
Collective dynamics in a disparate mass molten alloy Li4Tl: Analysis within the approach of
generalized collective modes

Taras Bryk1,2 and J.-F. Wax3

1Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
2Institute of Applied Mathematics and Fundamental Sciences, National Polytechnic University of Lviv, UA-79013 Lviv, Ukraine
3Laboratoire de Physique des Milieux Denses, Université Paul Verlaine Metz, 1 Boulevard Arago, 57078 Metz Cedex 3, France

�Received 12 June 2009; revised manuscript received 2 October 2009; published 24 November 2009�

We report a molecular dynamics �MD� study of collective dynamics in molten Li4Tl alloy, which was
studied experimentally by inelastic neutron-scattering experiments and is supposed to have “fast sound” exci-
tations because of a large ratio of components masses. Time-correlation functions obtained in MD simulations
are analyzed by the generalized collective modes approach, that enables to obtain dispersion and damping of
the different collective modes, and to estimate their contributions to the time-correlation functions and their
corresponding dynamic-structure factors. We show, that there exists a transition in the contributions from the
high- and low-frequency branches of collective excitations to the total dynamic-structure factor for wave
numbers k around 0.4 Å−1. Only the low-frequency hydrodynamic acoustic modes without any fast sound
define the Brillouin peak in the long-wavelength range, while the high-frequency modes mainly contribute to
the side peak of the total dynamic-structure factor for k�0.4 Å−1.
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I. INTRODUCTION

Theoretical studies of collective dynamics in liquid alloys
with disparate masses are of great interest because of the
longstanding issue of the existence of “fast sound” excita-
tions. The existence of such excitations was suggested in
1986 �Ref. 1� on the basis of molecular dynamics �MD�
simulations of molten Li4Pb alloy with 250 particles. The
calculated partial dynamic-structure factor SLiLi�k ,��, where
k and � are the wave number and frequency, respectively,
revealed a high-frequency side peak down to the smallest
accessible wave number. This peak was interpreted as a col-
lective excitation supposedly propagating via the light com-
ponent of the molten alloy. Because of a rather small simu-
lated system size, there was no answer to how the dispersion
of these specific collective modes would behave in the
k→0 limit. Later on, a similar behavior of the high-
frequency collective modes was observed in several gas mix-
tures, namely, He-Xe,2 He-Ne,3 and He-Ar.4 Fast sound be-
came a widely used name for exotic collective excitations
whose phase speed several times exceeds the hydrodynamic
speed of sound, although there were still no clue to what is
really the long-wavelength asymptote of the fast sound dis-
persion.

Inelastic neutron-scattering �INS� experiments conducted
in 1994 on molten Li4Pb and Li4Tl �Ref. 5� obtained the first
experimental evidence of the existence of collective modes
with a phase speed much higher than the hydrodynamic
speed of sound in liquid metallic alloys. The lowest wave
numbers accessible in these INS experiments was k
�10 nm−1. However, the issue of the long-wavelength be-
havior of the high-frequency branch remained open and was
formulated as follows: does the fast sound merge with the
hydrodynamic sound mode or does it disappear at approach-
ing the hydrodynamic region?

In 1997, new accurate INS experiments were performed
on molten Li4Pb at 1075 K,6 which supported previous re-

sults about the existence of high-frequency excitations with a
phase speed �4500 m /s, while the hydrodynamic speed of
sound, cs, is only �2100 m /s. However, in that report, the
authors associated the observed high-frequency modes with
localized atomic motions of particles of different species
with opposite phases and not with the propagation of acous-
tic modes. But, a few months later, the same group presented
results of numerical analysis of the peak positions of partial
current spectral functions obtained from MD-derived time-
correlation functions.7 Contrary to their former hypothesis,
these results showed two branches of collective excitations
merging for k�0.111 Å−1 into the hydrodynamic linear dis-
persion law, �=csk.

Very similar results had been obtained a few years before
by the same methodology in the case of a gas mixture,
He0.8Ne0.2.

8 It had been observed that both low- and high-
frequency branches merged into a linear dispersion for wave
numbers k�0.07 Å−1. At this point, one has to realize that
the estimation of the dispersion of two branches of collective
excitations �i�k� , i=1,2 in binary liquids from side peak
positions of partial dynamic-structure factors, Sii�k ,��, or of
spectral functions of partial longitudinal currents, Cii

L�k ,�� is
an intuitive extension of the methodology widely used in
pure fluids. Such a numerical approach makes only sense if
cross-correlations between species do not exist or are very
weak. This is not the case in the long-wavelength range,
where the cross-correlations between partial densities are
quite strong, especially in liquid alloys with disparate
masses. In 2000, considering the contributions from low- and
high-frequency branches to the spectral functions of partial
transverse current, it was clearly shown9 that partial spectral
functions cannot be used to correctly estimate the dispersion
of both branches in the long-wavelength range.

To date, there are mainly two different interpretations of
fast sound dispersion in the long-wavelength limit. The first
one follows from the purely numerical analysis of partial
spectral functions and states that both the low- and high-
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frequency branches merge into a single hydrodynamic acous-
tic branch below some small wave number. The second in-
terpretation of the fast sound is based on an analytical
theory,10 which states that the high-frequency branch corre-
sponds to nonhydrodynamic opticlike excitations with contri-
bution to the dynamic-structure factors vanishing in the long-
wavelength range. Indeed, when performing a purely
numerical analysis of side peak positions of Sij�k ,��, this
vanishing contribution can yield an effect of rapidly decay-
ing dispersion law of high-frequency excitations towards the
long-wavelength limit. The specific feature of all nonhydro-
dynamic collective processes �such as structural relaxations,
opticlike modes, heat waves, etc.� is their vanishing contri-
butions to all dynamic-structure factors in the long-
wavelength region. In the case of Li4Pb,11,12 it was shown
that the range of wave numbers where one can definitely say
that the high- and low-frequency branches correspond to the
optic and acoustic collective excitations is very narrow for
liquid alloys with disparate masses. For larger wave num-
bers, the branches reflect “partial” dynamics of light and
heavy subsystems with comparable damping. The necessary
conditions for the existence of longitudinal10 and transverse9

opticlike modes in binary liquids explain why the high-
frequency branch does not exist in the long-wavelength re-
gion in the cases of gaseous mixtures such as He-Ne and
He-Ar. Therefore, their dispersions tend to zero at some non-
zero wave number as it was obtained in kinetic theory.13 The
existence of opticlike excitations was also supported by the
memory-function approach, developed for binary liquids in
Refs. 14 and 15. One may treat the rapidly decaying and
vanishing at some nonzero wave-number dispersion of the
high-frequency branch as another example of fast sound.
However, the microscopic mechanism leading to this specific
behavior of the high-frequency branch is completely ex-
plained by the theory of opticlike modes and conditions of
their existence in liquids.9,10

One also has to mention here the simulation studies of
collective dynamics in two-component fcc disordered
crystals16 and polycrystals17 with disparate masses. In both
cases, contributions from the high-frequency optic modes to
the dynamic-structure factors were observed. However, es-
sential differences exist between the collective dynamics of
these solid systems and binary liquids. In disordered crystals
and polycrystals, the viscous regime is completely absent in
the long-wavelength range and can thus not be directly com-
pared with the dynamics in liquids at these wavelengths. Op-
ticlike excitations in binary liquids have finite nonzero
damping in the long-wavelength limit that almost excludes
the possibility to recover these collective excitations in the
shape of dynamic-structure factors in the viscous regime.

Molten Li4Pb was the most intensively studied by the
molecular-dynamics simulations among all the fast sound
liquid systems. On the other hand, there are no available
simulation results of collective dynamics of molten Li4Tl,
which is another fast sound system studied by INS
experiments.5 This is mainly due to the difficulties encoun-
tered in describing accurately the effective interionic interac-
tions in this melt. Indeed, accurate models of interactions for
polyvalent metals are scarce in the literature in comparison
to alkali metals. In this study, we have used Fiolhais

pseudopotential18 to obtain two-body effective potentials for
molten Li4Tl. This model has proved to produce correct
density-dependent effective potentials for molten Li �Ref.
19� and molten Tl.20 It was also successful in the case of
some alloys.21

Our aim was not only to simulate molten Li4Tl and cal-
culate dynamic-structure factors but also to apply a careful
analysis of different time-correlation functions and to find
out which of the dynamic models can describe correctly the
dispersion branches of collective excitations in this fast
sound liquid system. The correct mechanisms of fast sound
dispersion can only be revealed in such a detailed study of
collective dynamics. The analysis of time-correlation func-
tions of molten Li4Tl obtained in MD simulations was per-
formed by the generalized collective modes �GCM� approach
with explicit treatment of thermal fluctuations. On the basis
of numerous analytical and numerical results for pure and
binary liquids, this is to date the most advanced method of
exploration of hydrodynamic and nonhydrodynamic collec-
tive excitations in liquids. So, this paper is organized as fol-
lows. In the next section, our MD simulations and theoretical
scheme of analysis of collective dynamics are detailed. In the
third section, we report Bhatia-Thornton static structure fac-
tors and generalized thermodynamic quantities, as well as
dispersion and damping of low- and high-frequency branches
of collective excitations. We also examine the wave-number-
dependent contributions from the collective excitations to
different dynamic-structure factors, that clearly reflect the
expected long-wavelength asymptotes for the spectrum and
total dynamic-structure factor. Conclusions of this study will
be given in the last section.

II. DETAILS OF MD SIMULATIONS AND METHOD OF
ANALYSIS OF COLLECTIVE DYNAMICS

The effective two-body potentials for Li4Tl were obtained
from the second-order perturbation theory in pseudopoten-
tials �effective electron-ion interactions� by making use of
Fiolhais18 local pseudopotentials and Ichimaru-Utsumi22 lo-
cal field correction. Relevant expressions can be found in
Ref. 21. The effective potentials used in this MD study are
shown in Fig. 1. They display so-called Friedel long-range
oscillations, which are typical for metallic systems. The
ranges of the repulsive parts of this set of potentials suggest
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FIG. 1. Effective pair potentials for molten Li4Tl obtained from
Fiolhais pseudopotentials.
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that Tl atoms will rather be surrounded by Li ones since the
first minimum of VTlTl�r� is shifted to distances correspond-
ing to the second-neighbor distance. It means that this alloys
may exhibit heterocoordination tendencies.

MD simulations of Li4Tl were performed on a model sys-
tem of 4000 particles with numerical density 0.04625 Å−3

using a cubic box subject to periodic boundary conditions.
The effective two-body potentials Vij�r� were cutoff at cor-
responding nodes, located approximately at Rcut=20 Å. A
chain of three Nose-Hoover thermostats were used to keep
the mean temperature at the experimental value of 753 K.
The timestep was 1.5 fs and the production run 600 000
timesteps long. Every sixth configurations were used to esti-
mate static and dynamic quantities. The high number of con-
figurations ensured well-converged static averages and time-
correlation functions to be obtained. Seventeen k points were
sampled in MD simulations in the range 0.156–3.4 Å−1. Ad-
ditional averages over all possible directions of k vectors
with the same length were performed.

Partial pair-distribution functions, gij�r�, for Li4Tl at 753
K are shown in Fig. 2. As expected for the smallest particles,
Li-Li partial pair distribution has its main maximum at the
shortest distance. The sequence of first peak locations are
2.9, 3.02, and 3.21 Å for Li-Li, Li-Tl, and Tl-Tl functions,
respectively. According to the height of the first peaks, the
heterocoordination tendency clearly appears. Indeed, gLiTl�r�
displays the highest one, indicating that pairs of first neigh-
bors of different chemical species are more abundant than in
the corresponding random mixture.

In this study, collective dynamics in molten Li4Tl is ana-
lyzed by the GCM approach �its detailed description in the
case of binary liquids can be found in Ref. 23� using the
following eight-variables dynamic model:

A�8��k,t� = �nA�k,t�,nB�k,t�,

�JA
L�k,t�,JB

L�k,t�,��k,t�, J̇A
L�k,t�, J̇B

L�k,t�, �̇�k,t��
�1�

with A=Li and B=Tl. In Eq. �1�, ni�k , t� are the partial par-
ticle densities, Ji

L�k , t�, the partial longitudinal mass currents,
��k , t�, the energy density, and dotted variables are their re-
spective first time derivatives. All dynamic variables of the
basis set A�8��k , t� were sampled directly in MD simulations
and were used to calculate the corresponding static averages

and time-correlation functions. An equivalent representation
of the dynamic variables of a binary liquid in terms of total
�nt�k , t�� and mass-concentration �nx�k , t�� densities would
lead to identical results within the GCM approach, because
both representations �via partial �A-B� and �t-x� dynamic
variables� are connected by linear combinations. The eight
dynamic variables of the basis set in Eq. �1� were used to
build the 8�8 generalized hydrodynamic matrix, T�8��k�. Its
k-dependent eigenvalues represent the dynamical modes, that
can exist in the studied binary liquid. Purely real eigenvalues
correspond to nonpropagating relaxation processes, while
pairs of complex-conjugated eigenvalues represent propagat-
ing modes. One of the most important characteristics of
GCM approach is the possibility to represent time-
correlation functions between the dynamic variables of the
chosen basis set as a separable sum of mode contributions.
Consequently, in our study, GCM replicas of the time-
correlation functions read

Fij
�8��k,t� = �

�=1

8

Gij
��k�e−z��k�t, �2�

where each term corresponds to the contribution from a col-
lective mode z��k�, and complex weight coefficients Gij

��k�
are estimated via corresponding eigenvectors.23,24 The con-
sidered eight-variables dynamic model enables to represent
partial density-density time-correlation functions in agree-
ment with up to the fourth frequency moment of correspond-
ing partial dynamic-structure factors SAB�k ,��, while energy-
energy time-correlation function is accurate up to the second
frequency moment of See�k ,��. The high quality of GCM
replicas can be seen in Fig. 3, where examples of partial
density-density and energy-energy time-correlation functions
illustrate, how MD-derived functions are well reproduced by
the parameter-free expression �2�.

III. RESULTS AND DISCUSSION

A. Static-structure factors and generalized
thermodynamic quantities

Static wave-number-dependent quantities are very impor-
tant to understand the role of different microscopic pro-
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cesses, such as thermal and viscous ones, on distinct length
scales. Among the most widely used wave-number-
dependent quantities for the description of structural correla-
tions in binary liquids are the Bhatia-Thornton structure fac-
tors Sij�k�, i , j= t ,c, shown in Fig. 4. Indices t and c
correspond to total numeric density and concentration den-
sity of the binary melt, respectively. Note that the
concentration-concentration structure factor has a short-
wavelength asymptote equal to cAcB. In the opposite limit,
Scc�k� tends to a value noticeably smaller than cAcB. This
clear indication of heterocoordination tendencies is fully
consistent with our previous mentions of chemical order.
Concerning Stt�k�, it looks like the static structure factor of a
pure liquid since it only accounts for topological order, irre-
spective of the chemical nature of the atoms. It is different
from the total structure factor as measured in neutron or
x-ray scattering experiments, which involves atomic scatter-
ing form factors. It would have been interesting to compare
the simulation predictions with experimental results, but, un-
fortunately, these latter are not available in the literature. For
the subsequent analysis of the dispersion of different
branches of collective excitations, it is important to keep in
mind that the main peaks of Stt�k� and Scc�k� are located at
2.5 and 1.5 Å−1, respectively.

More interesting is the wave-number dependence of gen-
eralized thermodynamic quantities �Fig. 5� such as specific
heats at constant pressure and volume, CP�k� and CV�k�, their
ratio, 	�k�, linear thermal-expansion coefficient, �T�k�, dila-
tation factor, 
�k�, and second derivative of Gibb’s energy
with respect to concentration at constant pressure, tempera-
ture, and number of particles, Z factor.25 Even in the case of
pure liquids, the studies of generalized thermodynamic quan-
tities are very scarce, while for binary liquids such studies
were only reported for a couple of systems.23,26 Their impor-
tance lies in the possibility to estimate their long-wavelength
limit and, thus, to obtain many thermodynamic quantities
directly from MD simulations without any fit. These thermo-
dynamic quantities are essential to analyze the collective dy-
namics, because contributions from relaxation and propagat-
ing collective processes are expressed via thermodynamic
quantities and transport coefficients in the hydrodynamic
limit.27

All the generalized thermodynamic quantities display a
pronounced maximum at k	2.5 Å−1, that coincides with the
location of the main peak of the total structural factor Stt�k�.

Another feature is the minimum of 	�k� at k	1.7 Å−1,
where the generalized ratio of specific heats approaches
unity. This means that on specific length scales the coupling
between thermal and total density fluctuations is very weak.
One has to note that all the generalized thermodynamic
quantities connected with thermal fluctuations have a mini-
mum in the k	1.5–2 Å−1 range. The long-wavelength as-
ymptotes of the generalized thermodynamic quantities will
be used in next subsections to estimate mode contributions to
dynamic-structure factors and Landau-Placzek ratio in mol-
ten Li4Tl.

The generalized thermodynamic quantities and Bhatia-
Thornton structure factors ensure to obtain generalized adia-
batic speed of sound, cs�k�, for the studied binary melt. Ac-
cording to Ref. 27, the adiabatic speed of sound is

cs�k� = 
 	�k�
��T�k��1/2

� 
 	�k�kBT

m̄�Stt�k� − Scc�k�
2�k���1/2
,

where �T�k� is the generalized wave-number-dependent iso-
thermal compressibility, and m̄=0.8mLi+0.2mTl, the average
mass. In Fig. 6, we show the calculated wave-number depen-
dence of cs�k�, which tends to a value cs=2845 m s−1 in the
k→0 limit. For comparison, the wave-number dependence
of the high-frequency speed of sound

c
�k� =
1

k

 
J̇t�− k�J̇t�k��


Jt�− k�Jt�k��
�1/2

,

which is connected to elastic mechanism of sound propaga-
tion, is shown in Fig. 6 by line-connected cross symbols. The
value obtained in the long-wavelength limit is c


=3580 m s−1. The comparison of both speeds of sound is a
standard way to estimate possible “positive dispersion” of
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the acoustic branch28 due to a crossover between viscous and
elastic regimes. It is believed that fast sound in water is,
namely, of such origin.29 However, in the next section we
will show that the phase speed of the high-frequency excita-
tions in Li4Tl is much higher than the expected high-
frequency sound. This discards the possibility of a simple
viscoelastic mechanism of fast sound in this molten alloy.

B. Spectrum of collective excitations

Two pairs of complex-conjugated eigenvalues

z��k� = ���k� � i���k�, � = 1,2

were obtained in the whole range of investigated wave num-
bers. Here, ���k� is the dispersion of the �th branch and
���k�, its damping. In Fig. 7, dispersion and damping of both
branches are shown by solid �low-frequency branch� and
dashed �high-frequency branch� lines. The dispersion of the

low-frequency excitations is quite flat in the k�0.5 Å−1

range. For smaller wave numbers, it bends down to match
the linear hydrodynamic dispersion law with the same value
of cs as estimated from Fig. 6 and shown by a dotted line.
The observed “negative dispersion” of the low-frequency
branch as well as the strong positive dispersion of the high-
frequency one are consequences of the strong cross-
correlations between partial densities on the boundary of hy-
drodynamic regime in liquids with disparate masses. One can
see that the phase speed of the high-frequency collective ex-
citations at this boundary is on the order of 8000 m s−1, that
is more than twice as high as the high-frequency speed of
sound c
 shown in Fig. 6. This excludes the possibility of a
simple viscoelastic mechanism for the fast sound in molten
Li4Tl. Like its dispersion, the damping of the low-frequency
excitations is almost constant for k�0.5 Å−1, while it trans-
forms into a clear quadratic hydrodynamic dependence, �k2

with the sound damping coefficient �=5.4�10−7 m2 s−1, to-
wards k→0.

For k�0.5 Å−1, the high-frequency branch behaves typi-
cally as a generalized sound dispersion with the minimum at
	2.5 Å−1, the location of the main peak of total static struc-
ture factor, Stt�k�. At this k value, the high-frequency excita-
tions also have their maximum damping, that corresponds to
strong scattering on the boundary of the first pseudo-
Brillouin zone. More interesting is the long-wavelength do-
main of the dispersion of the high-frequency branch. Both
the frequency and damping tend to finite nonzero values, that
are the main features of “kinetic” collective modes, i.e.,
modes having finite nonzero lifetimes on macroscopic length
scales, and which therefore do not survive on macroscopic
distances in comparison with the hydrodynamic ones.

In order to estimate the origin of both types of collective
excitations in different ranges of wave numbers, we will ap-
ply the same procedure as was proposed in Ref. 9. The basis
set of eight dynamic variables �Eq. �1�� can be divided into
several subgroups characterized by their origin, i.e., two
groups of three partial dynamic variables corresponding to
both species

A�3i� = �ni,Ji
L, J̇i

L�, i = Li,Tl �3�

and another group of two dynamic variables connected with
energy fluctuations A�2e�= �� , �̇�. Another possibility is to use
linear combinations of partial dynamic variables �see Ref. 9
for details� in order to have two subsets linked with total
density fluctuations

A�3t� = �nt,Jt
L, J̇t

L� �4�

and mass-concentration fluctuations

A�3x� = �nx,Jx
L, J̇x

L� . �5�

The complex eigenvalues of the different three-variables dy-
namic models A�3i� , i= t ,x ,Li,Tl �Eqs. �3�–�5�� can easily
be obtained and thus compared with the eigenvalues deduced
from the full eight-variables dynamic model, A�8�. This latter
takes into account all the local coupling effects between the
different subgroups of fluctuations.
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In Fig. 8, the imaginary parts of complex eigenvalues ob-
tained within the eight-variables dynamic model �symbols�
are compared with those of the three-variables dynamic
models �lines�. For k�0.4 Å−1, the complex eigenvalues of
the eight-variables dynamic model are in perfect agreement
with the complex eigenvalues obtained within the three-
variables dynamic models A�3i� , i=Li,Tl �Eq. �3��, repre-
senting dynamics of partial type. This means that for k
�0.4 Å−1 the cross-correlations between partial dynamic
variables are very small, and collective dynamics of Li4Tl in
that domain can simply be represented as a sum of almost
independent partial dynamics of species. For k�0.4 Å−1,
the cross-correlations between partial variables become
much stronger, and the separated treatment of dynamic mod-
els with partial variables does not make any sense. It is seen
that a complex eigenvalue of the dynamic model A�3Tl� tends
to a nonzero value for k�0.4 Å−1. In this domain, the com-
plex eigenvalues are much better reproduced by those ob-
tained within the three-variables dynamic models A�3i� , i
= t ,x �Eqs. �4� and �5��. This clearly indicates the origin of
the low- and high-frequency excitations in the long-
wavelength range as acoustic and optic modes, respectively.
The local coupling effects between acoustic and optic modes
are slowly vanishing in the long-wavelength limit, while they
are very strong for k�0.4 Å−1. Hence, from Fig. 8 one can
conclude that there is a transition between different types of
dynamics at approximately k	0.4 Å−1: dynamics of partial
type for larger wave numbers and weakly coupled acoustic
and optic modes in the long-wavelength range.

C. Nonpropagating wave-number-dependent
relaxation processes

The eight-variables dynamic model applied in this study
to analyze collective dynamics in molten Li4Tl alloy leads to
four purely real eigenvalues dj�k� in the whole range of stud-
ied wave numbers. In Fig. 9, we show the three lowest real
eigenvalues, while the highest one, d4�k�, has such a very

short lifetime �d4�k��dj�k� for j=1,3� over the whole k
range that it does not affect significantly the collective dy-
namics. Indeed, it is of thermal origin and its contribution to
the dynamic-structure factors studied here is extremely
small.

In fact, due to coupling effects between the relaxation
processes the analytical expressions of hydrodynamic relax-
ation modes30 are not so simple as in the case of pure fluids.
Nevertheless, if coupling between thermal processes and
concentration fluctuations is weak, the real eigenmodes can
easily be separated within GCM approach to estimate their
origin. We have checked mode contributions to the Fxx�k , t�
function and found that for Li4Tl the nonpropagating relax-
ation mode connected with concentration fluctuations com-
pletely defines the shape of the concentration density auto-
correlation function in the long-wavelength limit.
Consistently, the contribution from the other hydrodynamic
relaxation process connected with thermal diffusivity is neg-
ligible. Therefore, on the basis of hydrodynamic expressions
of Fxx�k , t�,27 we can definitely say that the lowest real eigen-
value in the long-wavelength range behaves simply as
d1�k�=D12k

2 with the mutual diffusivity D12=1.2
�10−4 cm2 s−1 as estimated from Fig. 9. Hence, the second
nonpropagating relaxation process with a k2 dependence in
the long-wavelength range mainly corresponds to the thermal
diffusivity process with the eigenvalue30

d2�k� = DT�1 +
D12�T

2Z

TCP
�k2.

In the case of small thermal diffusion ratio �T, it turns into
d2�k��DTk2 with DT being the thermal diffusivity. The qua-
dratic k2 dependence of the d2�k� is clearly seen from Fig. 9,
and the estimated value of DT is 2.65�10−7 m2 s−1. The
thermal relaxation process origin of d2�k� and its behavior as
a function of wave numbers beyond the hydrodynamic re-
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eigenmode d3�k� corresponds to structural relaxation and is slower
than the thermal relaxation process d2�k� for k�0.8 Å−1.
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gime is ascertained by considering the wave-number depen-
dence of the lowest eigenvalue �dotted line in Fig. 9� of a

two-variables dynamic model, A�2h�= �h�k , t� , ḣ�k , t��, which
solely takes heat fluctuations into account. Here, h�k , t� is the
dynamic variable of heat density, which is orthogonal to the
total density and mass-concentration fluctuations in contrast
to energy density, and ḣ�k , t� is the corresponding extended
variable. This additional analysis was necessary to separate
both relaxing eigenmodes, d2�k� and d3�k�, which cross
around k�0.8 Å−1, and estimate the origin of d4�k�. The
nonpropagating relaxation process, d3�k�, clearly tends to a
nonzero value in the long-wavelength limit, that is a specific
feature of kinetic modes. This implies a much shorter life-
time on macroscopic length scales in comparison with slow
hydrodynamic modes. For k�0.8 Å−1, the kinetic relaxation
process d3�k� becomes slower than the thermal mode d2�k�,
as has also been predicted by analytical theory of wave-
number dependence of structural relaxation in liquids.31

D. Coherent dynamic-structure factors

The time-correlation functions obtained in MD simula-
tions enable us to calculate the different dynamic-structure
factors of interest. We calculated the total coherent neutron-
weighted dynamic-structure factor as follows:

SINS�k,�� = bLi
�2cLiSLiLi�k,�� + 2bLi

� bTl
� �cLicTlSLiTl�k,��

+ bTl
�2cTlSTlTl�k,�� , �6�

where Sij�k ,�� are the partial dynamic-structure factors, ci,
the corresponding concentrations, and introducing

bi
� =

bi

�cLibLi
2 + cTlbTl

2
, i = Li,Tl.

The values of the coherent scattering lengths of the pure
elements, bi, used in this work are the same as in the analysis
of INS experiment.5

In Fig. 10, we show the total coherent INS-weighted dy-
namic structure for two wave numbers, which are in the
range investigated by the INS experiments.5 It is clearly seen
that the side peaks of SINS�k ,�� are due to contributions from
the propagating high-frequency collective modes. This sup-
ports the experimental results of Ref. 5 according to which
shoulders on the reported experimental scattering intensity in
the interval 1�k�1.8 Å−1 are caused by the high-
frequency excitations treated as fast sound.

E. Mode contributions to dynamic-structure factors

One of the main advantages of the GCM approach as well
as of kinetic theory13 over the other existing methodologies
of analysis of collective dynamics in many-components liq-
uids lies in the possibility to trace the wave-number depen-
dence of mode contributions. It is important that there exist
analytical expressions for mode contributions to the density-
density time-correlation functions of binary liquids in the
hydrodynamic limit.30 However, the main issue is to deter-
mine how these hydrodynamic modes along with nonhydro-
dynamic processes contribute to the time-correlation func-

tions or corresponding spectral functions beyond the
hydrodynamic domain.

Wave-number-dependent contributions to different
dynamic-structure factors in binary liquids can clearly reveal,
which branch of the collective excitations is responsible for
the side peaks in different ranges of wave numbers. Besides,
the analysis of mode contributions to the dynamic-structure
factors �or to corresponding time-correlation functions� can
reflect possible transitions in the leading contributions to the
central or side peaks from different collective processes.
Such a transition is, for instance, observed even in the case
of pure liquids. It usually takes place at wave numbers
	0.4−0.7 Å−1, where lifetimes of the hydrodynamic ther-
mal relaxation process and of the structural relaxation be-
come equal. For larger wave numbers, the structural relax-
ation represents the leading contribution to the central peak
of dynamic-structure factor,26,32 while the thermal diffusivity
does as k→0.

In the case of the binary molten alloy with disparate
masses, Li4Tl, we will focus on mode contributions to the
four dynamic-structure factors of main interest: total and
mass-concentration dynamic-structure factors �Stt�k ,�� and
Sxx�k ,��, respectively� and partial dynamic-structure factors
�Sii�k ,��, i=Li,Tl�. The general GCM expression for the
dynamic-structure factors with complex weights of mode
contributions Gij

��k� �Ref. 33� reads

Sij�k,�� = Re
�
�=1

Nv Gij
��k�

i� + z��k�� . �7�

Separating the Nrel contributions of nonpropagating relax-
ation processes from the 2Nprop contributions of propagating
processes �Nrel+2Nprop=Nv�, this expression is easily trans-
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FIG. 10. Neutron-weighted total coherent dynamic-structure
factor of liquid Li4Tl calculated numerically from the MD data for
two k values in the range investigated by the INS experiment.
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formed into the following form with real weights �mode
strengths�:34

Sij�k,��
Sij�k�

= �
�=1

Nrel

Aij
��k�

2d��k�
�2 + d�

2�k�

+ �
�,�=1

Nprop 
Bij
��k�

���k�
�� � ���k��2 + ��

2�k�

� Dij
��k�

� � ���k�
�� � ���k��2 + ��

2�k�� . �8�

In this expression, wave-number-dependent mode strengths
Aij�k� reflect amplitudes of mode-contributions from differ-
ent nonpropagating relaxation processes �either hydrody-
namic or nonhydrodynamic� to the central peak of dynamic-
structure factor Sij�k ,��. The contributions from propagating
processes, which form the side peaks of dynamic-structure
factors, have a symmetric �Lorentzian� and nonsymmetric
�non-Lorentzian� parts with corresponding mode strengths
Bij

��k� and Dij
��k�.

The most simple case is the GCM analysis of mode con-
tributions to the mass-concentration dynamic-structure factor
Sxx�k ,��. According to hydrodynamic analytic expressions,27

Sxx�k ,�� does not contain any side peak and consists of two
central Lorentzians in case of coupled thermal and mass-
concentration fluctuations. The mode contributions to
Sxx�k ,�� obtained in a wide range of wave numbers by the
GCM approach �Fig. 11� prove that there is only a single
contribution from the hydrodynamic mode d1�k� in the long-
wavelength range. The thermal-relaxation mode d2�k� does
not contribute to the central peak of Sxx�k ,��, that indicates a
negligible coupling between long-wavelength thermal and
concentration fluctuations. Hence, the half width at half
height of Sxx�k ,�� at small waven umbers is completely de-
fined by the mutual diffusivity. For wave numbers k
�0.4 Å−1, there appears a weak contribution from the low-
frequency branch of collective excitations z1�k�. The high-

frequency branch z2�k� does not contribute to Sxx�k ,��. We
would like to remind here that according to the analysis per-
formed in previous subsection the absence of coupling be-
tween the concentration and thermal fluctuations enabled us
to exclusively ascribe the origin of the two lowest relaxation
modes, d1�k� and d2�k�, to nonpropagating relaxation pro-
cesses connected with mutual diffusivity and thermal con-
ductivity, respectively.

In Fig. 12, the leading mode strengths are shown for the
total dynamic-structure factor Stt�k ,��. In the case of
Stt�k ,��, there only exists an analytical expression in the
hydrodynamic limit for the corresponding mode strengths of
hydrodynamic modes.27 Let us recall that the ratio of the
integral intensities of the central and side peaks known as the
Landau-Placzek ratio is related to the mode strengths. In the
case of alloys, it does not simply equal �	−1� as in pure
liquids,27 but

Icentral

2Iside
=

Att
1 + Att

2

Btt
= �	 − 1�
1 +


2CP

ZT�T
2� . �9�

Let us first consider the mode strengths of propagating
processes in Stt�k ,�� �their wave-number dependences are
shown in the upper frame of Fig. 12�. This plot demonstrates
that for k�0.4 Å−1 the main contribution to the side peak of
the total dynamic-structure factor stems from the high-
frequency branch z2�k�, which is solely ascribed to the light
component of the alloy in this wave-number range according
to the analysis performed above. For smaller wave numbers,
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k�0.4 Å−1, we observe a completely different tendency; the
low-frequency branch contribution gets stronger with de-
creasing wave numbers, illustrating the leading contribution
from hydrodynamic sound excitations. Hence, we clearly see
a transition in mode contributions from the two branches of
propagating excitations. Namely, the low-frequency propa-
gating excitations, which are the ordinary acoustic modes
define the side peak of total dynamic-structure factor only in
the long-wavelength range, in complete agreement with hy-
drodynamic theory. Hence, our results clearly indicate that
fast sound excitations in Li4Tl do, in fact, not exist. For k
�0.4 Å−1, the high-frequency branch defines the dispersion
of the side peak of the total dynamic-structure factor. But,
towards the long-wavelength range, its contribution vanishes
and is replaced by the leading contribution of the hydrody-
namic acoustic modes. This implies that a hypothetic linear
dispersion of a collective excitation of a fast sound kind does
not make any sense in Li4Tl for k�0.4 Å−1.

In the bottom frame of Fig. 12, the mode strengths of the
hydrodynamic diffusive relaxation processes d1�k� and d2�k�
are shown. As this is for hydrodynamic processes, the mode
strengths of d1�k� and d2�k� must tend to nonzero values in
the long-wavelength limit. One can check the long-
wavelength asymptotes of calculated mode strengths by us-
ing the generalized thermodynamic quantities reported in
Fig. 5. From these asymptotes, we obtain the following esti-
mations: 
�−0.35, Z /kBT�17.5, CP�3.8kB, CV�3.4kB,
	=CP /CV�1.12, and �TT�0.1. Inserting these values into
Eq. �9�, one obtains a Landau-Placzek ratio of 0.44. On the
other hand, we can evaluate the ratio of mode strengths �Eq.
�9��, having estimated Btt�0.7 and Att

1 +Att
2 �0.3 from Fig.

12. This leads to a value of �0.43, that is in very good

agreement with the one estimated via the thermodynamic
quantities.

Since fast sound excitations were originally suggested
from a study of partial dynamic-structure factors Sii�k ,�� for
the molten alloy Li4Pb, we now report an analysis of the
leading mode contributions to the partial dynamic-structure
factors SLiLi�k ,�� and STlTl�k ,��. In Fig. 13, we show the
mode strengths of both propagating modes and of the slowest
relaxation process, d1�k�. The main contribution to the cen-
tral peak of the partial dynamic-structure factors for k
�1 Å−1 comes from the slowest relaxation process con-
nected with the mutual diffusivity, in complete agreement
with Fig. 3 showing partial density-density time-correlation
functions. The contributions from propagating modes to
STlTl�k ,�� �partial dynamic-structure factor of the heavy par-
ticles� are negligible in the long-wavelength range. However,
in the case of the partial dynamic-structure factor of the light
component, SLiLi�k ,��, we obtain a transition in leading
mode contribution to the Brillouin peak from the high-�cross
symbols� and low-frequency �plus symbols� collective exci-
tations similar as observed for the total dynamic-structure
factor Stt�k ,��. The contribution from the high-frequency
branch decays to zero towards small wave numbers, where
the low-frequency branch becomes responsible for the side
peak of SLiLi�k ,��, as it should be in the hydrodynamic limit.
These wave-number dependences of mode contributions to
the partial dynamic-structure factor of the light component
explain why numerical analysis of peak positions of partial
current spectral functions CL�k ,�� resulted in a merger of the
two high- and low-frequency dispersion curves in long-
wavelength region.7,8 Without the analysis of mode contribu-
tions, one could not estimate whether such a merger of the
two dispersion curves really exists in the binary liquids with
disparate masses or not.

IV. CONCLUSION

Our study, combining MD simulations and theoretical
GCM approach, has enabled us to extract information rel-
evant for our understanding of collective dynamics of molten
Li4Tl. From analysis of MD-derived time-correlation func-
tions, we have obtained the spectrum of collective excita-
tions, the wave-number dependence of nonpropagating relax-
ation processes, and their contributions to the shape of the
time-correlation functions under study. We have shown that
the only wave-number range where the high-frequency
branch can be imputed exclusively to the light component
corresponds to k�0.4 Å−1. For smaller wave numbers, the
high-frequency branch corresponds to opticlike excitations:
it tends to a nonzero frequency and has much stronger damp-
ing than the low-frequency branch, what is a specific feature
of kinetic �nonhydrodynamic� collective processes.

The important issue of the long-wavelength dispersion of
the fast sound has been explained on the basis of the contri-
butions from the low- and high-frequency branches of col-
lective excitations. Indeed, there exists a transition around
k=0.4 Å−1 in the contributions to the total dynamic-structure
factor. As a consequence, its side peak stems from different
collective excitations depending on the considered wave-
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and of the slowest relaxation process d1�k� in the partial dynamic-
structure factors Sii�k ,�� , i=Li,Tl.
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number range. In the long-wavelength domain �k
�0.4 Å−1�, the leading contribution comes from the hydro-
dynamic sound excitations, while for larger k values the side
peak of Stt�k ,�� is solely due to the high-frequency branch
of kinetic propagating modes. A similar transition has been
found for the partial dynamic-structure factors. Conse-
quently, the dispersion formally derived from the side peak
positions of SLiLi�k ,�� versus wave number and which looks
like the dispersion of a fast sound is not a real one, because
it corresponds to different collective excitations: hydrody-

namic sound at very small wave numbers and kinetic high-
frequency propagating modes for k�0.4 Å−1.
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