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We investigate transport in several translationally invariant spin-1
2 chains in the limit of high temperatures.

We concretely consider spin transport in the anisotropic Heisenberg chain, the pure Heisenberg chain within an
alternating field, and energy transport in an Ising chain which is exposed to a tilted field. Our approach is
essentially based on a connection between the evolution of the variance of an inhomogeneous nonequilibrium
density and the current-autocorrelation function at finite times. Although this relationship is not restricted to the
case of diffusive transport, it allows to extract a quantitative value for the diffusion constant in that case. By
means of numerically exact diagonalization we indeed observe diffusive behavior in the considered spin chains
for a range of model parameters and confirm the diffusion coefficients which were obtained for these systems
from nonequilibrium bath scenarios.
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I. INTRODUCTION

Although transport in low-dimensional quantum systems
has intensively been investigated theoretically in the past
years, there still is an ongoing interest in understanding the
transport phenomena in such systems, including their tem-
perature and length-scale dependence.1–31 Those works have
often addressed a qualitative classification of the occurring
transport types into ballistic or normal diffusive behavior
and, in particular cases, the crucial mechanisms which are
responsible for the emergence of diffusion have been studied.
In this context the role of nonintegrability and quantum
chaos is frequently discussed as an at least necessary
condition.9,10,21,28,30 Significant theoretical attention has been
devoted to spin-1

2 chains,1–23 e.g., to the prominent aniso-
tropic Heisenberg chain �XXZ model�.1–19 Most controver-
sial question appears whether or not the �finite temperature�
transport in the pure Heisenberg chain is ballistic.1–12

Even though there certainly is a large variety of different
methods for the investigation of transport in quantum sys-
tems, we concentrate here on two of the main approaches in
detail which are also most relevant in the context of the
present work. The first approach may be classified as a direct
one since it is rather close to an experimental measurement
setup: within the theory of open quantum systems32 the
model of interest is coupled locally, e.g., at both ends of a
spin chain, to reservoirs of the transported quantity, e.g., at
different temperature or chemical potential.3,13,16,20–22,24,31,33

Due to the coupling to reservoirs, a stationary nonequilib-
rium state eventually results for which all relevant expecta-
tion values such as the current and the spatial-density profile
of the transport quantity can be evaluated. Here, a vanishing
profile corresponds to ballistic behavior, whereas normal dif-
fusive dynamics is associated with a strictly linear profile,
according to Fourier’s law, respectively, Fick’s law, see, e.g.,
Ref. 13. In the latter case a finite conductivity is simply
given by the ratio of the current and the spatial-density gra-
dient of the transported quantity. This conductivity can be
also understood in terms of a diffusion coefficient since
transport is driven by a gradient within the considered model

and not by an external force.34 One may therefore directly
compare with the diffusion constant of a corresponding
closed scenario, where transport is not induced by the cou-
pling to baths but by an initially inhomogeneous nonequilib-
rium density.31,34

In order to simulate the influence of the baths the
Liouville-von Neumann equation for the coherent evolution
of the density matrix is routinely extended by an incoherent
damping term, see, e.g., Ref. 33. The derivation of such a
dynamical equation from a microscopic bath model is highly
nontrivial and involves a combination of various subtle ap-
proximation schemes, e.g., improper approximations may
eventually lead to a mathematically correct but physically
irrelevant quantum master equation �QME�.33 One often in-
tends to derive a proper QME of the Lindblad form35 be-
cause its special structure allows to apply the numerically
efficient method of stochastic unraveling,36,37 e.g., spin-1

2
chains with about 16 sites become numerically tractable.16

However, a recently suggested matrix-product operator an-
satz has been shown to significantly increase this number of
available sites up to several dozens,13 i.e., finite-size effects
are drastically reduced and the extracted conductivity may be
interpreted as a pure bulk property of the model, if it does
not depend crucially on the concrete form and strength of the
bath coupling, of course.31

Another approach for the investigation of transport in
quantum systems is the Green-Kubo formula �KF� which
was originally derived for electrical conductance by the use
of linear-response theory.38,39 In that case the �frequency-
dependent� electrical field is an external force which perturbs
the system and the resulting current of charge through the
system is the response to this external perturbation. The KF
as such gives the �frequency-dependent� conductivity as the
linear-response coefficient in terms of a current-autocorrela-
tion function. The same approach is also used in the context
of gradient-driven transport phenomena, e.g., for transport of
energy or heat. In that case the current is driven by a much
more complicated mechanism,25,27,40–44 especially since it
cannot be treated as a perturbation to the system. Neverthe-
less, simply by the replacement of the electrical current, e.g.,
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by the energy current,40 the KF is used for gradient-driven
transport, too. But a rigorous justification of this replacement
remains still a conceptual problem, see Ref. 25 or the over-
view paper Ref. 41 �and the comprehensive literature which
is cited therein�.

However, the KF is nowadays a standard method for the
investigation of transport in spin chains,1,2,4–8,15,20,23 not least
due to its direct computability, once a finite piece of the
considered system has been exactly diagonalized. As far as
numerics is concerned, exact diagonalization is restricted to
spin-1

2 chains with at most 24 sites. But another difficulty
arises, if the KF is evaluated on the basis of a finite piece:
one often distinguishes between ballistic and normal diffu-
sive transport by the notion of the Drude weight, essentially
the conductivity’s singular contribution at zero frequency,
see the review, Ref. 7, for example. Whenever it is finite, the
long-time behavior is expected to be ballistic, and whenever
it vanishes, the dc conductivity as the zero-frequency limit of
the conductivity’s regular nonsingular part determines the
long-time behavior. Since for any finite system the conduc-
tivity exclusively consists of delta peaks at different frequen-
cies, there apparently are only singular contributions and it
therefore is a difficult question how to extract and extrapo-
late the dc conductivity from a finite system.25 Moreover, the
quantitative comparison of the resulting dc conductivity �due
to a possibly hypothetic external force� with a diffusion con-
stant �from nonequilibrium bath scenarios� is hardly possible
without the detailed knowledge about an Einstein relation
between both quantities.

In the present paper we do not intend to further discuss
the above-mentioned conceptual and methodological prob-
lems which may come along with the KF. Instead we will
present a different but in a sense related approach which
particularly is not concerned with the most of those prob-
lems. To this end we will first introduce a “typical” inhomo-
geneous nonequilibrium density in Sec. II and then connect
the evolution of the variance of this density to a current-
autocorrelation function at finite times.34 Remarkably, in the
special limit of infinitely long times this connection will be
shown to yield a generalized Einstein relation which relates
the diffusion constant to the dc conductivity, i.e., as evalu-
ated by the KF. Moreover, we will demonstrate that the great
advantage of the connection is given by its direct applicabil-
ity at finite times and for finite systems as well. In this con-
text we will suggest another concept for the analysis of data
which is available from current-autocorrelation functions.

By the use of the suggested concept we will investigate in
Secs. III–V transport in several translationally invariant
spin-1

2 chains in the special limit of high temperatures. We
will concretely consider spin transport in the anisotropic
Heisenberg chain, the pure Heisenberg chain within an alter-
nating field, and energy transport in an Ising chain which is
exposed to a tilted field. By means of numerically exact di-
agonalization we indeed observe strong indications for diffu-
sive behavior in the considered spin chains for a range of
model parameters and, what is more, we are able to quanti-
tatively confirm the diffusion constants which were found for
these systems from nonequilibrium bath scenarios in Refs.
13, 16, 21, and 22. Finally, we will close in Sec. VI with a
summary and a conclusion.

II. CONNECTION BETWEEN VARIANCE AND CURRENT-
AUTOCORRELATION FUNCTION

In this section we are going to introduce our approach to
density-driven transport in translationally invariant quantum
systems. To this end Sec. II A first presents the pertinent
definitions and exclusively describes the general theory
which eventually yields the basic Eq. �13� for the time-
dependent diffusion constant D�t�. In the following Sec. II B
we then motivate to evaluate D�t� for finite times t and par-
ticularly illustrate the concept which will be used for the
concrete spin chains in the subsequent sections. Thus, the
reader which is not primarily interested in the theoretical
details may directly continue with Sec. II B.

A. Diffusion constant

In the present paper we will investigate translationally
invariant, one-dimensional quantum spin systems which are

described by a respective Hamiltonian Ĥ. In those quantum
systems we will consider an overall conserved transport

quantity X̂, i.e., �Ĥ , X̂�=0. This transport quantity and the
Hamiltonian as well are decomposable into N formally iden-

tical addends x̂�, respectively, ĥ� corresponding to different
positions, i.e.,

X̂ = �
�=1

N

x̂�, Ĥ = �
�=1

N

ĥ�. �1�

Thus, x̂� is a local density of the transported quantity X̂. Note

that the x̂� may be defined on the positions of the ĥ�, in
between, or both. The above decomposition is further done
in such a way that Heisenberg’s equation of motion for the
local densities x̂� reads

d

dt
x̂� = ı�Ĥ, x̂�� = ı�ĥ�−, x̂��

� ĵ��−1�

+ ı�ĥ�+, x̂��

�− ĵ�

, �2�

where ĥ�− and ĥ�+ represent those local addends of the

Hamiltonian Ĥ which are located directly on the left-hand
side, respectively, right-hand side of x̂�. This apparently im-
plies a kind of locality. However, such a description can
always be at least approximately enforced, if only interac-
tions are reasonably short ranged. For all quantum systems in
the following Secs. III–V the description will be even exact
because interactions between nearest neighbors are taken
into account solely. As routinely done, the comparison with a
continuity equation suggests the definition of a local current
ĵ� according to the scheme in Eq. �2�, see Ref. 25, for ex-
ample. This definition is consistent, if

ı�ĥ�+, x̂��

− ĵ�

+ ı�ĥ�� �−, x̂��+1��

ĵ�

= 0,+1 �3�

where the latter holds, if X̂ is globally preserved. The total

current Ĵ is given by

ROBIN STEINIGEWEG AND JOCHEN GEMMER PHYSICAL REVIEW B 80, 184402 �2009�

184402-2



Ĵ = �
�=1

N

ĵ�. �4�

Once the above decomposition has been established, we can
define a certain class of initial states ��0� which corresponds
to some inhomogeneous, nonequilibrium density. To those
ends let

d̂� � x̂� − �x̂�� �5�

denote the deviation of the local densities x̂� from their equi-
librium average �x̂��=Tr	x̂��eq
, where �eq is any stationary

equilibrium state, i.e., �Ĥ ,�eq�=0. Then the initial state ��0�
reads

��0� � �eq + �
�=1

N
��

�2 �eq
1/2d̂��eq

1/2 �6�

with some realization for the numbers ��. The factor �2 is
concretely given by

�2 �
1

N
��X̂2� − �X̂�2� �7�

and therefore quantifies the equilibrium fluctuations of the

transported quantity X̂.
For the special initial state ��0� we now consider the ac-

tual expectation values

d��t� � Tr	d̂��t���0�
 . �8�

It follows that

�
�=1

N

d��t� = �
�=1

N

�� � � , �9�

i.e., the sum � of the numbers �� in Eq. �6� determines the
sum of the actual expectation values d��t�.

Of particular interest is the spatial variance W2�t� of the
d��t�. It is given by

W2�t� � �
�=1

N
d��t�

�
�2 − ��

�=1

N
d��t�

�
��2

. �10�

If the dynamics of the d��t� was indeed generated by a dis-
crete diffusion equation of the form

d

dt
d��t� = D�t��d�−1�t� − 2d��t� + d�+1�t�� , �11�

then the evolution of this variance would read

d

dt
W2�t� = 2D�t� , �12�

as long as the d��t� vanish at the ends of a chain �open
boundary conditions� or are reasonably concentrated at a sec-
tor of a ring �closed boundary conditions�. Even though Eq.
�11� implies Eq. �12�, the inverse direction generally is not
true, of course.

However, in Ref. 29 a connection of the form �12� has
recently been found directly from Eq. �10�, i.e., by first ap-

plying Heisenberg’s equation of motion to Eq. �10� and sub-
sequently manipulating the resulting equations. The time-
dependent diffusion constant D�t� reads

D�t� =
1

N�2
0

t

dt�C�t�� �13�

and is essentially given in terms of a time integral over the
current-autocorrelation function

C�t� � Tr	Ĵ�t��eq
1/2Ĵ�eq

1/2
 , �14�

i.e., C�t�= �Ĵ�t�Ĵ� in the limit of high temperatures �T→��.
This limit will be considered throughout this work.

Strictly speaking, the above diffusion constant D�t� is re-
stricted to the special initial state ��0� in Eq. �6�, of course.
Nevertheless, due to its concrete form, this initial state rep-
resents an ensemble average w.r.t. to typicality45–47 or, more
precisely, the dynamical typicality of quantum expectation
values.48 Thus, the overwhelming majority of all possible
initial states with the same d��0� as ��0� is also expected to
approximately yield the d��t� corresponding to ��0�, if the
dimension of the relevant Hilbert space is sufficiently large,
see especially Ref. 48. The latter largeness is certainly ful-
filled for all practical purposes. Or, in other words, the con-
crete curves for d��t� and thus for W2�t� only slightly “fluc-
tuate” around the curve of the ensemble average. In fact, for
the single-particle quantum system in Refs. 25, 26, 29, and
49 it has been demonstrated that Eqs. �12�–�14� correctly
describe the dynamics for all pure initial states ���0�� which
are not created explicitly in order to violate these equations,
see Ref. 25 and 49.

Eventually, let us relate the nonperturbative result for the
diffusion constant D�t� to the standard result of linear-
response theory for the dc conductivity �dc.

38,39 In the limit
of high temperatures this conductivity may be written as

�dc =
	

N


0

�

dt�C�t�� , �15�

where 	 is the inverse temperature. The comparison of Eq.
�15� with Eq. �13� yields

D�t → �� =
�dc

	�2 , �16�

i.e., it leads to an Einstein relation. It is well known that the
integral in Eq. �15� will diverge, whenever C�
�, the Fourier
transform of C�t�, has a finite contribution at 
=0, see Ref.
7, for example. As routinely done, we may hence define a
Drude weight D, e.g.,

D � lim
t→�

D�t�
t

=
C�
 = 0�

N�2 . �17�

B. Finite time and length scales

If the total current is strictly preserved, i.e., �Ĥ , Ĵ�=0, the
diffusion constant D�t� is completely governed by the Drude
weight D, i.e., D�t�=Dt for all t. Consequently, transport is
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purely ballistic at each time, respectively, length scale. Even
if the total current does not represent a strictly conserved
quantity, a nonzero Drude weight directly implies that the
diffusion constant D�t� is still approximately given by the
straight line Dt in the limit t→�. However, at some finite
time or length scale the diffusion constant D�t� may never-
theless appear to be almost constant, i.e., D�t��D, as ex-
pected for diffusive behavior. Such a behavior requires that
the Drude weight D is not relevantly large �on the corre-
sponding scale�, the finiteness of D by itself is not crucial in
this context. In fact, it is well known that the classification of
transport types for a given quantum system generally is a
concept which crucially depends on the considered time or
length scale, see Refs. 25, 26, and 29, for example.

The above line of reasoning becomes also relevant in
those situations where some model parameter � induces a
transition from a finite toward a zero Drude weight D, e.g.,
where D vanishes above some critical value of �, say �C.
Then at this critical value �C a sharp transition from ballistic
toward nonballistic transport is to be expected at the infinite
time scale. However, such a transition does not necessarily
appear at some finite time, respectively, length scale. Even if
there was a transition, a sharp one would require at the criti-
cal value �C a sudden jump of the Drude weight D from a
finite and relevantly large number �on the corresponding
scale� to zero.

We hence do not concentrate merely on Drude weights
and their finiteness, although those are also discussed, of
course. Instead of that we focus on the diffusion constant
D�t�, as defined in Eq. �13�, at finite times and for finite
systems as well. According to Eq. �13�, we can evaluate the
underlying current-autocorrelation function directly in the
time domain, i.e., C�t�, instead of the frequency domain, i.e.,
C�
�. This way we are not concerned with the problems
which may arise due to the fact that C�
� is a highly nons-
mooth function for a finite system. We particularly exploit
that the D�t� curve does not change at sufficiently short-time
scales any more, when the size of a system becomes large
enough. Thus, at those short-time scales, interesting signa-
tures of the infinitely large system may already be extract-
able for a system with an accessible size. In the following
Secs. III–V this concept will be demonstrated in full detail.

III. ISING CHAIN WITHIN A TILTED FIELD

In the present section we will study a first example of a
translationally invariant spin system. This system is an Ising
chain which is exposed to a, say, tilted magnetic field B.
Concretely, its Hamiltonian reads ��=1�,13,21,22

Ĥ = �
�=1

N

ĥ�,

ĥ� =
J

4
�̂�

z �̂�+1
z +

Bz

4
��̂�

z + �̂�+1
z � +

Bx

4
��̂�

x + �̂�+1
x � , �18�

where Bz and Bx denote the z component, respectively, x
component of the total vector B= �Bx ,0 ,Bz�. Here, one might
think of some magnetic field which originally was in line

with the z direction and has been rotated about the y axis
with the angle =arctan�Bx /Bz�.

In Hamiltonian �18� the operators �̂�
i �i=x ,y ,z� are the

standard Pauli matrices �corresponding to site ��; J denotes
the coupling strength; and N represents the total number of
sites. Throughout this work we use periodic boundary con-
ditions, i.e., N+1�1.

Due to the presence of the tilted magnetic field, the only
trivial symmetries are translational invariance and mirror
symmetry21 such that the whole Hilbert space is decompos-
able into 2N decoupled subspaces with similar dimensions.
For the present model the component of the total spin

Ŝ=1 /2��=1
N �̂� in B direction �and any other direction� is

nonpreserved. Therefore magnetization �or spin� is not a suit-
able transport quantity here.

However, this model is appropriate to investigate the
transport of energy, i.e., it allows to study the density dynam-

ics of the local quantities ĥ�, see Eq. �18�. Note that these
quantities contain contributions from both the Ising interac-
tion and the Zeeman energy. The respective energy current

ĴE is given by13,21,22

ĴE = �
�=1

N

ĵ�
E ,

ĵ�
E = ı�ĥ�, ĥ�+1� = −

BxJ

8
��̂�

z − �̂�+2
z ��̂�+1

y �19�

and the factor �2, as defined in Eq. �7�, reads

�2 =
1

16
�J2 + 2Bz

2 + 2Bx
2� . �20�

If the component Bz is identical to zero �=90°�, the energy
current, Eq. �19�, is strictly preserved. Furthermore, Hamil-
tonian �18� is well known to be integrable. But it can become
quantum chaotic for Bz�0, e.g., for the special set of param-
eters J=−8, Bz=4, Bx=6.75��59°�.13,21,22 Recently, for ex-
actly this parameter set, a strong evidence for diffusive be-
havior has been found from nonequilibrium bath
scenarios.13,21,22

Figure 1 �top� shows the diffusion constant D�t�, as given
by Eq. �13�, for the above set of parameters. We observe that
D�t� increases within the correlation time of the underlying
current-autocorrelation function but, already on this time
scale, essentially the Drude weight governs the overall shape
of the curve, at least for small lengths N�8. But when N is
increased, the Drude weight D rapidly becomes smaller, i.e.,
D decreases faster than a power law, see Fig. 2 �squares�. In
particular, there is no need to assume a finite and relevant
value for D in the thermodynamic limit N→�. Already for
N�16 the Drude weight D is such small that the tendency of
the diffusion constant D�t� to gradually develop toward a
horizontal line becomes visible. Nevertheless, only from
those lengths which are available from numerically exact di-
agonalization a definite conclusion may still be vague, par-
ticularly conclusions about the time after which D�t� possi-
bly remains constant and about the constant value D, too.
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Fortunately, additional data is available in literature: In
Ref. 21 the current-autocorrelation function has been evalu-
ated also by the use of an approximative numerical integra-
tor. Based on this data the time evolution of the diffusion

constant D�t� can be extracted51 for the length N=24, see
Fig. 1 �top inset�. And in fact, for times which are larger than
t�10 we observe that D�t� takes on a constant value
D�10.5. The latter value further is in excellent agreement
with the conductivities Dbath�10.3 from Ref. 21 and
Dbath=11 from Ref. 13 �Ref. 50�, as obtained therein for the
same set of parameters from nonequilibrium bath scenarios.
�In these works Dbath is denoted by �.�

When the z component is decreased from Bz�4 down to
0, diffusive behavior eventually breaks down toward ballistic
transport, because the current becomes strictly preserved for
Bz=0. Unfortunately, it is hardly possible to give a critical
value for this transition, simply due to the limited system
sizes which are accessible by the use of exact diagonaliza-
tion. However, such a value may be very unsharp for a con-
tinuous transition, i.e., if the Drude weight changes smoothly
and does not jump suddenly from zero �or a finite, irrel-
evantly small number� to a finite, relevantly large number, cf.
Sec. II.

Contrary, when the z component is increased from
Bz�4, the indications of diffusive behavior become much
more pronounced for the accessible system sizes, cf. Fig. 1
�bottom�. Respective diffusion constants may therefore be
suggested for this parameter regime.

IV. ANISOTROPIC HEISENBERG CHAIN

In this section we will investigate transport in the aniso-
tropic Heisenberg chain �or XXZ model� as another and cer-
tainly more interesting example of a translationally invariant
spin system. It is described by a Hamiltonian of the form
��=1�,6,7,13,16

Ĥ = �
�=1

N

ĥ�,

ĥ� =
J

4
��̂�

x �̂�+1
x + �̂�

y �̂�+1
y + ��̂�

z �̂�+1
z � �21�

with the anisotropy parameter �. Independent from the con-
crete choice of �, Hamiltonian �21� is integrable in terms of
the Bethe Ansatz, see Ref. 1, for example.

In the presence of an external �uniform� magnetic field B
one may add to Hamiltonian �21� a Zeeman term of the form

ĤB=BŜz. However, because the following investigation �at
infinite temperature� will not depend on the concrete choice
of B, we set B=0 for simplicity.

As well known, Hamiltonian �21� is invariant under rota-

tions about the z axis, i.e., it commutates with Ŝz. As a con-

sequence Ĥ can be diagonalized within decoupled subspaces
with dimensions N over M +N /2, where M is the quantum

number w.r.t. Ŝz. Moreover, due to the translational invari-
ance as well as the mirror symmetry of Eq. �21�, the problem
can be reduced further by a factor 2N.

Since Ŝz represents a strictly conserved quantity, this
model allows to investigate the density dynamics of the local
quantities �̂� /2, i.e., magnetization transport �or spin trans-
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FIG. 1. The diffusion constant D�t�, as given by Eq. �13�, for
energy transport in the Ising chain within a tilted field in the high-
temperature limit �T=��. Insets zoom in D�t� at short t. Parameters:
J=−8, Bx=6.75, Bz=4 �top� as well as Bz=6 �bottom�. All curves
are evaluated numerically �exact diagonalization� for chain lengths
N=8,10, . . . ,16 �arrows�. The circles �top inset� represent addi-
tional data for N=24, extracted from Ref. 21 and computed by the
use of approximative numerical integrators. The cross �top inset�
indicates the conductivity Dbath=11 from Ref. 13 �Ref. 50�, as ob-
tained from a nonequilibrium bath scenario for the same set of
parameters.
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port�. The respective magnetization current ĴS is given
by6,7,13,16

ĴS = �
�=1

N

ĵ�
S ,

ĵ�
S = ı�1

2
�̂�

z , ĥ�� =
J

4
��̂�

x �̂�+1
y − �̂�

y �̂�+1
x � �22�

and the factor �2, as defined in Eq. �7�, takes on the fixed
value 1/4.

Similarly, an energy current can be also introduced via the

relation ĵ�
E = ı�ĥ� , ĥ�+1�. But, since its commutator with

Hamiltonian �21� vanishes exactly, this current is strictly
conserved such that energy transport is purely ballistic at
each time scale and length scale �and for all finite tempera-
tures, see Ref. 19�.

Except for the special case of �=0 �XY model� the mag-
netization current is nonpreserved. On that account it could
be, in principle, possible to find diffusive behavior for non-
zero anisotropies. Nevertheless, in the literature there is
strong evidence that such a behavior is restricted to the re-
gime ��1 only,1,2,4–8,11,13,14,16 most promising appear those
� which are close to 1.5.13,14,16 Those expectations are also
due to results on the Drude weight D,1,4,8 e.g., Bethe Ansatz
approaches suggest that D is finite for the regime ��1 and
zero for the regime ��1.1,8 Still controversial is the special
case of �=1, where D may be already zero1 or not.8

For completeness, we also show numerical results for the
Drude weight in Fig. 5, although respective data can be
found already in Ref. 4, also obtained by the use of exact
diagonalization and additionally extrapolated to N→�. This
data can be transferred directly to the present investigation, if
the concrete values for the Drude weight are multiplied by a
factor 1 / ��2��=4 /�. Further results on Drude weights from
exact diagonalization can be found in, e.g., Refs. 2, 5, and 6.

A. Anisotropies ��1

Figure 3 shows the diffusion constant D�t�, as defined in
Eq. �13�, for the anisotropy parameter �=0.5. For N=8 the
Drude weight D determines the overall shape of the D�t�
curve, i.e., on all time scales D�t� is very close to the straight
line Dt. There is only an insignificant deviation from this line
at short-time scales below the correlation time of the under-
lying current-autocorrelation function, see Fig. 3 �inset�. For
N=20, i.e., when the length of the chain is more than
doubled, the D�t� curve remains practically the same. On that
account it appears to be justified to assume a similar curve in
the thermodynamic limit N→�. This assumption is consis-
tent with the extrapolation of the Drude weight in Ref. 4, see
Fig. 5 �squares�, too. We may therefore suggest purely bal-
listic behavior for the case �=0.5.

Note that Sirker et al. have recently presented results in
Ref. 12 which point toward a coexistence of diffusive and
ballistic dynamics, where the ballistic distribution is small
due to a small Drude weight. Even though we reproduce that
the Drude weight is large for N�20 and does not depend
significantly on N, we cannot exclude the possibility that the

Drude weight eventually becomes small for N�20, of
course.

B. Anisotropies ��1

In Fig. 4 �middle� we display the diffusion constant D�t�
for the anisotropy �=1.5. We observe that D�t� increases at
short-time scales, i.e., within the correlation time of the un-
derlying current-autocorrelation function C�t�, and then re-
mains approximately constant for an interval at intermediate
time scales, i.e., a “plateau” is formed at those times. Finally,
a renewed increase takes place on long-time scales which is
completely governed by the Drude weight or by the zero-
frequency distribution of C�
�. Note that the plateau cannot
be seen, if zero- and finite-frequency parts are treated sepa-
rately from each other. It is a feature which arises from a
combination of both contributions.

The above plateau remarkably is already visible for
N=8. Moreover, its “height” does not change with N, while
its “width” seems to increase gradually, see Fig. 4 �middle
inset�. The latter increase particularly appears to be plausible
because the Drude weight is commonly expected to vanish in
the thermodynamic limit N→�, as already outlined above.
We hence make the educated guess that the plateau of D�t�
will be continued to, say, arbitrary long times, when only N
becomes sufficiently large, e.g., N→�. Then the height
D /J�0.60 directly determines the concrete value of the dif-
fusion constant, of course. And indeed, the latter value for D
also is in excellent agreement with the conductivity
Dbath /J=0.58 in Ref. 13 �Ref. 50�, as found therein from a
nonequilibrium bath scenario. Although a respective figure is
not shown for �=1.6, such an agreement is additionally ob-
tained with the results in Ref. 16, namely, D /J�0.55 and
Dbath /J=0.585�0.020. �In these works Dbath is denoted by
�.� Those quantitative agreements support the correctness of
our guess and the emergence of diffusive transport appears to
be verified for those � which are close to 1.5.

Independent from the above arguments regarding the
long-time extrapolation for N→�, we should mention that
for N=20 the D�t� curves have already converged for those
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FIG. 3. The diffusion constant D�t�, as given by Eq. �13�, for
magnetization transport �spin transport� in the anisotropic Heisen-
berg chain �XXZ model� in the high-temperature limit �T=��. In-
sets zoom in D�t� at short t. The curves are evaluated numerically
�by the use of exact diagonalization� for the anisotropy parameter
�=0.5 and for chain lengths N=8 and 20.
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times which are shorter than t�8 /J, see Fig. 4 �middle in-
set�. Due to Eq. �12�, this time corresponds to a length scale
W on the order of about three sites. Thus, at least for
W�3 the dynamics should be known.

For larger anisotropy parameters � we find a similar situ-
ation: again there is a clearly developing plateau at interme-
diate time scales, see Fig. 4 �bottom� for the case �=2.0. For
the accessible system sizes, however, the final plateau height
D does not seem to be reached yet, i.e., D cannot be read off
with the same accuracy, as done before for ��1.5. For
comparison we hence indicate in Fig. 4 �bottom inset� the
quantity �dc / �	�2J�=0.56 with the dc conductivity
�dc / �	J�=0.14 according to Ref. 15, obtained therein from
an analysis on the basis of the standard Green-Kubo formula.
The good agreement with this result is noticeable.

C. Anisotropy �=1

As already mentioned above, it is still controversial,
whether or not the Drude weight is finite in the limit
N→�, when � becomes exactly 1.0. However, let us for the
moment assume that the Drude weight is indeed finite in that
limit. Then at the infinite time scale the diffusion constant
D�t� is completely governed by this nonzero Drude weight
and increases linearly. At finite time scales, however, D�t�
may still appear to be almost constant and feature a plateau
like the one for the case �=1.5. In principle, such a plateau
can be very wide, if only its height is large in comparison
with the Drude weight D such that the finiteness of D is by
itself not crucial in this context, cf. Sec. II.

We hence show in Fig. 4 �top� the diffusion constant D�t�
for the special case �=1. The initial short-time increase di-
rectly passes into the final long-time increase, i.e., in be-
tween a horizontal line is not observable for the accessible
system sizes. Nevertheless, we cannot exclude the possibility
that a plateau with a height on the order of D /J�1.0 will
eventually develop, when the system size is further in-
creased, cf. Fig. 4 �top inset�. We may thus compare this
value for D with the extrapolated Drude weight
D /J2�0.025 in Ref. 4 �Ref. 52�, for example. �The latter
extrapolated D is about 1/4 of the long-time slope for
N=20, cf. Figs. 4 and 5.� By the use of the rough estimation
D�t2− t1� /D�1 we directly obtain that an interval
with D�t��D cannot be wider than some time scale
�t2− t1��40 /J, respectively, length scale �W2−W1��9. Thus,
if the above extrapolation for the Drude weight was indeed
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FIG. 4. The diffusion constant D�t�, as given by Eq. �13�, for
magnetization transport �spin transport� in the anisotropic Heisen-
berg chain �XXZ model� in the high-temperature limit �T=��. In-
sets zoom in D�t� at short t. The curves are evaluated numerically
�by the use of exact diagonalization� for chain lengths
N=8,10, . . . ,20 �arrows� and for anisotropy parameters �=1.0
�top�, 1.5 �middle�, as well as 2.0 �bottom�. One cross �middle inset�
indicates the conductivity Dbath /J=0.58 in Ref. 13 �Ref. 50�, as
found therein from a nonequilibrium bath scenario. Another cross
�bottom inset� represents the value �dc / �	�2J�=0.56 with the dc
conductivity �dc / �	J�=0.14 according to Ref. 15.
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correct, diffusion would be restricted to very few sites only.
Contrary, if the Drude weight was zero �or a finite, irrel-
evantly small number�, diffusion could occur for a possible
arbitrary number of sites, of course.

V. HEISENBERG CHAIN WITHIN AN ALTERNATING
FIELD

In this section we are going to concentrate exclusively on
the pure Heisenberg chain, i.e., �=1, and investigate another
modification of Hamiltonian �21� which may lead to diffu-
sive transport. Such a modification certainly is the incorpo-
ration of disorder, i.e., coupling constants or field strengths
which vary randomly from one site to another.9,10,23,53,54 But
the investigation of disorder is numerically rather challeng-
ing and conceptually more subtle due to the localization phe-
nomenon, even for a noninteracting single-particle
system.29,55 Instead we will consider another scenario with-
out disorder, where the Heisenberg chain is exposed to a
strictly alternating field. This scenario is concretely described
by Hamiltonian �21� and an additional Zeeman term of the
form13,16

ĤB = �
�=1

N
B + �− 1���B

2
�̂�

z , �23�

where �B is the deviation from the mean B. As already done
before, we may set B=0 for simplicity.

The presence of the Zeeman term, Eq. �23�, does not af-

fect the commutation of Ĥ and Ŝz, i.e., the Hamiltonian can
be diagonalized within decoupled M subspaces, too. As long
as N is even, there also is translational invariance �w.r.t two
sites� such that the problem can be reduced further by a
factor N /2. �There is no mirror symmetry for even N.�

Since Ŝz still represents a strictly conserved quantity, the
present model allows to investigate the transport of magne-
tization w.r.t. the field parameter �B. Note that the respective

current ĴS and factor �2 are identical to those in Sec. IV.
When �B is increased from zero and becomes comparative
with the coupling strength J, the model undergoes a transi-
tion to quantum chaos,13 i.e., one may assume that the latter
transition already is a first pointer toward the onset of diffu-
sion. Even though it is entirely independent from those as-
sumptions, we start our investigation with �B /J=0.5.

For �B /J=0.5 the curve for the diffusion constant D�t�
has changed from Fig. 4 �top� into Fig. 6 �top�. In particular,
the initial short-time increase does not directly pass into the
final long-time increase any more. Instead there is an oscil-
lation in between such that, at the first view, the situation
appears to be much more complicated than a simple horizon-
tal line. However, for N=18 the D�t� curve has already con-
verged until the end of this oscillation, see Fig. 6 �top inset�.
Exactly at this position the curve seems to gradually develop
a plateau with a height on the order of D�0.42J. The pla-
teau becomes visible since the Drude weight rapidly de-
creases with N, i.e., it is about one order of magnitude
smaller for N=18 than for N=8, cf. Fig. 7 �circles�. Note that
the Drude weight does not fulfill a simple 1 /N dependence

and decays faster than a power law. Thus, there is no need to
suppose a finite and relevant Drude weight in the limit
N→�.

Remarkably, the above suggested D for �B /J=0.5 agrees
well with the conductivity Dbath /�=0.323�0.010 from Ref.
16, as found therein from a nonequilibrium bath scenario.
The deviation from this conductivity is on the order of 30%
solely. However, the small deviation may be explained as
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follows: in Ref. 16 the conductivity is evaluated by the use
of the Lindblad equation, i.e., it is extracted from the steady
state of a finite chain which is at both ends weakly coupled
to baths at different temperatures. This weak bath coupling is
essential for the validity of the Lindblad approach. But, for a
finite chain, a too weak bath coupling may also yield a value
Dbath which is lower than the correct value, say, D, see Ref.
31. Since in Ref. 16 the independence of the conductivity
from the bath-coupling strength is not analyzed in detail, we
suppose that the above deviation results from a slightly too
weak coupling of chain and reservoirs.

For larger field parameters �B suggestions are less reli-
able, since the initial oscillations of the D�t� curves become
much more pronounced, as already visible in Fig. 6 �bottom�.
Even though there are oscillations, D�t� still remains strictly
positive, i.e., those oscillations probably are no pointer to-
ward insulating behavior.

Note that definite conclusions cannot be made for the pa-
rameter regime �B /J�0.5, since the curves for D�t� con-
tinuously change from Fig. 4 �top� into Fig. 6 �top�, i.e., one
basically is concerned with the problem that the Drude
weight governs the overall shape of the curve, at least for
accessible system sizes.

VI. SUMMARY AND CONCLUSION

In the present paper we have investigated transport in sev-
eral translationally invariant spin-1

2 chains in the special limit
of high temperatures. We have concretely considered spin
transport in the anisotropic Heisenberg chain, in the pure
Heisenberg chain within an alternating field, and energy
transport in an Ising chain which is exposed to a tilted field.

To this end we have first reviewed on a recently derived
connection between the evolution of the variance of some
“typical” inhomogeneous nonequilibrium density and the
current-autocorrelation function at finite times.34 In the limit
of infinitely long times this connection was shown to yield a
generalized Einstein relation which relates the diffusion con-
stant �in the absence of any external force� to the dc conduc-
tivity �as the linear-response coefficient in the presence of an
external force, i.e., as evaluated from the standard Green-
Kubo formula38,39�. However, we have additionally demon-
strated that the great advantage of the above connection is
given by its direct applicability at finite times and for finite
systems, e.g., at short times interesting signatures of an infi-
nitely large system may be extractable for a system with an
accessible size.

By means of numerically exact diagonalization we have
indeed observed strong indications for diffusive behavior in
the considered spin chains for a range of model parameters.
Moreover, the suggested diffusion constants have been found
to be in quantitative agreement with recent results on diffu-
sion coefficients which were obtained for the same spin
chains from numerically involved investigations of nonequi-
librium bath scenarios in Refs. 13, 16, 21, and 22.

Amongst all those and our findings at high temperatures
the emergence of diffusive transport of magnetization ap-
pears to be verified in the anisotropic Heisenberg chain with
the anisotropy parameter �=1.5,13,16 despite the integrability
of the model. It is known that the onset of quantum chaos is
not a sufficient condition for diffusion9,10 but the latter result
suggests also that nonintegrability is not necessary at all.

Unfortunately, it is still an open question whether spin
transport in the pure Heisenberg chain is diffusive or ballis-
tic. Simply by the use of numerically exact diagonalization
we were not able to reach those system sizes which are re-
quired for any definite conclusion on that question.

Therefore the next step certainly is the application of ap-
proximate methods in order to obtain the current-
autocorrelation function at finite times, either numerical
ones, e.g., Suzuki-Trotter decompositions,56,57 or analytical
ones, e.g., projection operator techniques29,32,58,59 or moment
methods.17,18 Approximative methods will also be in indis-
pensable, when the investigation is extended from one-
dimensional spin chains to, e.g., more-dimensional spin lat-
tices.

Apart from the above methodic details, a physically inter-
esting question is the dependence of transport on tempera-
ture, of course. Since the connection between the evolution
of the variance and the current-autocorrelation function is
not restricted to infinite temperature, further investigations
may be done in this direction, too. However, we expect that
for low temperatures the convergence of the diffusion con-
stant at finite times is much slower, when the system size is
increased. Thus, for low temperatures conclusions on the ba-
sis of a finite system may be less reliable.
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