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We study the classical and quantum phase transitions of Sp�4� spin systems on three-dimensional stacked
square and triangular lattices. We present general Ginzburg-Landau field theories for various types of Sp�4�
spin orders with different ground-state manifolds such as CP�3�, S7 /Z2, Grassmann manifold G2,5, G2,6, and so
on, based on which the nature of the classical phase transitions are studied, and a global phase diagram is
presented. The classical phase transitions close to quantum phase transitions toward spin-liquid states are also
discussed based on renormalization group flow. Our results can be directly applied to the simplest Sp�4� and
SU�4� Heisenberg models which can be realized using spin-3/2 atoms and alkaline-earth atoms trapped in
optical lattice.
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I. INTRODUCTION

For decades condensed-matter physicists have been ac-
tively studying the spin systems with large symmetries such
as SU�N� and Sp�N�,1–10 mainly motivated by the fact that
under large-N generalization the semiclassical spin order
with spin symmetry breaking is weakened, and even van-
ishes completely beyond certain critical Nc. A good example
is the SU�N� Heisenberg model on square lattice with funda-
mental and conjugate fundamental �FCF� representation on
two sublattices �FCF Heisenberg model�, which for N�4 is
quantum disordered, and for N�4 the ground state sponta-
neously breaks the SU�N� symmetry, with ground-state
manifold �GSM� CP�N−1�.3,11,12 Very recently it was pro-
posed that, without fine tuning any parameter, the SU�N�
spin systems with N as large as 10 can be realized by
alkaline-earth atoms trapped in optical lattice,13 so the
large-N spin system is no longer merely theoretical toy.
Many previous works showed that for the special value
N=4, the Sp�4� symmetry can be realized with spin-3/2 fer-
mionic atoms, and when the spin-0 and spin-2 s-wave scat-
tering lengths are equal, the system has an even larger SU�4�
symmetry.14 Motivated by these observations, quantum mag-
netism based on the spin-3/2 atoms has been actively
studied.14–20

Although the GSM of the ordered state of SU�N� FCF
Heisenberg model on square lattice has been identified as
CP�N−1� long ago, a detailed Ginzburg-Landau �GL� field
theory for this ordered state has not been thoroughly studied.
A GL theory of this state can answer the following question:
suppose the SU�N� Heisenberg model is defined on the three-
dimensional �3D� cubic lattice with CP�N−1� GSM, what is
the finite temperature transition between this ordered phase
at low temperature and a disordered phase at high tempera-
ture? For N=2, this question is fairly simple, because
CP�1�=S2, the finite temperature transition is not more than
one single 3D O�3� transition. For larger-N cases, the ques-
tion is complicated by the fact that CP�N−1� manifold does
not have a general simple parametrization as CP�1�. The
standard way to parameterize the CP�N−1� manifold is to
treat it as N component of complex boson coupled with U�1�
gauge field, while keeping the SU�N� global symmetry of the

action, but this parametrization of CP�N−1� manifold fails to
describe the finite temperature phase transition, which will
be discussed in the next section. Therefore we need to write
down a GL theory based only on the physical observable
order parameters.

In the current work we will focus on the case with N=4
and discuss the finite temperature phase transition of system
with CP�3� GSM. One sample system which has CP�3� GSM
is the Sp�4� Heisenberg model on bipartite lattice with one
particle per site

H = �
�i,j�

J1�i
ab� j

ab − J2�i
a� j

a. �1�

�a with a=1, . . . ,5 are five 4�4 Gamma matrices, and
�ab= 1

2i ��
a ,�b� are ten generators of Sp�4��SO�5� group.

Here we choose the following standard convention of
Gamma matrices:

�a = �z
� �a, a = 1,2,3, �4 = �x

� 1, �5 = �y
� 1 .

�2�

For arbitrary J1 and J2 this system has Sp�4� symmetry,
while when J1=J2 this model is equivalent to the SU�4� FCF
Heisenberg model.17 J1 and J2 can be tuned with spin-0 and
spin-2 s-wave scattering lengths of spin-3/2 cold atoms.17

Our formalism suggests that for a Sp�4� spin system on the
3D cubic lattice with GSM CP�3�, depending on the ratio
J1 /J2 the classical phase diagram can have different sce-
narios. The most interesting scenario is the region J2�J1 in
model �1�, at finite temperature there are two transitions,
with one 3D O�5� transition followed by a 3D O�3� transition
at lower temperature. On stacked triangular lattice, it was
shown that the Sp�4� Heisenberg model �1� has 	3�	3 spin
order with GSM S7 /Z2.21 At finite temperature again there
can be two transitions, with one 3D O�5� transition followed
by a “coupled” O�3� transition. Besides CP�3� and S7 /Z2,
many other spin symmetry breaking semiclassical states of
Sp�4� spins with different GSM can exist, especially for half-
filled �two particles per site� system, which will also be dis-
cussed in this work.
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This paper is organized as follows. In Sec. II, we will
study the GL theory of the Neel and 	3�	3 phases of the
Sp�4� spin system on three-dimensional lattices, and a global
phase diagram is presented. Sp�4� spin states with other
GSM such as Grassmann manifold G2,5, G2,6, and SO�5�/
SO�3� will also be discussed, with applications to half-filled
Sp�4� spin models. Our GL theory can also be used to dis-
tinguish different GSMs with the same dimension and simi-
lar quotient space representation. In Sec. III we will study the
classical phase transitions close to quantum phase transitions
between ordered and spin-liquid phases. In Sec. IV we will
briefly discuss a more exotic manifold, the “squashed S7”
and its potential to be realized in Sp�4� spin systems.

II. GL THEORIES FOR SP(4) SPIN SYSTEMS

A. Collinear phases

Let us now consider the Sp�4� Heisenberg model �1� on
the 3D cubic lattice with one particle per site. On the two-
dimensional �2D� square lattice, both analytical and numeri-
cal results conclude that at the special point J1=J2 with en-
larged SU�4� symmetry, the ground state of this model has
semiclassical order,3,11,12 with GSM CP�3�, which extends
into a finite range of the phase diagram tuned by J2 /J1.21 The
semiclassical order is expected to be stable with the third-
direction unfrustrated interlayer coupling. In this Neel phase,
both �ab and �a are ordered. For instance, we can take the
trial single-site state 
��= �1,0 ,0 ,0�t, and it is trivial to see
that it has nonzero �3, �45, and �12.

As already mentioned in the introduction, the standard
way to parameterize the CP�N−1� manifold is to treat it as N
component of complex boson coupled with U�1� gauge field,
while keeping the global spin symmetry of the action

L = 
��� − iA��z
2 + r
z
2 + g�
z
2�2 + ¯ . �3�

This action is written down based on the fact that

CP�N − 1� = S2N−1/U�1� . �4�

Here S2N−1 represents the GSM of the condensate of N com-
ponent of complex boson, and U�1� represents the U�1�
gauge field A�. However, at finite temperature, a simple
CP�N−1� model in Eq. �3� on three spatial dimensions
would lead to a wrong transition, because this model de-
scribes a transition between the ordered phase and a photon
phase. However, finite temperature induces finite density of
monopoles of A�, which will change the photon propagator
at long scale. The disordered phase is generically identical to
the “confined phase” with monopole proliferation and no lat-
tice symmetry breaking, i.e., the monopoles without Berry
phase. Therefore the action �3� should be supplemented with
the “featureless” monopole, which is relevant at least for
small N at the critical point r=0. For N=2, the “trivial”
monopole drives the CP�1� model to the O�3� universality
class, but for larger N there is no such simple relation. There-
fore the CP�N−1� model plus monopole does not tell us
much about the nature of the transition, in general, and we
need another convenient way to describe the CP�N−1� mani-
fold.

Therefore, to describe the GSM and transition we need to
introduce a linear sigma model at 4−� dimension with
gauge-invariant order parameters, in the form of z	

†z
. There
are in total 15 independent bilinears of this form, which can
be simply rewritten as the following five-component vector
and ten-component adjoint vector:

�ab = z†�abz, �a = z†�az

�
a,b

�ab�ab � �
a

�a�a � �
z
2�2. �5�

The complex bosonic field z	 are the low-energy Schwinger
bosons of Sp�4� spin system. In Ref. 21, it was shown that in
the Neel order �ab is the staggered order �−1�i�ab while the
O�5� vector �a is the uniform order �a, which can be natu-
rally expected from Eq. �1�, when J1 and J2 are both positive.
However, �ab and �a are not independent vectors, because
the Sp�4� symmetry of the system allows for coupling be-
tween these two vectors in the free energy, which can be
manifested by the following identities:

�
a=1

5

�a�a = 2�
z
2�2, �
a

�aNa = 2�
z
2�3,

Na = �abcde�
bc�de. �6�

where �abcde is the five-dimensional antisymmetric tensor.
Also, the five �a matrices are all constructed by bilinears of
the spin-3/2 operators, while �ab are constructed by linear
and cubics of the spin operators.14,17 Therefore �� is time
reversal even, and identical to the nematic O�5� vector
Na=�abcde�

bc�de in the ordered state of the CP�3� model
with 
z
2=1.

Now we can write down a classical GL theory for Sp�4�
spin system with CP�3� GSM

F = �
ab,�

����ab�2 + ����a�2 + r1��ab�2 + r2��a�2

+ ��abcde�
a�bc�de + g��

ab

��ab�2 + �
a

��a�2�2
+ ¯ .

�7�

The ellipses include all the other terms allowed by Sp�4�
global symmetry. When r1=r2, this free energy is
SO�6��SU�4� invariant, which corresponds to the point
J1=J2, where the model is equivalent to the SU�4� FCF
Heisenberg model on the cubic lattice. We can also view the
adjoint vector �ab as an O�10� vector which originally
should form a GSM S9, and the cubic term � makes the
ten-component vector �ab align in a six-dimensional sub-
manifold of S9 where the O�5� vector �a��abcde�

bc�de is
maximized.

A global mean-field phase diagram can be plotted against
r=r1+r2 and 
r=r1−r2, as shown in Fig. 1. The parameter r
is tuned by temperature, and 
r is tuned by 
J=J1−J2,
which is evident with the observation that 
r=0 corresponds
to the same SU�4� point 
J=0 and both finite 
r and 
J
violate the SU�4� symmetry. There are three different regions
in the phase diagram. Close to the SU�4� point 
r=0, the
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cubic term � drives a first-order transition at the mean-field
level, with both ��ab� and ��a� jump discontinuously. The
first-order transition extends to a finite region in the phase
diagram. The second region of the phase diagram has

r�0 �J1�J2�, here �ab wants to order before �a, but due
to the � term in the free energy �Eq. �7��, the order of
�ab implies order of �a. Therefore in this region the phase
transition can be safely described by a free energy in terms
of only �ab, after integrating out �a

F2 = �
ab,�

����ab�2 + r��ab�2 + �2�
a

��abcde�
bc�ed�2

+ g2
�
ab

��ab�2�2
+ ¯ . �8�

Here �2�0 to make sure the ground state wants to maximize
�a. We can treat �2 as a perturbation at the 3D O�10� tran-
sition, and a coupled renormalization group �RG� flow of �2
and g2 will determine the fate of the transition.

The third region is 
r�0 �J1�J2�, now �a tends to order
before �ab, and there are, in general, two separate second-
order transitions at finite temperature, with �a orders first.
The transition of �a is a three-dimensional O�5� transition.
After the ordering of �a, the symmetry of the system breaks
down to O�4�. Let us take the expectation value of �� as
��� �= �� ,0 ,0 ,0 ,0�, the coupling between �a and �ab in free
energy �Eq. �7�� reads

�abcde�
a�bc�de = ���23�45 − �24�35 + �25�34� . �9�

Now one can diagonalize the quadratic part of the Eqs. �7�
and �9�, the eigenmodes are characterized by the representa-
tion of the residual O�4��SU�2��SU�2� symmetry. The re-
sidual O�4� symmetry group is generated by six matrices �ab

with a, b�1. The two SU�2� normal subgroups of O�4� are

generated by matrices −�23+�45, �24+�35, and −�25+�34

�denoted as subalgebra su�2�A� and �23+�45, −�24+�35, and
�25+�34 �denoted as subalgebra su�2�B�, respectively. We
will decompose the ten-component vector �ab based on the
representation of the su�2�A and su�2�B algebras, different
representations will have different eigenvalues

Q� i�i = 1, . . . ,4� = ��12,�13,�14,�15� ,

eigenvalue:r, representation:O�4�vector;

T�A
i �i = 1,2,3� = �− �23 + �45,�24 + �35,− �25 + �34� ,

eigenvalue:r − ��, representation:�1,0�;

T�B
i �i = 1,2,3� = ��23 + �45,− �24 + �35,�25 + �34� ,

eigenvalue:r + ��, representation:�0,1� . �10�

Here T�A and T�B transform as vectors of SU�2�A and
SU�2�B, respectively. Notice that although SU�2�A and
SU�2�B are both normal subgroups of the SO�4� after the
order of �a, neither of them can be normal subgroup of the
original SO�5� group, because SO�5� group is a simple group
while SO�4� is a semisimple group.

If ���0, T�A has the lowest eigenvalue, so the O�3� vec-
tor T�A will order after �a. The main question is which uni-
versality this transition belongs to. Since Q� and T�B are mas-
sive and only have short-range correlation at the transition of
T�A, integrating out them will not induce any critical behavior
for T�A, and hence the Goldstone mode of �a after its ordering
is the biggest concern. The Goldstone mode
�0,�1 ,�2 ,�3 ,�4� forms an O�4� vector, and the Goldstone
theorem guarantees its gaplessness. The simplest coupling
one can write down with these constraints is

F� � �T�A�2����� �2. �11�

This term only generates irrelevant perturbations at the O�3�
transition of T�A after integrating out �� . Notice that couplings
such as �T�A�2��� �2 though preserves the global O�4� symme-
try, violates the Goldstone theorem after integrating out T�A,
as a mass gap ��T�A

2� is induced for �� . Therefore now we can
safely conclude that the phase transition of T�A is a 3D O�3�
transition. Notice that vectors T�B and Q� no longer have to
order at lower temperature, because of the repulsion from
ordered T�A, due to the quartic terms in Eq. �7�.

After the ordering of T�A, the symmetry of the system is
broken down to SO�2��SO�3�. The first SO�2� corresponds
to the residual symmetry of SU�2�A after the order of T�A, and
the second SO�3� corresponds to the SU�2�B associated with
T�B, therefore CP�3� manifold can also be written as quotient
space SO�5� / �SO�2��SO�3��. However, we should be care-
ful about this formula, because there are two different types
of so�3� or su�2� subalgebras of so�5�. Besides the subalge-
bras su�2�A and su�2�B we used earlier, there is another
SU�2� subgroup which is the diagonal subgroup of

Neel order CP(3)

∆r

r

∆ r=0
SU(4)

3d O(5)

3d O(3)

FIG. 1. �Color online� The phase diagram of GL theory, Eq. �7�,
plotted against r=r1+r2 and 
r=r1−r2. The red line �the transition
around 
r=0� is a first-order transition, the blue line �upper line
with 
r�0� is a 3D O�5� transition, and the green line �lower line
with 
r�0� is a 3D O�3� transition. The golden line �the transition
with 
r�0� is a second-order transition at the mean-field level, the
true nature of the transition can be obtained by a detailed RG cal-
culation for Eq. �8� with �2�0. A similar phase diagram can be
applied to Eq. �14� for the stacked triangular lattice, with the green
line representing a coupled O�3� transition described by Eq. �16�.
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SU�2�A�SU�2�B, we denote this subgroup as SU�2�V, which
is no longer a normal subgroup of O�4�. The elements in
algebra su�2�V are the linear combination of the correspond-
ing elements in su�2�A and su�2�B: Ji

V=Ji
A+Ji

B.
For instance, in the half-filled �two particles per site� spin-

3/2 cold atoms, one can naturally obtain an ordered state
with ��−1�i�ab��0 but with no order of �a,19,20 which means
that for this case action �8� is still applicable, while the sign
of �2 is positive, i.e., it corresponds to a different anisotropy
of the S9 manifold formed by the adjoint vector �ab, which
minimizes the vector �a��abcde�

bc�de �in contrast to CP�3��
�Fig. 2�. In this case the GSM can still be written as
SO�5� / �SO�2��SO�3��, but here SO�3� is SU�2�V. For in-
stance, if ��−1�i�12��0, the SU�2�V is generated by �34, �35,
and �45. This GSM SO�5� / �SO�2��SO�3�� with
SO�3��SU�2�V is called Grassmann manifold G2,5, which is
mathematically defined as the set of two-dimensional planes
in five-dimensional vector space.22

The mean-field phase diagram for the half-filled Sp�4�
system tuned by the spin-0 and spin-2 s-wave scattering
lengths is studied in Refs. 14, 19, and 20. Besides the phase
with ��−1�i�ab��0 discussed in the previous paragraph,
there is another typical phase with ��−1�i�a��0 and GSM
SO�5� /SO�4�=S4. These two phases are separated from each
other by the SU�4� point with equal spin-0 and spin-2 scat-
tering lengths, where due to the enlarged symmetry, the two
different orders should have equal energy.14 Suppose
��−1�i�12� is nonzero at this SU�4� point, now the residual
symmetry of this order is generated by �12, �34, �45, �35, �3,
�4, and �5, which form subgroup SO�2��SO�4� of the
SO�6��SU�4� symmetry group. More detailed analysis
would show that now the GSM is the Grassmann manifold
SO�6� / �SO�2��SO�4��=G2,6 �Fig. 2�, which is defined as
the set of two-dimensional planes in six-dimensional vector
space.

One can write down a GL field theory for the half-filled
Sp�4� spin system as follows:

Fhf = �
ab,�

����ab�2 + ����a�2 + r1��ab�2 + r2��a�2

+ g��
ab

��ab�2 + �
a

��a�2�2
+ �

a

�2��abcde�
bc�de�2

+ ¯ . �12�

r1=r2 corresponds to the SU�4� point, and r2�r1 �r2�r1�

corresponds to the case with ��−1�i�a��0 ���−1�i�ab��0�.
Notice that the cubic term ��abcde�

a�bc�de is not allowed
here because �a and �ab both represent staggered orders, so
this cubic term would switch sign under lattice translation.
The ellipses in Eq. �12� includes other terms allowed by
symmetry, for instance, �ab��abcde�

c�de�2.
In 2+1-dimensional space, another possible ground state

around the SU�4� point of the half-filled system is the alge-
braic spin liquid, which has been actively studied
analytically7,8,23–26 and has gained numerical supports.27

However, the fate of the SU�4� point at three dimensions is
unclear, so in this work we tentatively assume it still has
magnetic order which bridges the orders on two sides of the
phase diagram in Fig. 2�b�, and the transition between the
two different spin order patterns at zero temperature should
be first order.

B. Noncollinear phases

Now let us move on to the GL theory for Sp�4� spin
system with noncollinear spin orders. It was shown21 that the
GSM of the ordered phase of Sp�4� system on the triangular
lattice is S7 /Z2 with 	3�	3 order of �ab and collinear and
uniform order of �a. By tuning J2 /J1 there is a transition
between the ordered phase and a deconfined Z2 spin liquid
which belongs to the 3D O�8� universality class. Now let us
consider the Sp�4� Heisenberg model on the stacked triangu-
lar lattice, and study the GL theory in terms of physical order
parameters. This ordered state is characterized by the
	3�	3 order of �1

ab+ i�2
ab=zt�abz, and a uniform order of

�a=z†�az. z	 is the Sp�4� bosonic spinon expanded at the
minima of the spinon band structure, which are located at the
corners of the hexagonal Brillouin zone Q� = ��4� /3,0�. The
two ten-component Sp�4� adjoint vectors �1

ab and �2
ab are

“perpendicular” to each other: �a,b�1
ab�2

ab=0. In the ordered
state, The vectors �1

ab, �2
ab, and �a satisfy the following re-

lations:

�abcde�1
bc�1

de = �abcde�2
bc�2

de � 
z
2�a. �13�

Therefore the GL theory reads

F = �
i=1

2

�
a,b

����i
ab�2 + r1��i

ab�2 + ����a�2 + r2��a�2

+ �
i

��abcde�
a�i

bc�i
de + g3��

ab,i
��i

ab�2�2

+ g4�
�
ab

�1
ab�2

ab�2
− ��

ab

��1
ab�2���

cd

��2
cd�2�� .

�14�

The last term in Eq. �14� with g4�0 guarantees the “or-
thogonality” between �1

ab and �2
ab in the ordered phase. Be-

sides the apparent Sp�4� symmetry, this free energy, Eq. �14�,
within the forth order has an extra O�2� symmetry for rota-
tion between �1

ab and �2
ab, which corresponds to the transla-

tion symmetry of the system

0

CP(3)

γ
2

γ
2<0 γ

2 0>

G 2 5,

a
γ

2=

=0 r∆∆r> 0∆r< 0

G 2 5
G 2 6 S 4

, ,

b
∆r

FIG. 2. The schematic ground-state manifold phase of �a� �Eq.
�8�� and �b� �Eq. �12��, with 
r=r1−r2.
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Tx:�1
ab + i�2

ab → ��1
ab + i�2

ab�exp�i2�/3� . �15�

For the commensurate 	3�	3 order, this O�2� symmetry
will be broken by the sixth order terms of this free energy; if
the noncollinear state is incommensurate, the O�2� symmetry
will be preserved by any higher order of the GL theory.

In the GL theory, Eq. �14�, depending on 
r=r2−r1, the
order of �a is allowed to occur before the order of �i

ab, and
the transition of �a again belongs to the O�5� universality
class. After the order of �a, the quadratic part of the free
energy, Eq. �14�, can be diagonalized, and O�3� vectors T�A,1

and T�A,2 would order after �a. The last term in Eq. �14�
would induce a term �T�A,1 ·T�A,2�2 at this transition, therefore
the field theory for the second transition is described by the
following coupled O�3� free energy:

F = �
i=1

2

���n� i�2 + r�n� i�2 + v��n�1�2 + �n�2�2�2

+ u��n�1 · n�2�2 − �n�1�2�n�2�2� + ¯ �16�

with n� i=T�A,i. Again the Goldstone mode of �a only induces
irrelevant perturbation. This coupled O�3� model defined in
Ref. 28 with symmetry O�2��O�3� has attracted enormous
analytical and numerical work, recent results suggest the ex-
istence of a new universality class of the coupled O�3�
model.29 When n1 and n2 are ordered, the whole SO�3� sym-
metry associated with T�A,i is broken, and the residual sym-
metry of the condensate of n� i is SO�3�, which is the SO�3�
symmetry associated with T�B,i, i.e., SU�2�B.

Again the nature of the GSM depends on which type of
SO�3� the residual symmetry is. For half-filled spin-3/2 cold
atoms on the triangular lattice, one can engineer a state with-
out order of �ab, but with 	3�	3 order of nematic order
parameter �a

��a�r��� � n1
a cos�Q� · r�� + in2

a sin�Q� · r�� ,

�
a=1

5

n1
an2

a = 0. �17�

This spiral nematic order parameter has residual symmetry
SO�3�, however, this is the SU�2�V subgroup discussed pre-
viously. For instance, if n�1= �1,0 ,0 ,0 ,0� and
n�2= �0,1 ,0 ,0 ,0� then SU�2�V is generated by �34, �45, and
�35. Therefore the GSM of this order can be written as
quotient space SO�5�/SO�3�, but not equivalent to S7 /Z2. The
GL theory describing this nematic 	3�	3 order is a coupled
O�5� sigma model, which is analogous to Eq. �16�.

Another state worth mentioning briefly is the supercon-
ductor state of the Sp�4� fermions, and we will only focus on
the s-wave pairing here. The s-wave pairing of two Sp�4�
particles can be either Sp�4� singlet or quintet. And the quin-
tet state which is characterized by a complex O�5� vector
d� =d�1+ id�2 can have two types of GSM, depending on the
microscopic parameters of the system. The first type of pair-
ing has d�1 parallel with d�2, then the GSM is �S4�S1� /Z2.30

The second type of pairing has d�1 ·d�2=0, then the GSM is
again characterized by two real orthogonal O�5� vectors, and

hence GSM=SO�5� /SO�3�, equivalent to the nematic
	3�	3 state discussed in the previous paragraph. In experi-
mental system with spin-3/2 cold atoms, the direct calcula-
tion with s-wave scattering suggests that the former state
�dubbed polar state� is likely favored.17

III. CLOSE TO QUANTUM PHASE TRANSITIONS

In this section we will study the phase transitions obtained
in the previous section in the region close to a quantum
phase transition. For two-dimensional square lattice, it was
proposed in Ref. 21 that by tuning J2 /J1 in Eq. �1�, there is a
deconfined quantum phase transition between Neel order and
a gapped plaquette order which belongs to the 3D CP�3�
universality class. If now we turn on a weak spin interaction
between square lattice layers, the deconfined quantum phase
transition is expected to expand into a stable spin-liquid
phase with gapless photon excitation, while the Neel order
and plaquette order are unaltered by the weak z-direction
tunnelling.

The quantum phase transition between Neel and photon
phase is described by the 3+1d CP�3� model

L = �
a=1

4


��� − iA��za
2 + r
za
2 + g�
za
2�2 +
1

16e2F��
2 + ¯ .

�18�

Based on naive power counting this 3+1d transition is a
mean-field theory with marginally relevant/irrelevant pertur-
bations. To determine the universality class of this transition,
we need to calculate the RG equation for g and e2 in Eq. �18�
in detail. At the transition with r=0, the coupled RG equa-
tion up to one loop for g and e2 reads

dg

d ln l
= −

2

�2g2 −
3

8�2e4 +
3

4�2e2g ,

de2

d ln l
= −

1

6�2e4. �19�

The RG equation for the Higgs model with N=1 was calcu-
lated in Ref. 31, the structure of the RG equation obtained
therein is quite similar to Eq. �18�. Taking this RG equation,
one can see that the electric charge e2 is always renormalized
small. If one starts with a positive value of g, g will be first
renormalized to smaller values marginally, and then switch
sign due to its coupling with e2, and finally becomes nonper-
turbative, and no fixed point is found with arbitrary choices
of initial values of g and e2. So eventually this transition is
probably weak first order. The solution of RG equations �18�
is plotted in Fig. 3 for the trial initial value g0=e0

2=1 /5. One
can see that g becomes nonperturbative much slower than an
ordinary marginally relevant operator, because the ordinary
marginally relevant operator will still monotonically increase
under RG flow. In our current case g remains perturbative
and decreases for a very large energy scale, so for suffi-
ciently small initial values of g and e2, at physically relevant
energy scale, we can treat this transition a mean-field transi-
tion of spinon z	.
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Without monopoles, the finite temperature transition will
be described by the 3D CP�3� model in Eq. �3�. If tempera-
ture is turned on, finite density of monopoles will be gener-
ated. Close to the quantum transition, since the critical tem-
perature of the Neel order is very low, the monopoles
roughly have small fugacity ym�exp�−Eg /T�, and Eg repre-
sents the short-distance energy gap of monopole. Therefore
very close to the quantum phase transition with small Tc,
there is a very narrow “monopole dominated” region around
the classical phase transition where the universal physics sig-
nificantly deviates from the CP�3� model. Inside the mono-
pole dominated region the GL field theory in Eq. �7� be-
comes applicable, with r=r1+r2 tuned by temperature. Out
of this monopole dominated region, the scaling behavior of
the 3D CP�3� model becomes more applicable, assuming the
noncompact CP�3� model has a second-order transition. The
size of the monopole dominated region can be estimated
from the fugacity of the monopoles. If the scaling dimension
of the monopole operator at the CP�3� fixed point is 
m, the
size of the monopole dominated range is estimated as

T /Tc�ym

1/�3−
m��, � is the standard exponent of 3D CP�3�
transition defined as ��r−�. The phase diagram is shown in
Fig. 4.

The situation is quite different for the stacked triangular
lattice. In Ref. 21 we showed that on 2D triangular lattice, by
tuning J2 /J1 there is a 3D O�8� transition between the
	3�	3 order and the Z2 spin-liquid state, despite the
fact that the microscopic system only has
Sp�4��SO�5��SO�8� symmetry. For a stacked triangular
lattice with weak interlayer coupling, both the 	3�	3 order
and the Z2 spin liquid will survive, but the quantum phase
transition is described by the mean-field theory of z	, be-
cause the Z2 spin liquid does not introduce any critical cor-
relation for z	. Notice that at this mean-field transition the
magnetic order parameters �ab will have anomalous dimen-
sion one, because it is a bilinear of z	. For 3D space, the Z2
spin liquid can survive and extend into a finite region in the
phase diagram at finite temperature, therefore close to the
quantum transition, after the thermal fluctuation destroys the
magnetic order, the system does not enter the high-
temperature featureless phase immediately, instead it enters
the finite temperature Z2 spin-liquid phase, and the classical
transition of the spin order will simply belong to the 3D O�8�
universality class. At even higher temperature, there is a
phase transition separating the classical Z2 spin-liquid state
and high-temperature disordered phase, which physically
corresponds to the proliferation of the “vison loop.” This
transition belongs to the 3D Ising universality class.

IV. SUMMARY AND OUTLOOK

In this work we used the Ginzburg-Landau field theory to
describe and classify Sp�4� spin orders with different ground-
state manifolds, and studied the nature of classical phase
transitions between these spin order and disordered phases.
Our results can be applied to Sp�4� spin models such as the
J1−J2 Heisenberg model in Eq. �1�. The GL theory can be
generalized for large N spin systems with GSM CP�N−1�,
for instance, the cubic term in Eq. �7� is always allowed by
spin symmetry for large N, although other discrete symme-
tries have to be checked carefully.

The monopole of the gauge field A� will create and anni-
hilate the quantized flux of A�, which equals to the soliton
number of the GSM CP�N−1�, and the existence of soliton
of system with GSM CP�N−1� is due to the fact that
�2�CP�N−1��=Z for general N.3 If we start with a nonlinear
sigma model for CP�N−1� manifold at 2+� dimension,
though the spin wave excitations can be quite nicely de-
scribed, the expansion of � at the phase transition will not
take into account of the effect of monopoles. Therefore the
2+� expansion with extrapolation �→1 is probably equiva-
lent to the CP�N−1� model in Eq. �3�. However, if we start
with a linear sigma model at 4−� dimension, the 4−� expan-
sion will contain the information of monopoles, and the limit
�→1 is likely converging to the true situation at three di-
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�0.1

0.1

0.2

FIG. 3. �Color online� The RG flow for e2 �green upper line� and
g �red lower line� in Eq. �18� with trial initial value g0=e0

2=1 /5.
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2
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FIG. 4. �Color online� The phase diagram close to the quantum
phase transitions in �a� stacked square and �b� triangular lattices.
The region between the dashed lines in figure a is the monopole
dominated region which should be described by GL theory �Eq.
�7��. The blue lower curve in figure b is a 3D O�8� transition, and
the green upper line is a 3D Ising transition which separates a
low-temperature classical Z2 spin liquid from a high-temperature
featureless disordered phase.
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mensions. Since phase transition is what we are most inter-
ested in, in this work we were focusing on the linear sigma
model in 4−� dimension.

Another manifold which potentially can be realized by
Sp�4� spin system is the “squashed S7.” The squashed S7 has
been studied for over two decades in high-energy theory, as
one of the solutions of the 11-dimensional supergravity field
equation is AdS4�Ssquash

7 .32 The squashed S7 is a seven-
dimensional manifold with the same topology as S7, but dif-
ferent metric and isometry groups. The ordinary S7 has isom-
etry group SO�8�, and the squashed S7 has isometry group
SO�5��SO�3��SO�8�, and the SO�5� and SO�3� commute
with each other. Written as a quotient space, the squashed S7

can be expressed as33

Ssquash
7 = �SO�5� � SO�3�C�/�SO�3�A � SO�3�D� . �20�

Here SO�3�A is a normal subgroup of one of the SO�4� sub-
group of the SO�5� group in the numerator, and the other

normal SO�3� subgroup of this SO�4� is denoted as SO�3�B,
i.e., SO�3�A�SO�3�B�SO�4�. SO�3�D is the diagonal sub-
group of SO�3�B�SO�3�C, i.e., Ji

D=Ji
B+Ji

C, i=1,2 ,3. To re-
alize the squashed S7 GSM, we should start with a system
with global symmetry SO�5��SO�3�. For instance, by tun-
ing the two s-wave scattering lengths, the half-filled Hubbard
model of the Sp�4� fermions can have an extra SU�2� sym-
metry besides the apparent Sp�4� flavor symmetry.14 Also a
Sp�4� spin-liquid theory with fermionic spinons with mo-
mentum space valley degeneracy can have an extra SU�2�
symmetry contributed by the valley degeneracy. So both
cases might be a good starting point for realizing the
squashed S7 manifold. We will leave the discussion of
squashed S7 to future study.
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