight-vertex
model of special type. The spins � j

z are placed on the bonds
of the square lattice and satisfy local constraints; the product
of four spins around each site must be even,

�
j�+

� j
z = + 1. �65�

Then the four spins can take eight states out of 24 possibili-
ties, hence it is named eight vertex. The energy is given by

E = − 	
j

� j
z. �66�

It is useful to introduce a loop representation of the configu-
rations. We regard the lowest-energy state �� j

z=+1 for all j�
as the “vacuum” and place a loop element on every bond j
with � j

z=−1. Then only closed loops are formed because of
the local constraints 
Eq. �65��. Equation �66� means that the
energy cost to generate loops is proportional to their total
length. At low temperatures, the system contains only small
loops and is dominated by the vacuum �“small-loop” phase�.
At high temperatures, the formations of large loops are al-
lowed and the system gets disordered �“large-loop” phase�.
The correspondence among quantum and classical models is
shown in Table I, together with our results for the entropy
which we present below.

Here we consider the Shannon entropies, S�z� and S�x�,
defined in the �z and �x bases, respectively. These corre-
spond to the half-cylinder entanglement entropies of the RK
states built from the eight-vertex model and the 2D Ising
model, respectively �notice that for the latter, one needs to
modify the model slightly in order to simplify the calcula-
tion, as presented in Sec. II B 2�. The RK state constructed
from the eight-vertex model 
Eq. �66�� in the large-loop
phase is particularly interesting because it possesses topo-
logical order. Such a state has been studied as the ground
state of a quantum eight-vertex model16,36 �also known as an
extended toric code model15�.

As is well known, Hamiltonian �63� reduces to a fermi-
onic quadratic form using the Jordan-Wigner transformation.
It can then be diagonalized using the Bogoliubov transforma-
tion �see Appendix E�. The weight ��i �g��2 of each spin con-
figuration �i� in the �z basis can be obtained by calculating a
Pfaffian, and S�z��L� is computed numerically by summing
over all the 2L configurations.
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The scalings of S�z��L� are shown in Fig. 10. We again
observe nice agreement with a linear scaling S�z��L�=�L
+S0

�z� both in the critical and massive cases. At the critical
point ��=1�, we find the subleading constant in the entropy
to be

S0
�z� = − 0.4387 � 0.0001. �67�

Figure 11 shows the constant part S0
�z� as a function of the

coupling constant �. Away from the critical point, the con-
stant is stable at certain values: S0

�z�=0 in the disordered
phase ���1� and S0

�z�=−log 2 in the ferromagnetic phase
���1�. Deviations from these values near the critical point
are likely due to finite-size effects because they decay as we
increase the system size. These values can be understood by
considering two limits. In the limit �=0, the ground-state
wave function is �g�= �↑↑ . . .↑�z and the entropy S�z� is zero.
In the limit �→�, the wave function is

�g� =
1
�2

��↑↑ . . . ↑�x + �↓↓ . . . ↓�x�

=
1

�2L−1 	
�1=↑,↓

. . . 	
�L=↑,↓

� �j
z=+1

��1�z � ¯ � ��L�z, �68�

where all the configurations have an even number of up spins
in the �z basis. Therefore, the entropy is

S�z��L� = �L − 1�log 2. �69�

As explained in Secs. III D and IV, we expect that quantum
fluctuations around these limits produce only extensive con-
tributions and keep the subleading constants stable.

It is useful to interpret these results in terms of the eight-
vertex RK state. When the temperature of the eight-vertex
model is set to infinity, the corresponding RK state is an
equal-amplitude superposition of all the loop configurations.

This is the ground state of Kitaev’s toric code model.57 Using
the method in Ref. 13, the half-cylinder entanglement en-
tropy is shown to scale exactly as Eq. �69�, and the constant
part S0

�z�=−log 2 can be interpreted as the topological
entropy9,10 associated with Z2 topological order. Microscopi-
cally, −log 2 comes from the fact that in any configuration,
the loops cross an even number of time with the boundary
separating the two half-cylinders. The result in Fig. 11 there-
fore demonstrates the stability of this topological entropy for
the half-cylinder geometry in the entire large-loop phase. The
jump in the entropy around �=1 is interpreted as a break-
down of topological order. We comment that the stability of
topological entropy has also been studied on the same wave
function for the disk and annulus geometries in Refs. 15 and
16.
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The data for �=1 �critical point�
are well reproduced by S�z���L
+S0

�z�+� /L with S0
�z��−0.4387�1�

�determined from a fit to the last
three points L=32,34,36�. For �
=0.5 in the disordered phase, the
constant is very close to zero �a fit
to the three points L=18,20,22
gives �S0

�z���10−6�.
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FIG. 11. �Color online� Subleading constant S0
�z� extracted from

the entropy S�z��L� in an Ising chain in a transverse field for differ-
ent values of �.
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We move on to the entropy S�x� in the �x basis. It can be
related to S�z� using the Kramers-Wannier duality
transformation,58

� j
z → �̃ j−1

x �̃ j
x, � j

x� j+1
x → �̃ j

z, �70�

by which H��� is related to H�1 /��. Here, �̃ j
z=−1 is iden-

tified with a domain wall between � j
x and � j+1

x . Taking into
account the two-to-one correspondence between �x and �̃z

configurations, one can show

S�x���� = S�z��1/�� + log 2. �71�

Hence we obtain the results summarized in Table I. Now we
have a positive constant S0

�x�=log 2 in the ordered phase
��1. This is a consequence of the macroscopic superposi-
tion of two ordered states, as discussed for the ordered phase
of the XXZ chain in Sec. IV.

We have obtained two constants S0
�z�=−0.4387�1� and

S0
�x�=S0

�z�+log 2=0.2544�1� at the critical point, depending
on the choice of basis. We believe that these are generic

constants characterizing the c=1 /2 criticality, although at
present we do not have any analytical derivation of these
numbers.

We can also introduce a temperature �−1 for the entropy
S�z� as described in Sec. II D. The constant part S0

�z���� ex-
tracted by fitting S�z��L ;�� with a linear scaling changes rap-
idly around �=2 �see Fig. 12�. It seems reasonable to con-
jecture that S0

�z���� becomes a step function in the
thermodynamic limit: S0

�z����=−log 2 for ��2 and S0
�z����

=0 for ��2. If confirmed, this result would suggest that
increasing � has a role similar to decreasing �, i.e., taking
the system away from its critical point. In the c=1 case,
S0��� was a smooth function of � �see Figs. 6–8�. Therefore,
it looks like introducing � has a qualitatively different effect,
depending on the nature of the critical theory.

Note that there are several directions in which to extend
the Ising model. One possibility is to study the q-state Potts
model or the restricted solid-on-solid �RSOS� models along
the same lines. Another one is to view the Ising model as a
special case �n=1� of the dilute O�n� loop model.59 In the
loop model case, the p��i� are the probabilities that the equa-
tor of the sphere is run across by loops at positions �i. In that
case, we would find a universal curve S0�n� extending Eq.
�67�.

VI. SCALING OF THE LARGEST PROBABILITY

In this section, we study the scaling of the largest prob-
ability

p0 ª max
i

pi = ��i0�g��2, �72�

i.e., the weight of the most probable configuration i0 in the
1D wave function �g�. In terms of a 2D RK state, this corre-
sponds to the largest eigenvalue of the reduced density ma-
trix �A of a half-cylinder. Very similarly to the entropy S, we
find that −log p0 exhibits a linear scaling with L followed by
a subleading universal constant

− log p0 = �̃L + � + o�1� . �73�

Below we evaluate � in some critical systems.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5 6

S
0

β

Subleading constant in the entropy for the Ising chain as a function of β

S0 (up to L=16)
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-0.4387(1)
-log 2

FIG. 12. �Color online� Subleading constant S0
�z���� extracted

from the entropy S�z��L ;�� in an Ising chain in a transverse field at
the critical point �=1. The inverse temperature � is introduced as
explained in Sec. II D.

TABLE I. Correspondence between the Ising chain in a transverse field and related 2D classical models
and the results for the constant part of the entropies S�z� and S�x�.

Ising chain in a
transverse field 
Eq. �63�� Disordered phase ��1 c= 1

2 critical point �=1 Ordered phase ��1

Constant part
of the entropy

S0
�z�=0 S0

�z�=−0.4387�1� S0
�z�=−log 2

S0
�x�=0 S0

�x�=S0
�z�+log 2=0.2544�1� S0

�x�=+log 2

Eight-vertex model

Eq. �66��

Small-loop phase
�low temperature�

Large-loop phase
�high temperature�

2D Ising model

Eq. �64��

Disordered phase
�high temperature�

Ordered phase
�low temperature�
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A. c=1 critical systems

We first consider the XXZ chain in a magnetic field 
Eq.
�59�� in the critical phase. We find that the largest probability
p0= ��i0 �g��2 is attained by crystal states. For example, �i0�
= �↑↓ ↑ ↓ . . .� and �↓↑ ↓ ↑ . . .� for M =0 and �i0�
= �↑↑ ↑ ↓ ↑ ↑ ↑ ↓ . . .�, etc., for M =1 /2, independent of ���
−1�. The constant � is extracted by fitting finite-size data
with Eq. �73�. As shown in Fig. 13, we observe a simple
relation

� = log R . �74�

The same result can be shown exactly for the largest prob-
ability p0���ªmax pi��� in the Dyson-Gaudin gas when �

=2R2=2� with ��N and ��
L

n−1 �see Appendix D�. For
general �, Eq. �74� can be numerically demonstrated as
shown in Fig. 14.

In order to understand the connection between S and
−log p0, it is useful to introduce the Rényi entropy,

S�N�
ª

− 1

N − 1
log�	

i

pi
N� , �75�

where N is a real number. Then, S and −log p0 correspond to
the limits N→1 and �, respectively. Now we assume that the
probability distribution is given by the Boltzmann weights
pi���= pi

�/2 /Z��� of the Dyson-Gaudin gas in the critical

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.6 0.8 1 1.2 1.4 1.6

γ

R

Spin 1/2 XXZ chain : subleading constant in -log p0
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log[R]
FIG. 13. �Color online� The

subleading constant � in the scal-
ing of −log p0 
see Eq. �73�� ex-
tracted from the critical ground
state of the XXZ chain in a mag-
netic field. The same setting as
Fig. 8 is taken.
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FIG. 14. �Color online� The
subleading constant � in the scal-
ing of −log p0���, where p0��� is
the largest probability in the
Dyson-Gaudin gas with density �
=1 /3. The data are consistent with
Eq. �74�. For some special values
of R �see the text and Appendix
D�, Gaudin’s formula �33� can be
used to show Eq. �74� exactly.
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phase R=�� /2�d. The Rényi entropy 
Eq. �75�� can then
be expressed as

S�N���� =
− 1

N − 1
log

Z�N��

Z����N . �76�

Recalling Eq. �55� for the nonextensive part C of Z���, the
subleading constant contribution to S�N� is given by

log R −
1

2�N − 1�
log N, �NR � Rc = d ,

N

N − 1
log R −

1

N − 1
log d, �NR � Rc = d . �77�

Both expressions give �=log R in the limit N→�. On the
other hand, the former expression is consistent with S0
=log R−1 /2 in the limit N→1.

An alternative strategy to derive Eq. �74� is to adopt the
2D viewpoint of Sec. II, where the probability p0 was related
to classical partition functions,

− log p0 = − log
Zi0

AZi0
B

Z
. �78�

Here, Zi0
A and Zi0

B are partition functions on A and B with
spins fixed in a state i0 at their common boundary. Now we
move on to the continuum limit described by the action 
Eq.
�3��. Recalling that i0 is given by a crystal state, the above
boundary condition corresponds to locking the field � at a
certain constant at the boundary �Dirichlet boundary
condition�.60 Hence, we obtain

− log p0 = − log
ZD

AZD
B

Z
, �79�

where D stands for Dirichlet. This expression has been
evaluated by Hsu et al.24 and by Campos Venuti et al.31 using
boundary CFT. Their results for the nonextensive part are
consistent with Eq. �74�.61

In fact, Hsu et al.24 proposed the right-hand side of Eq.
�79� as the expression of the entanglement entropy SvN of a
half-cylinder. Their argument was based on a replica trick;
the Nth moment M�N�

ªTr �A
N=	i pi

N of the reduced density
matrix was evaluated for integer N�2 and then an analytic
continuation N→1 was taken. According to their evaluation,
the Rényi entropy S�N�= −1

N−1 log M�N� is expressed by the rhs
of Eq. �79� for any integer N�2, leading to an
N-independent subleading constant log R. On the other hand,
we have obtained N -dependent constant 
Eq. �77��. The two
results for the subleading constant agree only in the limit
N→�. We infer that this discrepancy comes from a difficulty
in specifying boundary conditions in the argument of Hsu et
al.24 In their argument, they took linear combinations of plu-
ral compactified fields, which could make the compactifica-
tion conditions ambiguous. A more careful treatment of the
compactification conditions and a derivation of Eq. �77� in
boundary CFT are left as important open issues.

B. c=1 Õ2 critical system and beyond

We next consider the Ising chain in a transverse field 
Eq.
�63�� at the c=1 /2 critical point �=1. Figure 15 shows the
scaling of −log p0

�z� in the �z basis. Here, the largest prob-
ability is attained by the ferromagnetic configuration �i0�
= �↑↑ ↑ . . .�z. In this case we have the following exact formula
�see Appendix E 3�:
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µ=1 (critical)
Fit : -log(p0)=0.110*L

FIG. 15. �Color online� Scal-
ing of −log p0

�z� in the Ising model
in a transverse field at the critical
point, calculated in the �z basis.
The subleading constant ��z� is
very close to zero: a fit to the last
three points L=96,98,100 gives
����10−6.
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p0
�z� = �

j=1

L/2

cos2� �2j − 1��
4L

� . �80�

An Euler-Maclaurin expansion shows that the subleading
constant is ��z�=0. The data in Figure 15 are consistent with
this result and give ��z��10−6. It can also be shown that ��z�

remains zero away from the critical point. Moving to the �x

basis using the same argument leading to Eq. �71�, we obtain
��x�=log 2.

In a 2D viewpoint, p0 is related to a ratio of partition
functions, as shown in Eq. �78�. Since the boundary configu-
rations, ah and bh, at the upper and lower edges of the cyl-
inder were arbitrary, we can glue these edges by identifying
ah and bh and integrating them out. Algebraically, we con-
sider

p0 =
�i0�T2h�i0�

Tr T2h =
Zi0i0

�L,2h�

ZP�L,2h�
�h → �� . �81�

Here, the numerator Zi0i0
is the partition function of a long

cylinder with boundary configurations fixed in the same state
i0 at both edges. The denominator ZP is the partition function
of a torus.

A similar quantity has been considered in a rational CFT
context. Therein, the fixed boundary conditions imposed in
the numerator of Eq. �81� are replaced by conformally invari-
ant ones a. The associated probability pa can be evaluated as
explained in Ref. 62. In the notations in Ref. 62, the result is

pa =
��a

1�2

S1
1 , �82�

where �a
i are certain structure constants, characteristic of the

model, and S1
1 is the identity matrix element of the S matrix

implementing the modular transformation. In the simplest
case of an Am SU�2�k model, the boundary fields correspond
to the vertices of the Am Dynkin diagram. Let �da� be the
Perron-Frobenius eigenvector of the Am incidence matrix,
normalized so that d1=1. Then, each da is the so-called quan-
tum dimension of the state a, and d=�	a da

2 is called the
total quantum dimension. In this case, �a=da /d and S1
=1 /d, hence

pa =
da

2

d
. �83�

We study the case where the Dynkin diagram is A3 and the
possible states are +, free, − with quantum dimensions 1, �2,
1, respectively. The probabilities are, in the �x basis,

p+ = p− = 1
2 , pfree = 1. �84�

A3 also describes the Ising model and this enables us to con-
firm the numerical results at the beginning of this section.
The ferromagnetic state in the �z basis, �↑↑ ↑ . . .↑�z, may be
regarded as a paramagnetic state in the �x basis or the “free”
state in CFT. Equation �84� then gives

��z� = − log pfree = 0, �85�

in agreement with our numerical result. The largest probabil-
ity p0 in the �x basis may be regarded as the probability of
the “+” state in CFT, hence

��x� = − log p+ = log 2, �86�

in agreement with our calculation.
These results can be extended to Am RSOS models with

central charge c�1. p0 is in this case with highest probabil-
ity is in this case

p0 = 2� 2

m�m + 1�
sin� �

m + 1
�sin��

m
� . �87�

VII. SUMMARY AND CONCLUSIONS

The starting point of this study was to introduce the Sh-
annon entropy of a 1D ground-state wave function, which
measures quantum fluctuations occurring in a given basis.

Like other entanglement measures, we have seen that the
scaling behavior of this entropy is essentially controlled by
the long-distance correlations. Using a transfer matrix ap-
proach, we showed that this entropy can also be interpreted
as the entanglement entropy of a half-cylinder for a suitably
chosen 2D RK state. This correspondence allowed us to
study the entanglement entropy of 2D wave functions using
simpler 1D systems, without the need to trace explicitly over
the degrees of freedom sitting outside of the subsystem �a
formidable task in two dimensions�.

To unveil the generic scaling properties of the Shannon
entropy of 1D states �equal to the entanglement entropy of
2D states�, we have studied several 1D quantum systems: �i�
a discretized version of the Dyson gas/Calogero-Sutherland
ground-state wave function �relevant to 2D dimer RK states�
in Sec. III, �ii� the spin-1

2 XXZ chain �relevant to six-vertex
RK states� in Sec. IV, and �iii� the Ising chain in transverse
field �relevant to 2D Ising RK states and 2D eight-vertex RK
states� in Sec. V.

In both critical and massive systems, we found that this
entropy is composed of an extensive part and a subleading
constant S0. There is no logarithmic contribution as antici-
pated before for half-cylinder geometry.23,24 For Tomonaga-
Luttinger liquids 
cases �i� and �ii� above�, described by a
compactified boson with radius R, we showed numerically
and analytically that S0=log R− 1

2 �a result which differs
from the recent prediction by Hsu et al.24�. Going back to the
2D entanglement entropy interpretation of this result, it im-
plies that the usual RK states for dimers on the hexagonal or
square lattice �with R=1� have S0=− 1

2 . At present, we do not
have a derivation for the value S0

�z�=−0.4387 �or S0
�x�=

−0.4387+log 2 depending on the choice of the basis� found
numerically for the Ising chain in transverse field at its c
=1 /2 critical point.

We introduced a temperature �−1 to extend the Shannon
and entanglement entropies in Sec. II D. This has different
consequences depending on the nature of the criticality. For
TLLs, changing � gives a natural way to tune the boson
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radius R while retaining the c=1 criticality. This allowed us
to “deform” a dimer RK problem �or a free fermion problem�
and to derive the R dependence of the entropy constant S0 in
Sec. III. When � reaches a critical value, the system under-
goes a phase transition to a crystal state, where the entropy
constant takes a stable value S0=log d, with d being the de-
generacy of the ground states. Hence, this transition can be
detected through S0. In contrast, in the critical Ising chain
with c=1 /2, the entropy constant S0 shows an abrupt change
around �=2. More generally, the � dependence might offer a
valuable fingerprint for clarifying the nature of the unde-
formed case �=2.

We also considered the scaling properties of p0, the prob-
ability of the most likely configuration in a critical 1D state
�Sec. VI�. This quantity, which corresponds to the largest
eigenvalue of the reduced density matrix in the 2D point of
view, also contains a universal constant contribution � in
critical states. We found numerically and analytically that �
=log R for TLL states and ��z�=0 and ��x�=log 2 for the
critical Ising chain. These are related to the probabilities as-
sociated with conformally invariant boundary conditions.

The universal R dependence of S0 and � found in the
present work can be used as a new simple way to determine
the boson radius R in a TLL through a ground-state structure.
Similar universal R dependence was also found in the mutual
information �double-interval entanglement entropy� studied
in Refs. 7 and 8. Notice that the mutual information is in-
variant under the transformation R→2 /R while the present
quantities are not. This difference is related to the origins of
the R dependence: it comes from certain boundary effects in
the present case, while it comes from the special topologies
of the Riemann surfaces in the case of the mutual
information.7,8

In fact, the transfer matrix approach gives access to all the
eigenvalues �pi� of reduced density matrix �A of a half-

cylinder. �As a first application, the gap p1 / p0 is computed in
Appendix D for dimers on the hexagonal lattice�. The present
approach therefore provides a convenient tool to study the
properties of the “entanglement spectrum”39 in a 2D quan-
tum state.
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APPENDIX A: FREE FERMIONS AND WICK’S THEOREM

The probabilities of Eq. �26� involve quantities such as
�0�a1a2 . . .a2n�0�, where the aj are linear combinations of fer-
mion creation and annihilation operators. Wick’s theorem
then gives

�0�a1 . . . a2n�0� = �a1 . . . a2n� = 	
i1�. . .�in
∀ k,ik�jk

����


�ai1
aj1

� . . . �ain
ajn

� = Pf A , �A1�

where ���� is the signature of the permutation which trans-
forms �1,2 , . . . ,2n� into �i1 , j1 , i2 , j2 , . . . , in , jn�. Pf denotes
the Pfaffian. A is an antisymmetric 2n
2n matrix given by

A = �
0 �a1a2� . . . �a1a2n�

− �a1a2� 0 . . . �a2a2n�
] ] � ]

− �a1a2n� − �a2a2n� . . . 0
� . �A2�

The two following properties of Pfaffians are useful,
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FIG. 16. �Color online� �a� left: reference configuration. �a� right: real configuration. �b�: transition graph. Reference dimers are in blue.
The fermions are living on the vertical edges of the lattice and are symbolized by red zigzag lines. The integers attached to each plaquette
of the lattice form a height configuration associated to the dimer covering. When coarse grained, these microscopic heights become the free
field which describe the long-distance properties of the system �Refs. 63 and 64�. The heights can be constructed by fixing h=0 at some
origin and then moving from plaquette to plaquette by turning clockwise around the sites of the even sublattice �marked with a black dot�.
The rule is the following: the height picks a contribution equal to +2 when crossing a dimer and −1 otherwise. Since there is exactly one
dimer touching each site, the height difference between two points does not depend on the chosen path on a simply connected domain. With
periodic boundary conditions, the height is not single valued. For example, when winding horizontally around the system, the height picks
a contribution Wx �also called winding number� equal to twice the number of vertical dimers crossed minus the number of empty bonds.
Inserting a fermionic world line going upward shifts the height by −3 by going from the left to the right and thus changes Wx→Wx−3. It
is simple to check that the configurations with a fermion density equal to 2

3 have Wx=0 and an average “slope” equal to zero.
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�Pf A�2 = det A , �A3�

Pf� 0 B

− BT 0
� = � det B , �A4�

and allow fast numerical calculations using determinant rou-
tines.

APPENDIX B: TRANSFER MATRIX FOR THE
CLASSICAL DIMER MODEL ON THE HEXAGONAL

LATTICE

1. Transfer matrix as free fermions

Here we consider a hexagonal lattice with periodic bound-
ary conditions and an even number of columns L. The map-
ping onto free fermions is as follows �see Fig. 16�:

We choose a convenient dimer configuration which we
call a reference configuration. Any other dimer configuration
�real configuration� will be compared to the reference by
superposition of the two. We define the particle locations as
the vertical edges that are not occupied by a “real” dimer
�only a reference one�. Particles can jump from a vertical
edge to another only if a real horizontal dimer connects the
two. This mapping has several interesting properties:

�i� The dimer configuration is totally determined by the
trajectories of the particles.

�ii� Two particles cannot go to the same edge. Therefore,
they obey a fermionic exclusion rule. This encodes the dimer
hardcore constraint.

�iii� The number of fermions is conserved, so that the TM
is block diagonal, each block corresponding to a fixed num-
ber of fermions. It should be remarked that this property
would not hold on nonbipartite lattices �such as the triangu-
lar�.

2. Fermionic representation and periodic boundary conditions

A state of a row is determined by the number n of fermi-
ons and their positions 0��1� . . . ��n�L−1. We can
choose to represent such a state using second-quantized fer-
mion creation operators,

�i� = ��1 . . . �n� = c�1

† . . . c�n

† �0� . �B1�

As we want to use the translational invariance, we have to set

��1, . . . ,�n−1,L� = �0,�1, . . . ,�n−1� . �B2�

Therefore, to keep the order of Eq. �B1�,

cL
† = �− 1�n̂−1c0

†, n̂ = 	
j=0

L−1

cj
†cj . �B3�

In the following, we will also need the L fermion operators
in Fourier space,

ck
† =

1
�L

	
j=0

L−1

e−ikjcj
†. �B4�

They satisfy �ck ,ck�
† �=�kk�, provided eikL= �−1�n̂−1. The set of

wave vectors is given by

k � �− � +
�

L
+ �2�l

L
�l = 0, . . . ,L − 1�, n̂ even,

k � �− � + �2�l

L
�l = 0, . . . ,L − 1�, n̂ odd.

3. Diagonalization of the transfer matrix

Each fermion can go to the left or to the right with equal
amplitude. We number vertical edges in such a way that a
fermion located on j can go to j or j+1. T satisfies

T�0� = �0� , �B5�

Tcj
†T−1 = cj

† + cj+1
† . �B6�

So that

Tck
†T−1 = ��k�ck

†, ��k� = 1 + eik, �B7�

ck
†�0� is then eigenvector of T with eigenvalue ��k�. In a

similar manner,

Tck1

† ck2

† . . . ckn

† T−1 = ��k1� . . . ��kn�ck1

† . . . ckn

† . �B8�

Provided all the wave vectors are different, ck1

† . . .ckn

† �0� is an
eigenvector with eigenvalue ��k1� . . .��kn�. The transfer ma-
trix can also be expressed explicitly,

T = �
k

�1 + eikck
†ck� . �B9�

4. Largest eigenvalue and dominant eigenvector

Since ���k���1 for every k� 
−2� /3,2� /3� �see Fig.
17�, the eigenvalue with largest modulus in a given sector
with n fermions is obtained by a product over the n nearest to
0 wave vectors. Let us denote this eigenvalue by �n. Then,
�max=max���n� ,1�n�L�. The eigenvalue with largest
modulus is real and has approximately all allowed k lying in
the interval 
−2� /3,2� /3�. The dominant sector has there-

FIG. 17. �Color online� One-particle eigenvalue as a function of
k.
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fore n�2L /3 fermions. It is easy to understand the fact that
the “dominant” fermion density is 2/3: it corresponds to flat
height configurations �see Fig. 16�.

If we denote by 	 the set of wave vectors that gives the
largest eigenvalue then the dominant eigenvector is

�g� = � �
k�	

ck
†��0� . �B10�

Let us show what is 	 in the simple case where L=6p. We
have to distinguish between the even and odd sectors,

�max
�e� = max��2n�� = �

l=p

5p−1

��− � + �
2l + 1

6p
� ,

�max
�o� = max��2n�+1� = �

l=p

5p

��− � +
�l

3p
� . �B11�

Here, �max
�e� ��max

�o� because Euler-Maclaurin expansion gives
log �max

�e� −log �max
�o� = ��3

24p +o�1 / p�. Therefore the leading ei-
genvalue corresponds to 4p= 2

3L fermions and

	 = �− � + ��2l + 1

6p
�p � l � 5p − 1� . �B12�

5. Probability of a given configuration

The dominant eigenvector has n=2L /3 fermions. A con-
figuration i is represented by

�i� = c�1

† . . . c�n

† �0� �B13�

and will have a probability 
we use Eqs. �A1� and �A4��

pi = ��0�c�n
. . . c�1

ck1

† . . . ckn

† �0��2 �B14�

=� 1

L
�n

�det�e−i�jkj�� j j��
2. �B15�

We get a Vandermonde determinant and pi simplifies into Eq.
�30�.

APPENDIX C: TRANSFER MATRIX FOR THE
CLASSICAL DIMER MODEL ON THE SQUARE LATTICE

1. Free fermions

We consider a square lattice with periodic boundary con-
ditions and an even number of columns L. The mapping is
similar to that of the hexagonal lattice. The reference con-
figuration is shown in Fig. 18. Here, a fermion will be de-
fined as an even vertical edge occupied only by a reference
dimer or an odd vertical edge occupied only by a real dimer.
It can go to the left, straight ahead, or to the right. We intro-
duce a shift in the numbering, so that a fermion located on
site j can go to j, j+1, or j+2.

2. Diagonalization of the transfer matrix

As for the honeycomb case, T is block diagonal and in-
variant by translation. It also satisfies

T�0� = �0� , �C1�

Tc2j
† T−1 = c2j+2

† + c2j+1
† + c2j

† , �C2�

Tc2j+1
† T−1 = c2j+2

† . �C3�

As usual we also define Fourier-space fermions,

c0k
† =

1
�L/2

	
j

e−ik2jc2j
† , �C4�

c1k
† =

1
�L/2

	
j

e−ik�2j+1�c2j+1
† , �C5�

with

k � �−
�

2
+

�

L
+ �2�l

L
�l = 0, . . . ,

L

2
− 1�, n̂ even,

k � �−
�

2
+ �2�l

L
�l = 0, . . . ,

L

2
− 1�, n̂ odd.

The transfer matrix acts on them in the following way:

0 1 4 5 8 9 12

0 1 4 5 8 9 12

0 1 4 5 8 9 12

-1 2 3 6 7 10 11

-1 2 3 6 7 10 11

0 1 4 1 4 5 4

3 2 3 2 3 2 3

0 1 0 1 0 1 0

-1 2 -1 2 -1 -2 -1

0 1 0 1 0 1 0

0 1 4 1 4 5 4

3 2 3 2 3 2 3

0 1 0 1 0 1 0

-1 2 -1 2 -1 -2 -1

0 1 0 1 0 1 0

(b)(a)

FIG. 18. �Color online� Upper left: reference configuration. Upper right: chosen configuration. Below: the fermions are living on the
vertical edges of the lattice and are symbolized by red zigzag lines. Edges are numbered from 0 to L−1. The integers attached to each
plaquette form a height configuration associated to the dimer covering. The rule is very similar to that of the honeycomb lattice: turning
clockwise around the sites of the even sublattice �marked with black dots�, the height picks a contribution equal to +3 when crossing a dimer
and −1 otherwise. h=0 is fixed at some origin. For a more detailed presentation, see Ref. 65.
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Tc0k
† T−1 = �1 + e2ik�c0k

† + eikc1k
† , �C6�

Tc1k
† T−1 = eikc0k

† . �C7�

To diagonalize T, it is therefore sufficient to diagonalize a
2
2 matrix,

M = �1 + e2ik eik

eik 0
� . �C8�

If one sets

tan �k = �1 + cos2 k − cos k , �C9�

���k� = eik�cos k � �1 + cos2 k� , �C10�

b+k
† = cos �kc0k

† + sin �kc1k
† , �C11�

b−k
† = − sin �kc0k

† + cos �kc1k
† , �C12�

then

Tb+k
† T−1 = �+�k�b+k

† , �C13�

Tb−k
† T−1 = �−�k�b−k

† , �C14�

which gives us all the eigenvalues and eigenvectors of T. It is
also possible to express explicitly T,

T = �
k

�1 + 
�+�k� − 1�b+k
† b+k��1 + 
�−�k� − 1�b−k

† b−k� .

3. Largest eigenvalue and dominant eigenvector

We assume for simplicity that L is a multiple of 4. Notic-
ing �see Fig. 19� that ∀ k , ��+�k���1 and also ��−�k���1, we
can deduce that only the �+�k� will contribute to the largest
eigenvalue. In Ref. 65 it is shown that

�max = �
k�	

�+�k� , �C15�

where 	= �− �
2 + �

L + 2�
L l � l=0¯L /2−1�. The leading sector

has an even number of fermions L /2 and the dominant ei-
genvector will be given by

�g� = � �
k�	

b+,k
† ��0� . �C16�

4. Probability of a given configuration

The dominant eigenvector has n=L /2 fermions. A con-
figuration i is represented by

�i� = c�1

† . . . c�n

† �0� �C17�

and will have a probability 
using Eq. �A1� and also Eq.
�A4��

pi = ��0�c�n
. . . c�1

b+,k1

† . . . b+,kn

† �0��2 �C18�

=� 2

L
�n

�det mjj��
2, �C19�

where

mjj� =�cos �kj�
ei�jkj�, � j even

sin �kj�
ei�jkj�, � j odd.

� �C20�

This determinant is slightly more complicated than on the
honeycomb lattice and cannot be further simplified.

APPENDIX D: 2D COULOMB GAS ON A CIRCLE

We consider a Gaudin model with n charges dispatched
on a circle with L sites.

1. Scaling of the ground state

We study the special case where L /n�N and we set �
=n /L. We denote by p0��� the probability associated with
the ground-state configuration. It corresponds to the case
where the distance between each charges is maximal. There-
fore it is obtained when all charges lie on the edges of a
polygon. Hence,

p0��� =
1

Zn
�L����

L−n�/2 �
1�k�l�n

�e2il�/n − e2ik�/n��.

Using the formula �l=1
n−1�1−e2il�/n�=n, we get

p0��� =
�n�/2

Zn
�N����

. �D1�

In the special case where � is an even integer and ��
2L

n−1 , it
is possible to use Eq. �33� and the subleading term of
−log p0��� can easily be found,

− log p0��� = an +
1

2
log

�

2
. �D2�

This result for the universal part of the probability, �
= 1

2 log�
2 =log R, does not depend on L nor n �no finite-size

effects�.

FIG. 19. �Color online� One-particle eigenvalues �+ and �− as a
function of k.
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2. Existence of a gap in the thermodynamical limit

The first excitation is obtained from the ground-state con-
figuration by moving one particle to the next site while keep-
ing all the others in place. The associated probability p1���
will be given by

p1���
p0���

= ��
l=1

n−1 sin� l�

n
−

�l�

n
�

sin� l�

n
� �

�

. �D3�

In the limit n→+� it is possible to expand the sin,

p1���
p0���

= ��
l=1

n−1 �1 −
��

n
cot�l�/n����

. �D4�

We then consider Pn�x�=�l=1
n−1
1−x cot�l� /n��. The trick to

calculate Pn�x� is to introduce another polynomial Qn�x�
which satisfies

Qn�tan t� =
sin nt

�sin t�cosn−1 t
. �D5�

Qn�x� and Pn�x� are of the same degree and share the same
zeros: they have to be proportional. Pn�0�=1 and Qn�0�=n
yield Pn�x�= 1

nQn�x�. Using Eq. �D5� and Moivre’s formula,
we get

Pn�x� =
1

n
	
k=0


�n−1�/2�

�− 1�kCn
2k+1x2k. �D6�

Therefore Pn� ��
n � reduces in the limit n→� to

Pn���

n
� =

1

��
sin���� . �D7�

Finally,

p1���
p0���

= � 1

��
sin������

. �D8�

So that there is a finite gap in the thermodynamical limit,

�E = E1 − E0 = − log� 1

��
sin����� . �D9�

This calculation can easily be extended �in the thermody-
namical limit� to any configuration deduced from the ground
state by moving a finite number of particle. For the corre-
sponding RK wave function, �E gives an information about
the first gap of the reduced density matrix �entanglement
spectrum�.

APPENDIX E: GROUND STATE OF THE ISING CHAIN IN
A TRANSVERSE FIELD

1. Diagonalization

We consider the Hamiltonian of an Ising chain in a trans-
verse field with an even number of sites L,

H = − �	
j=0

L−1

� j
x� j+1

x − 	
j=0

L−1

� j
z. �E1�

Using a Jordan-Wigner transformation,

� j
+ =

� j
x + i� j

y

2
= cj

† exp�i�	
l=0

j−1

cl
†cl� , �E2�

� j
z = 2cj

†cj − 1, �E3�

H is rewritten as

H = − 	
j=0

L−1

�2cj
†cj − 1� − �	

j=0

L−2

�cj
† − cj��cj+1

† + cj+1� + ��cL−1
†

− cL−1��c0
† + c0�ei�N, �E4�

where N=	 j=0
L−1 cj

†cj is the fermion number operator. Since
P=� j=0

L−1 � j
z= �1 is a conserved quantity, H may be sepa-

rately diagonalized in two sectors. Here we are only inter-
ested in the ground state of the chain. In the basis of the
eigenstates of the � j

z, all off-diagonal elements are negative,
and it lies in the sector P=+1 �Perron-Frobenius theorem�.
Using P=exp�i�N� and the last term of Eq. �E4�, we see
that in this sector, one has to keep configurations with an
even number of fermions satisfying antiperiodic boundary
conditions

cL
† = − c0

†. �E5�

To take advantage of the translational invariance, we intro-
duce Fourier-space fermions

ck
† =

1
�L

	
j=0

L−1

e−ikjcj
†, �E6�

where k� ��2l+1� �
L �−L /2� l�L /2−1� are the L wave vec-

tors. The Hamiltonian becomes

H = L − 	
k

2�1 + � cos k�ck
†ck + �	

k

�i sin kck
†c−k

†

− i sin kc−kck� . �E7�

This expression can be diagonalized using a Bogoliubov
transformation,

ck
† = cos �kbk − i sin �kb−k

† , �E8�

�−k = − �k, �E9�

provided the following condition is satisfied:

tan 2�k =
� sin k

1 + � cos k
. �E10�

We then obtain

H = 	
k

��k�
bk
†bk − 1/2� , �E11�
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��k�
2

= �1 + � cos k�cos 2�k + � sin k sin 2�k. �E12�

In the following, we want the vacuum of the bk to be the
ground state of H, which is true only if ��k��0 ∀ k. One
also has to take into account the indetermination of � mod �.
There are two cases.

�i� ��1: Here 1+� cos k is always positive. We choose

�k =
1

2
arctan� � sin k

1 + � cos k
� �E13�

and the energy spectrum is given by

��k� = 2�1 + 2� cos k + �2. �E14�

�ii� ��1: Here, one has to be careful because 1
+� cos k can vanish and change sign. A generic solution of
Eq. �E10� is

�k =
1

2
arctan� � sin k

1 + � cos k
� +

�

2
qk, qk � Z . �E15�

The eigenenergies are given by

��k� = �− 1�qk sgn�1 + � cos k�2�1 + 2� cos k + �2.

�E16�

1+� cos k changes sign at k= �kc= �arccos�−1 /��. A pos-
sible choice is therefore

qk = �− 1, k � − kc

0, − kc � k � kc

1, k � kc.
� �E17�

2. Probability of a given configuration

Since �0� is the ground state of the chain, the probability
of each configuration i is �in the �z basis�

pi = �0�P1
↑/↓P2

↑/↓ . . . PL
↑/↓�0� , �E18�

where Pj
↑ �Pj

↓� is the projector onto the �↑ � j
z ��↓ � j

z� state,

Pj
↑ = cj

†cj, Pj
↓ = cjcj

†. �E19�

Using Wick’s theorem, pi reduces to a Pfaffian. To compute
it, we need to calculate four types of contractions: �cj

†cj��,
�cjcj�

† �, �cj
†cj�

† �, and �cjcj��. This can be done by expressing
back the Jordan-Wigner fermions in terms of the Bogoliubov
fermions,

�cj
†cj�� =

1

L
	

k

cos2 �k cos
k�j − j��� , �E20�

�cjcj�
† � =

1

L
	

k

sin2 �k cos
k�j − j��� , �E21�

�cj
†cj�

† � =
1

L
	

k

sin �k cos �k sin
k�j� − j�� , �E22�

�cjcj�� =
1

L
	

k

sin �k cos �k sin
k�j − j��� . �E23�

If we write a generic projector as Pj
↑/↓=a2j−1a2j, where a is

either c or c†, then

pi = Pf��ajaj���1�i,j�2L. �E24�

Notice that it is also possible to compute pi when L is odd.
The only difference is that the fermion number operator sat-
isfies

exp�i�N� = − P . �E25�

Therefore, one has to take periodic boundary conditions cL
†

=c0
† and only keep configurations with an odd number of

fermions. The wave vectors are now in the set �2l� /L �
−L /2� l�L /2−1�. Since the dispersion relation ��k� is
minimum for k=−�, the ground-state wave function is

�0̃� = b−�
† �0� , �E26�

and the probabilities

pi = �0̃�P1
↑/↓P2

↑/↓ . . . PL
↑/↓�0̃� �E27�

will also be given by Pfaffians.

3. Configuration with highest probability

We study the case where L is even. The configuration with
highest probability is attained by the ferromagnetic configu-
ration

�i0� = �↑↑↑ . . .�z. �E28�

Defining

P = �
j=0

L−1

cj
†cj , �E29�

p0 is expressed as

p0 = �0�P�0� . �E30�

P is a projector onto a state with L fermions.

Q = �
k

ck
†ck �E31�

is also a projector onto a state with L fermions. Since there is
only one state of the Hilbert space with L fermions, P and Q
are in fact identical. Using Eq. �E8�, we therefore get

p0 = �
k

cos �k, �E32�

where �k is given by Eq. �E13� or �E15�. At the critical point
��=1�, �k=k /4.
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