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A computationally efficient interatomic potential is developed for the description of interatomic interactions
in multicomponent systems composed of metals, Si and Ge. The potential is based on reformulation of the
embedded atom method (EAM) potential for metals and Stillinger-Weber (SW) potential commonly used for Si
and Ge in a compatible functional form. The potential incorporates a description of the angular dependence of
interatomic interactions into the framework of the EAM potential and, therefore, is dubbed angular-dependent
EAM (A-EAM) potential. The A-EAM potential retains the properties of the pure components predicted by the
original EAM and SW potentials, thus limiting the scope of potential parameterization to only the cross
interactions among the components. The ability of the potential to provide an adequate description of binary
systems with mixed type of bonding is illustrated for Au-Si/Ge system, with the parameters for Au-Si and
Au-Ge interactions determined based on the results of density-functional theory calculations performed for
several representative bulk structures and small clusters. To test the performance of the A-EAM potential at
finite temperatures, the values of the enthalpy of mixing of liquid Au-Si and Au-Ge alloys, as well as the
equilibrium lines on the Au-Si phase diagram are evaluated and compared with experimental data. The calcu-
lation of the phase diagram is based on the values of the excess chemical potential difference between Au and
Si, evaluated in a series of semi-grand canonical ensemble Monte Carlo simulations performed for different
temperatures and alloy compositions. The potential is shown to provide an adequate semiquantitative descrip-
tion of the thermodynamic properties of the alloy at different temperatures and in the whole range of compo-
sitions, thus showing a considerable promise for large-scale atomistic simulations of metal-Si/Ge systems.
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I. INTRODUCTION

The ability of classical molecular dynamics (MD) and
Monte Carlo (MC) atomistic simulation techniques to pro-
vide quantitative information on the atomic-level processes
responsible for the behavior and properties of real materials
and devices is, in a big part, defined by the availability of
accurate and computationally efficient interatomic potentials.
Over the last several decades, a broad variety of empirical
and semiempirical potentials have been suggested in litera-
ture. The application of most of the proposed potentials,
however, has been limited to the initial studies, with only a
relatively small fraction of the potentials exhibiting a com-
bination of transferability, computational efficiency, simplic-
ity of implementation, and accuracy in describing various
properties of materials, sufficient to ensure their broad use in
simulations performed by different research groups. The em-
bedded atom method (EAM) (Refs. 1-3) is one example of a
highly successful approach as it has established the frame-
work for a group of potentials that are used in the majority of
current simulations of metals and metallic alloys. Popular
potentials for covalently bonded systems include Stillinger-
Weber (SW) potential*> for Si and Ge, Tersoff potential®’
for Si and C, as well as Brenner potential®® for hydrocarbon
systems.

The extension of the empirical potentials to alloys consist-
ing of components with the same type of interatomic bond-
ing (and described by the same type of interatomic potential)
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is relatively straightforward, with several alloy models
(schemes for the description of cross interactions between
the components) developed for metals!®'# and covalent
systems.'>1¢ The design of interatomic potentials capable of
an adequate description of multicomponent systems with
mixed types of atomic bonding, however, is a more challeng-
ing task that has to be addressed to enable atomic-scale mod-
eling of a range of practically important systems. Computa-
tionally efficient and accurate description of systems with
mixed metallic-covalent bonding, in particular, is highly de-
sirable for investigation of interfacial properties in micro-
electronic devices and interconnects, as well as structural
analysis of various crystalline and amorphous phases present
in these systems.

The modified EAM (MEAM) potential'” by Baskes in-
cludes parameterization for many cubic metals, as well as Si,
Ge, C, H, N, and O. The potential, therefore, can be adopted
for modeling of systems with mixed type of bonding, such as
Mo-Si,'® Au-Si,'” Al-Si,?° Ni-Si,?! and Au-Si-O.?? The many-
body angular screening function which is used to limit the
interaction range in MEAM, however, makes this potential
computationally rather expensive. Moreover, the properties
of both pure components and mixtures predicted by the
MEAM potential have to be verified for each system of in-
terest. For Si, for example, the short-range MEAM potential
is found to be inferior compared to the SW potential in the
description of the diffusion paths and activation energies of
an adatom on a 2 X 1 reconstructed Si (001) surface?>** and
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to exhibit a poor performance in simulations of ion sputter-
ing of Si targets.”> An adjustment of the parameters of the
MEAM potential, therefore, is often required in order to
achieve an adequate description of pure components.?’

An attractive alternative to the design of new alloy poten-
tials with original functional forms can be provided by the
combination of well-established and thoroughly tested poten-
tials developed for pure components within a unified ap-
proach. Despite the apparent distinctions between the func-
tional forms and underlying physical arguments used in the
description of interatomic bonding in metallic and covalent
systems, there have been a number of studies that suggest
that a unified approach is feasible. In particular, a description
of Pt-C system with an analytical potential that, for pure
components, reduces to the bond-order Brenner potential for
C and an EAM-like potential for Pt has been discussed by
Albe et al.?® The connections between the EAM formalism
and the bond-order scheme of the Tersoff potential have been
discussed by Brenner,”” whereas the relationship between the
SW and MEAM potentials has been discussed by Thijsse,?
who shows that the two potentials can be reformulated into
compatible functional forms.

In this work, the idea of developing a unified interatomic
potential for systems with mixed type of bonding is extended
to combine the EAM potential for metals with the SW po-
tential commonly used in simulations of Si and Ge. The
combined angular-dependent EAM (A-EAM) potential in-
corporates a description of the angular dependence of the
interatomic interactions into the framework of the EAM po-
tential, making it compatible with the SW potential. The
A-EAM potential retains all the properties of the pure com-
ponents as predicted by the original SW and EAM potentials,
thus eliminating the need for extensive testing and limiting
the scope of the potential parameterization to cross interac-
tion between the components. The reformulation of the EAM
and SW potentials leading to the development of the unified
A-EAM potential is described in Sec. II. An example of the
parameterization of the cross interaction in the A-EAM po-
tential is given for Au-Si and Au-Ge systems in Sec. IIIL.
Similarly to the approach adopted in parameterization of the
MEAM potential,' the functional form and parameters of
cross interactions in the A-EAM potential are chosen based
on the results of a series of density-functional theory (DFT)
calculations performed for several representative Au-Si/Ge
bulk structures and small clusters. The enthalpies of mixing
of Au-Si and Au-Ge liquid alloys, as well as the equilibrium
lines on the phase diagram of Au-Si, predicted by the
A-EAM potential are presented and related to the experimen-
tal data in Secs. IV and V. The performance of the potential
in describing structural and thermodynamic properties of
metal-Si/Ge alloys and perspectives for future extension of
the developed methodology to other systems are briefly dis-
cussed in Sec. VL.

II. ANGULAR-DEPENDENT EMBEDDED
ATOM METHOD POTENTIAL

The EAM is currently the method of choice for the de-
scription of interatomic interactions in classical atomistic
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simulations of metals, whereas the majority of simulations
for Si and Ge are performed with either SW or Tersoff po-
tentials. A unified alloy potential based on a reformulation of
the EAM and SW potentials in a compatible functional form
is discussed in this section. A reformulation of the conven-
tional EAM potential into a form that includes three-body
terms in the expression for the total electron density function
is presented first, followed by the description of an approach
for incorporation of the angular dependence compatible with
the SW potential.

A. EAM potential with three-body terms
in the electron density function

In the EAM potentials, the energy of an atom is expressed
as

1
E;= 52 ¢ii(rij)) + Fi(p,), (1)
J#i

where r;; is the distance between atoms i and j, ¢;(r;;) is the
pair energy term defined as a function of the interatomic
distance, F;(p;) is the embedding energy term defined as a
function of the electron density p; at the position of atom i,
and the summation is over all atoms interacting with atom .
The electron density p; is calculated as a sum of the partial
electron density contributions from the neighboring atoms,

pi= 2 filry), )
i

where f;(r;;) is the partial electron density contribution from
atom j at the location of atom i. Since only interatomic dis-
tances r;; are needed to calculate the energy and forces in the
system, the EAM calculations are nearly as simple and com-
putationally efficient as the ones with pair potentials. The
lack of explicit three-body terms, however, makes the con-
ventional EAM inappropriate for covalently bonded materi-
als.

To make the connections to SW or Tersoff potentials and
to allow for the introduction of the angular dependence of
the interatomic interactions, the linear sum of partial electron
density contributions in Eq. (2) can be expressed through the
sum of products of partial electron densities,

pi={|:2fj(rij):|2}l/2= {2 Efj(rij)fk(rik):|l/2~ (3)

J#Fi k#i j#i

The sum on the right-hand side of the above equation in-
cludes two-body terms with identical pairs of atoms (j=k)
and three-body terms (j # k) that can be separated from each
other.?® The three-body terms can be written in the form of a
sum over unique triplets of atoms (i,,k),

p,-={2 P +2 S f,-(n,-)fk(r,-k)}”z, @
j#i JKCT;

where in the first (two-body) term under the square root the
summation is over all atoms interacting with atom i and in
the second (three-body) term the summation is over all pairs
of atoms j and k that form unique triplets with atom i. This
formulation includes an explicit dependence on triplets of
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neighboring atoms and, as shown in Sec. II B, allows for
incorporation of the angular dependence of the interatomic
interactions in a form compatible with Stillinger-Weber po-
tential. Alternatively, the three-body terms can be written in a
form of the “bond-order” dependence,

pi= {2 )P S Filr) S fk<r,-k)}”2. s)
jFi JFi k#i,j

This formulation can be used to design an angular-dependent
EAM potential compatible with the Tersoff potential.>

B. Angular-dependent EAM compatible with SW potential

The energy of an atom in a system described by SW po-
tential is defined as*

1
Ei: 52 UZ(rij) + 2 U3(Fi»f}37k)' (6)
J#i JKCT;

The potential consists of two-body (U,) and three-body (Us)
terms, with the summation of the three-body terms being
taken over all atom pairs j and k that form unique triplets
with atom i. The two-body term has a Lennard-Jones form
terminated at a distance r, by a cutoff function

Uz(ri_j)=8A[B(ﬁi>_p—(ﬁz>_q]exp{ g } (7)
o o Fi— T

The three-body term is defined as

o
N GRINAETN exp[ + 7 }(cos O+ 1/3)*
Fij=Te Tig—Tec
for rij<r. ru<r., (8)

where 6;; is an angle between vectors 7; and 7 originating
from atom 7 and directed to atoms j and k. The parameters A,
B, p, g, \, &, 0, v, and r, are adjustable parameters that are
chosen to reproduce the properties of crystalline, liquid, and
amorphous phases, as well as surface structures for Si or
Ge 453031

The sum of the three-body terms in Eq. (6) can be rewrit-
ten in a form of embedding energy,

\e
Flp)= 2 Us(FoFiF) = ~—sice3P1 9)
AU jicT, v 20(;91/Ge)2 l
where the electron density and partial electron density con-
tributions are defined as

pi=|2 2 fi(ryfulra)(cos 0+ 1/3)2]1/2, (10)

jkcT

Ll ) (11)

rl'j—rc

fij(”ij) =f\e§l/Ge exp(
where f‘ji/ G is an adjustable parameter that cancels out in Eq.
(9) for pure Si or Ge. Note that in the expression for the
electron density given by Eq. (10), the partial electron den-
sity contributions are defined by the types of both atoms
forming the bond, f;(r;;), rather than the type of the neigh-
boring atom, f;(r;;), as in the original EAM, Eq. (2). More-
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over, the mutual contributions of two different atoms to the
electron density at the locations of these atoms do not have
to be the same, ie., f;j(r;) # f;(r;) for atoms i and j of
different type. This assumption provides more flexibility in
fitting the potential to the experimental data and the results
of ab initio calculations, as discussed in Sec. III A, where an
example of the parameterization procedure for cross interac-
tions is given for Au-Si and Au-Ge systems.

Using the reformulation of the three-body terms of the
SW potential in the functional form of the EAM embedding
function, Eq. (9), and taking the pair energy term of the
EAM potential in the form of the two-body term of the SW
potential, ¢;;(r;;)=U,(r;;), the SW potential can be written in
the form of the EAM potential, Eq. (1). For an alloy system
containing both metal and Si/Ge atoms, a combined potential
that reduces to the conventional SW and EAM potentials for
pure components can be then formulated as follows:

i JEi

E;= %E ¢ij(’"ij) + Fi[{(l - 51)2 [fij(rij)]z

+2 2 Fiiri)fudri)(cos O + 1/3)Ci}1/2]~ (12)

JkCT;

Two parameters, &; and c;, are added to ensure that the com-
bined potential given by Eq. (12) reduces to the conventional
EAM potential for pure metals and to the original SW poten-
tial for pure Si or Ge. For metals, §;=c;=0 excludes the
angular dependence and includes the radial contributions to
electron density, thus, yielding the original EAM potential.
For Si/Ge, 6;=1 and c¢;=2 transform the electron density
function into the three-body function of the SW potential,
Eq. (10), that retains the angular dependence. As will be
discussed in the next sections, the parameterization of the
A-EAM potential for Au-Si/Ge interactions does not require
an angular dependence of the electron density function for
metal atoms. As a result, the computational efficiency of the
evaluation of the A-EAM potential can be improved by re-
writing the total electron density function in a form that does
not involve the summation over triplets of neighboring atoms
around a metal atom:

1
E;j= 52 &i(riy) +FiH(1 - &) 2 firy)
J#i i

+o; 2 firfulra)(cos O + 1/3)2}%]. (12a)

JkCT,

Similarly to Eq. (12), the parameters are set to §,=c;=0 for
metals (the triplet contribution to electron density is elimi-
nated) and &=1 and c¢;=2 for Si/Ge (the radial contribution
to the electron density is eliminated). The additional param-
eter n; is equal to 1 for metals and 1/2 for Si/Ge. While in
this work we use the formulation of the A-EAM potential
given by Eq. (12a), the alternative formulation of Eq. (12) is
useful when an angular dependence needs to be included in
the electron density of metal atoms in order to provide an
adequate representation of the interatomic interactions in
metal-Si/Ge clusters and alloys.

The functional form and parameters of the embedding en-
ergy functions, F,(p;), as well as the pair energy and partial
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electron density functions for the interactions between atoms
of the same type are directly defined by the original EAM
and SW potentials and do not need to be adjusted in the alloy
potential. The fitting of the alloy potential, therefore, is lim-
ited to finding the optimum parameters for the pair energy
term, ¢;;(r;;), and the partial electron density contributions,
fij(ry), for cross interactions between atoms of different type.

The angular dependence of interatomic interactions is in-
corporated into the alloy potential given by Egs. (12) and
(12a) in a form that is compatible with SW potential. Thus,
this potential is referred to as the SW formulation of the
A-EAM potential, or A-EAM (SW). An alternative approach
for incorporation of the angular dependence, compatible with
the Tersoff potential, is discussed elsewhere.?®

III. A-EAM (SW) POTENTIAL FOR Au-Si/Ge

To test the ability of the combined A-EAM (SW) potential
to reproduce the properties of systems with mixed metallic-
covalent bonding in this section we provide an example of
parameterization of the potential for Au-Si and Au-Ge sys-
tems.

A. Potential functions for pure components

Within the framework of the combined A-EAM (SW) po-
tential, the embedding energy functions, the partial electron
density functions, and the pair energy functions for pure
components (Au, Si, and Ge) are uniquely defined by the
original EAM and SW potentials. For pure Au, an EAM
potential in the form suggested in Ref. 13 is used in this
work. The advantage of this potential is in the simplicity of
the functional form and the availability of parameterizations
for many metals, allowing for an easy implementation for a
broad range of alloy systems. For pure Si, the original pa-
rameterization of SW potential* is used. Various structural
and thermodynamic characteristics of Si predicted by this
potential have been thoroughly investigated, e.g., Refs. 4, 28,
and 30-33 and found to be satisfactory for a broad range of
applications. For Ge, a parameterization suggested in Ref. 5
provides a good representation of crystalline and amorphous
solid phases but predicts grossly overestimated melting tem-
perature (MD simulation of liquid-crystal coexistence yields
a value of 2940 K, compared to the experimental value’* of
1210 K). An alternative set of parameters that included pa-
rameter N scaled down to 19.5 was proposed in Ref. 30.
Although this parameterization decreases the melting tem-
perature down to about 1090 K, it also reduces the aniso-
tropy of the diffusion of Ge adatoms on a (2X1) recon-
structed Si(001) surface to unrealistically low levels. In this
work, we set the value of \ at 21.0 (the same as in Si of Ref.
4), keeping the rest of the parameters the same as in Ref. 5.
This parameterization results in a melting temperature of
about 1500 K and makes the anisotropy in the diffusion bar-
riers for Ge adatoms on a (2 X 1) Si(001) surface to be simi-
lar to that for Si adatoms.

The parameter ffi/ @ in the partial electron density func-
tion for the Si-Si and Ge-Ge contributions is set to a value of
16.0, so that Si, Ge, and Au have comparable partial electron
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FIG. 1. (Color online) Plots of the embedding functions for
EAM Au (black line), A-EAM (SW) Si (red line), and A-EAM
(SW) Ge (green line).

density contributions in a range of distances around the equi-
librium bond lengths of SW Si (2.34 A), SW Ge (2.45 A),
and EAM Au (2.88 A). As discussed below, the value of this
parameter does not affect the fitting of the cross interactions
and can be chosen arbitrarily. The plots of the embedding
energy functions, the partial electron density functions, and
the pair energy functions defining the interactions between
atoms of the same type are shown for Au, Si, and Ge by solid
lines in Figs. 1-3. The embedding energy in the equilibrium
zero-temperature crystalline state is zero for A-EAM (SW) Si
and Ge, whereas for Au the equilibrium state corresponds to
the minimum of the embedding function. The antibonding
nature of the embedding energy term for Si and Ge is a
reflection of the main purpose served by this term in the
A-EAM (SW) potential—to reproduce the energy penalty for
deviations from perfect tetrahedral angles in the diamond
lattice. The functional form and parameters of the pair en-
ergy functions and the electron density functions for cross
interactions between atoms of different type are determined
in this work based on the results of DFT calculations per-
formed for several representative Au-Si/Ge bulk structures
(Sec. I C) and small clusters (Sec. III D). The potential
functions and parameters for Au-Si and Au-Ge cross interac-
tions are discussed below in Sec. III B.

B. Potential functions and parameters for Au-Si
and Au-Ge cross interactions

The formulation of the A-EAM (SW) potential, given by
Eq. (12a), implies that the presence of a Si/Ge atom contrib-
utes to the electron density of a neighboring metal atom only
through the two-body term of the electron density function
that does not have the angular dependence. On the other
hand, the presence of a metal atom contributes to the electron
density of a neighboring Si/Ge atom through the three-body
(triplet interaction) term of the electron density function.

For Au-Si/Ge cross interactions, the pair energy term is
defined in this work as
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FIG. 2. (Color online) Plots of the partial electron density functions for (a) Si-Au and (b) Ge-Au interactions described by the A-EAM

(SW) potential.
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where A, Be, ac, Be, 0¢c, Ry, P, and Qc are fitting param-
eters. The partial electron density contributions from a Au
atom to a Si/Ge atom and from a Si/Ge atom to a Au atom
are defined, respectively, as

_Si i i R
f.gu S/Ge(rij) :f\eS/Ge exp{_ ,}%/Ge(r /VIIe )} (14)
ij— M

and

flsji/Ge—»Au(rl_j) =f?“{exp{ - 3/3"( il l) } }fc(h‘j) :

RAu -
(15)

The function given by Eq. (14) is defined for the case when
atom { is Si or Ge and atom j is Au, whereas the reverse is
true for Eq. (15). The value of the parameter f>'%¢ used in
the calculation of the electron density contribution from Au
to Si/Ge is chosen to be the same as the one used for the

3r T
\ Au - Au
2r H Si- Si
I " ------ Si-Au
1F 1
S \
o [
= oF =
z |
_1?
_2:_
_: 1 1 1
30

r, (A)

Si-Si and Ge-Ge contributions. This choice ensures that,
based on Egs. (10), (11), (12a), and (14), the parameterf‘:me
cancels out in the calculation of the embedding energy for
Si/Ge atoms and can be assigned an arbitrary value. We keep
this parameter in the potential as it may become useful when
the potential is applied to different systems. The cutoff func-
tion, fc(r;;), is used in Eq. (15) to smoothly terminate the
partial electron density contribution from Si to Au at ry;

=R,,. This function is taken in the form used in the Tersoff
potential 10

1 f()r 0< r,-j<RS
_R
felry)= 1/2+1/2COS{W<M)} for Ry <r; <Ry
v —Rs
0 for r1]>RM
(16)

The fitting parameters in the partial electron density func-
tions are f?“, )/é“, yg‘/ Ge Rﬁ“, R, and Ry,.

The parameters for the electron density function and the
pair energy function for Au-Si and Au-Ge cross interactions,
given by Egs. (13)-(16), are selected based on the results of
DFT calculations performed for several representative Au-

T
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FIG. 3. (Color online) Plots of the pair potential functions for (a) Si-Au and (b) Ge-Au interactions described by the A-EAM (SW)

potential.
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TABLE I. Parameters of the pair energy function and the partial
electron density function for Au-Si and Au-Ge cross interactions in
the A-EAM (SW) potential.

Parameters Au-Si Au-Ge
Ac (eV) 5.189 4769
B¢ (eV) 9.8129 8.779
ac -0.555 -0.555
Bc -0.93 -0.93
oc (A) 1.81 1.884
Pc 4 4

Oc 0 0

fhu 4.8 42
poiae 16 16

yp! 3.56 3.56
ypIae -1.1 -1.1
R (A) 2.47 2.57
R (A) 2.97 3.07
Ry (A) 47837 4.98

Si/Ge bulk structures and small clusters (see Secs. III C and
III D). Since the number of the energy and structural param-
eters evaluated in the DFT calculations by far exceeds the
number of the fitting parameters, the fitting procedure is not
aimed at reproducing the exact values of the material prop-
erties predicted in the DFT calculations. Rather, the results of
the DFT calculations and the experimental data on the en-
thalpy of mixing of liquid Au-Si and Au-Ge solutions® are
considered together as a target in the optimization of the
overall agreement. Two sets of parameters defining the cross-
interaction functions in the A-EAM (SW) potential that are
found to provide a satisfactory representation of the DFT
results and the experimental enthalpies of mixing for Au-Si
and Au-Ge systems (see Sec. IV) are listed in Table 1. The
corresponding plots of the partial electron density functions
and the pair energy functions and are shown in Figs. 2 and 3
by the dashed lines.

As apparent from Fig. 2, the partial electron density con-
tribution from Si to Au is larger than the ones from Au to Au
and from Au to Si. Our initial attempt to use the same partial
electron density contributions, f;;(r;;)=f;(r;;), resulted in un-
satisfactory representation of some of the material properties,
particularly the experimental dependence of the enthalpy of
mixing of the liquid alloy on the composition. The large
difference in the partial electron density contributions from
Au to Si/Ge and from Si/Ge to Au can be loosely related to
the partial charge transfer between the two components. The
DFT calculations discussed in the following sections suggest
that the formation of a Au-Si/Ge bond is associated with a
partial charge transfer from the Si or Ge atom to the Au
atom. This observation is consistent with the results of recent
DFT calculations performed for a Au/Si interface,’® which
show that an extra charge density is supplied to Au-Si bonds
by the neighboring Si-Si bonds. The charge transfer from
Si/Ge to Au can be attributed to higher electronegativity of
Au as compared to Si and Ge, 2.54 vs 1.90 and 2.01 in
Pauling units.
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The connection between the actual electron density in the
atomic configurations and the concept of the “electron den-
sity” used in the formulation of the EAM potential, however,
is rather tortuous and may be misleading. It is more impor-
tant to consider how the difference in the partial electron
density contributions affects the performance of the A-EAM
(SW) potential. According to Eq. (12a), the reduction in the
electron density at the location of a Si/Ge atom due to the
presence of Au atoms in its neighborhood corresponds to the
weakening of the strength of the angular interactions, in-
creasing the tolerance of the local configuration to deviations
from the perfect diamond lattice structure. On the other hand,
the higher values of the electron density contribution from
Si/Ge to Au, as compared to Au to Au contribution, imply
that a Au atom has an increased electron density and, there-
fore, more repulsive interactions with the neighboring atoms,
when it has Si/Ge atoms as its neighbors. A quantitative
analysis of the performance of the A-EAM (SW) potential
with cross interaction defined by the parameters given in
Table I is provided in the following sections, where the pre-
dictions of the A-EAM (SW) potential are related to the re-
sults of DFT calculations and experimental data.

C. DFT calculations for bulk Au, Si, Ge, and their alloys

Plane-wave periodic density-functional theory calcula-
tions, as implemented in the Vienna ab initio simulation
package (VASP) code,’” are used to calculate structural and
energy characteristics of various bulk crystals and model
Au-Si and Au-Ge alloys. The calculations are carried out
using the Perdew-Wang 1991 (PW91) functional®® within
generalized gradient approximation (GGA) and the local-
density approximation (LDA). The interactions between ions
and electrons are described by the ultrasoft Vanderbilt
pseudopotentials® provided in the VASP program.’” The cut-
off energy used for the plane-wave basis set is 200.0 eV. The
electronic energy is converged to within a tolerance of
10™* eV, whereas the structures are optimized to within
1073 eV.

The total bonding energies for the alloys (Au-Si or Au-
Ge) were calculated by subtracting the sum of the energies of
individual atoms (Eg;, Ege, and E,,) from the calculated en-
ergy of the specific alloy considered (E,;,,). For example,
for a Au-Si alloy configuration consisting of Ng; silicon at-
oms and N,, gold atoms, the total energy (Ey,,) is defined as

E1p=Egigy — (NsiEsi + NpoyEpy) - (17)

The cohesive energy of the alloy is defined as the average
bonding energy per atom, E-=E,,/(Ng;+N,,). The calcula-
tion of the energies of individual atoms (Eg; and E,,) in-
cludes spin-polarization effects. The bulk modulus (B) is de-
termined by calculating the total energy as a function of
volume (V) and fitting the total energy versus volume depen-
dence, Ep,,(V), to the Birch-Murnaghan equation of
state. 4041

The calculations for the alloy systems are preceded by
evaluation of the performance of the GGA and LDA calcu-
lations in predicting properties of one-component systems.
The lattice constant (a,), cohesive energy, and bulk modulus
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TABLE II. The values of the lattice constant, a,, the cohesive energy, E., and the bulk modulus, B,
predicted for Si, Ge, and Au crystals (diamond lattice for Si and Ge, fcc for Au) in DFT (VASP) calculations
performed with GGA (PW91) and LDA. The results of the DFT calculations are compared with predictions
of the A-EAM (SW) potential, as well as with experimental values (Ref. 34).

Elements/Property GGA LDA A-EAM (SW) Experiment®

Si a, (A) 5.445 5.393 5.431 5.431
Ec (eV/atom) —4.560 -5.285 -4.334 -4.630

B (Mbar) 0.851 0.957 1.014 0.980

Ge a, (A) 5.764 5.629 5.65 5.650
E¢ (eV/atom) -3.745 -4.563 -3.860 -3.860

B (Mbar) 0.584 0.712 0.795 0.772

Au a, (A) 4.183 4.068 4.089 4.089
E¢ (eV/atom) -3.106 —4.186 -3.930 -3.930

B (Mbar) 1.301 1.850 1.664 1.670

4Reference 34.

are calculated for Si, Ge, and Au crystals with diamond cubic
structure for Si and Ge and face-centered cubic (fcc) struc-
ture for Au. The results are summarized and compared with
experimental data,>* as well as with values predicted by the
A-EAM (SW) potential, in Table II. The values obtained for
Si agree with the results of DFT calculations reported in Ref.
42. The comparison of the results of the DFT calculations
with experimental data suggests that GGA provides a better
description of the cohesive energies of Si and Ge, whereas
LDA is more accurate in predicting the lattice constants and
bulk moduli of Ge and Au, as well as the cohesive energy of
Au. Therefore, in order to achieve an overall good represen-
tation of the structural characteristics and energies of bulk
alloys, a combination of the results of GGA and LDA calcu-
lations is used in the parameterization of Au-Si and Au-Ge
cross interactions in the A-EAM (SW) potential.

In the absence of stable Au-Si and Au-Ge alloy com-
pounds, the results of DFT calculations performed for two
artificial cubic crystal structures, B1 (AuSi, AuGe) and L1,
(AusSi, Au;Ge), are used in the parameterization of the po-
tential. The values of lattice constants, cohesive energies, and
bulk moduli predicted in LDA and GGA calculations for the
two structures are listed for the Au-Si and Au-Ge systems in
Tables III and 1V, respectively. The energy difference be-
tween a substitutional Au impurity and a vacancy in Si and

Ge diamond lattices (ES“”A) is also calculated and listed in
the tables.

The results of the calculations performed for the same
atomic structures with A-EAM (SW) potential are also given
in Tables IIT and IV. The empirical potential with the sets of
parameters listed in Table I is found to provide an overall
satisfactory description of the DFT results. The values pre-
dicted for the lattice constants and the energy differences
between substitutional Au impurities and vacancies in the Si
and Ge crystals are slightly larger than the values predicted
in the DFT calculations, whereas the cohesive energies and
bulk moduli tend to fall in between the values predicted in
the GGA and LDA calculations.

D. DFT calculations for small Au-Si and Au-Ge clusters

In addition to the bulk systems discussed in the previous
section, the results of DFT calculations for small (five-atom)
clusters (AuSiy,AuGe,) are used in parameterization of the
A-EAM (SW) potential. The calculations are performed for
three cluster configurations shown in Fig. 4, namely, tetrahe-
dral (Tetra), pentagonal (Penta), and close packed (CP). The
geometry of the clusters is characterized by one (a, in Tetra)
or two (a; and a, in Penta and CP) Au-Si/Au-Ge interatomic
distances, as well as Si-Au-Si/Ge-Au-Ge bond angles

TABLE III. Properties of two artificial crystal structures, B1 (AuSi) and L1, (AusSi) predicted in DFT
(vAsp) calculations performed with GGA and LDA, as well as in simulations performed with the A-EAM
(SW) potential. The values of the lattice constant, a,, the cohesive energy, E, the bulk modulus, B, and the

energy difference between a substitutional Au impurity and a vacancy in Si diamond lattice, EEZIC’/ A are listed
in the table.
L1, Bl
ESubiAu a, Ec B a, E¢ B

Au-Si (eV) (A) (eV/atom) (Mbar) (A) (eV/atom) (Mbar)
GGA 5.919 4.145 -3.149 1.203 5.280 -3.643 0.845
LDA 6.944 4.087 -4.108 1.888 5.198 —4.250 0.925
A-EAM (SW) 7.024 4.193 —-4.035 1.591 5.362 -3.873 1.018
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TABLE 1V. Properties of two artificial crystal structures, B1 (AuGe) and L1, (Au3Ge) predicted in DFT
(vasP) calculations performed with GGA and LDA, as well as in simulations performed with the A-EAM
(SW) potential. The values of the lattice constant, a,,, the cohesive energy, E, the bulk modulus, B, and the

energy difference between a substitutional Au impurity and a vacancy in Ge diamond lattice, E

listed in the table.

Sub/Au
vac

L1, Bl
ESublAu a, Ec B a, E¢ B
Au-Ge (eV) (A) (eV/atom) (Mbar) (A) (eV/atom) (Mbar)
GGA 5.470 4212 -3.179 1.019 4.455 -3.354 0.791
LDA 6.190 4.090 -4.185 1.437 5.302 -4.302 0.896
A-EAM (SW) 6.56 4.259 -3.860 1.275 5.472 -3.660 0.870

(Osi-Au-si» Oce-au.ge) calculated for the Penta configuration.
All DFT calculations (GGA and LDA) for small clusters
are performed with DMol* module of the Accelrys MATERIALS
STUDIO software package. A double numerical basis set is
used to describe all atoms, which includes polarization func-
tions along with effective core potentials to model the core
electrons. All of the GGA calculations are performed using
the PWO91 functional. Relativistic effects are treated using
relativistic core pseudopotentials. The structures of indi-
vidual clusters are optimized with a self-consistent field en-
ergy convergence of 1.0X 1077 hartree. The total energies,
interatomic distances, and bond angles are found by optimiz-
ing the structures to within a 1077 hartree tolerance using
DMol®. Similarly to the energies of bulk structures, Eq. (17),
the total energy, E, of a cluster consisting of Ngjg. Si or Ge
atoms and N4, Au atoms is obtained by subtracting the sum
of the energies of the individual atoms (Eg;, Ege, and E,,)
from the total energy of the cluster predicted by DMol®

(Ecluster) >

Er=E_ usier — (NsiiGeEsiige + NavEaw) - (18)

The results of the DFT calculations and the corresponding
predictions of the A-EAM (SW) potential are summarized in
Tables V and VI for AuSi, and AuGe, clusters, respectively.
Out of the three configurations considered for AuSi, and
AuGe, clusters, the close-packed configuration is predicted
to have the lowest energy in both GGA and LDA calcula-
tions. This prediction is in agreement with the results ob-
tained with the A-EAM (SW) potential. The equilibrium
(a) (b)

\ ©
O
4

FIG. 4. (Color online) (a) Tetrahedral, (b) pentagonal, and (c)
close-packed configurations of AuSi, and AuGe, clusters analyzed
in DFT (DMol®) and A-EAM (SW) calculations. Interatomic dis-
tances that characterize the geometry of the clusters are shown in
the figures. The Au and Si/Ge atoms are shown in yellow and ma-
roon colors, respectively.

—Q0

bond angles, predicted by the A-EAM (SW) potential for the
pentagonal configuration, however, exhibit significant devia-
tion from the values obtained in the GGA and LDA calcula-
tions. Nevertheless, given the uncertainty in the quantitative
accuracy of the DFT calculations, the overall performance of
the empirical potential in the description of the crystal struc-
tures and small clusters can be considered to be acceptable.
An important test of the suggested parameterization of the
A-EAM (SW) potential comes from the calculation of the
properties of liquid Au-Si and Au-Ge alloys, for which ex-
perimental data are available.> The results of the calcula-
tions of the enthalpies of mixing of liquid Au-Si and Au-Ge
alloys and the equilibrium lines on the Au-Si phase diagram
are presented and compared with experimental data in the
next two sections.

IV. ENTHALPY OF MIXING OF LIQUID
Au-Si AND Au-Ge ALLOYS

The dependence of the enthalpy of mixing on the compo-
sition of the alloys is calculated for a temperature of 1500 K
for Au-Si and for a temperature of 1685 K for Au-Ge. The
corresponding sets of experimental data are available for
these alloys in Ref. 35, allowing for the direct comparison
between the calculated and experimental dependences. The

TABLE V. Structural characteristics and energies of three AuSiy
clusters shown in Fig. 4, as predicted in DFT (DMol?) calculations
performed with GGA and LDA, as well as in simulations performed
with A-EAM (SW) potential. Here, a,, a;, and a, are the Au-Si
interatomic distances marked in Fig. 4, E7 is the total energy of the
cluster, and 6gi_a,.s; 1S the Si-Au-Si bond angle in the pentagonal
configuration.

AuSi, cluster GGA LDA A-EAM (SW)
Tetra ay (A) 2.398 2.356 2.396
Er (eV) —7.7092 -10.044 —6.84733
Penta  aj/a, (A)  2.32/3.94 2278/3.842  2.220/3.544
Er (eV) -13.353 -15.535 -11.188
Osians (deg)  94.403 94.968 120.309
CP  ajla, (A) 2.754/2.983 2.677/2.866  2.521/3.035
Er (eV) -13.686 -15.791 -11.5817
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TABLE VI. Structural characteristics and energies of three
AuGe, clusters shown in Fig. 4, as predicted in DFT (DMol®) calcu-
lations performed with GGA and LDA, as well as in simulations
performed with A-EAM (SW) potential. Here, a,, a;, and a, are the
Au-Ge interatomic distances marked in Fig. 4, E is the total energy
of the cluster, and g aou.ge 1S the Ge-Au-Ge bond angle in the
pentagonal configuration.

AuGe, cluster GGA LDA A-EAM (SW)
Tetra a, (A) 2.482 2.429 2451
Eg (eV) -7.259 -9.6514 -6.3623
Penta  a/a, (A)  2.722/4790 2.584/4.658  2.533/4.158
Ey (eV) -10.521 -12.935 —10.105
Oe-Au-Ge (deg) 68.569 66.502 102.502
CP a/a, (A) 2.837/3.102 2.743/2.984  2.656/3.284
Ey (eV) -12.377 —14.7046 —10.430

values of the enthalpy of mixing are obtained in MD simu-
lations performed for a system composed of 500 atoms ini-
tially arranged in an fcc lattice with dimensions of 5X5
X5 unit cells. The relative fractions of Au and Si/Ge atoms
in the atomic configuration defined the composition of the
system. For each composition, the liquid structure is pre-
pared by slow heating performed up to the temperature when
a complete meting of the system is observed. The simula-
tions are performed under zero pressure conditions, allowing
the system to change volume during heating and melting.
The liquid structure is then equilibrated for 200 ps at a tem-
perature of interest. The enthalpy of mixing at zero pressure
is calculated from the internal energy of the liquid alloy. For
example, the molar enthalpy of mixing of the Au-Si alloy at
temperature 7' and molar fraction of silicon Xg; is calculated
as

AH,,; (X5, T) = U(Xg;, T) = [XiUsi(T) + (1 = X)) Upy(T)],
(19)

where Ug(T) and U, (T) are the molar internal energies of
pure liquid Si and pure liquid Au, respectively, and U(Xg;,T)
is the molar internal energy of the alloy.
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The calculated and experimental dependences of the en-
thalpy of mixing of Au-Si and Au-Ge liquid alloys on the
composition of the alloys are shown in Fig. 5. The depen-
dences obtained with the A-EAM (SW) potential capture the
main characteristics of the experimental dependences. In par-
ticular, in agreement with experimental dependences, the cal-
culated curves have asymmetric shapes, with minima shifted
to the Au-rich side of the alloy compositions. The depen-
dence calculated for Au-Si has a minimum of —9.88 kJ/mol
at a concentration of 33 at. % Si and is in a good semiquan-
titative agreement with the experimental dependence exhib-
iting a minimum of —8.23 kJ/mol at a composition of
24 at. % Si. The agreement is even better for Au-Ge alloy,
where the calculated dependence has a minimum of
—6.68 kJ/mol at a concentration of 39 at. % Si, compared
to the experimental dependence exhibiting a minimum of
-5.4 kJ/mol at a composition of 38 at. % Ge. To further
test the ability of the A-EAM (SW) potential to describe the
thermodynamic properties of metal-covalent systems, the re-
sults of the calculation of the equilibrium phase diagram for
the Au-Si alloy are discussed in the next section.

V. PHASE DIAGRAM OF Au-Si ALLOY

The domains of thermodynamic stability of phases can be
established for the Au-Si system by calculating the Gibbs
free energy - composition (G-X) curves for all phases present
in the system at various temperatures.** The equilibrium
lines on the phase diagram can then be obtained using the
common tangent construction applied to sets of G-X curves
plotted for different phases at the same values of tempera-
ture.

The Gibbs free energy of mixing of a binary Au-Si alloy
under constant pressure conditions can be written as

AGmix(XSi’T) =A fr;rix(XSi’ T) + kBT[XSi 1n()(Si)
+(1 = Xg)In(1 - Xg))], (20)

where kp is the Boltzmann constant and AG;,. . is the excess

free energy of mixing.*> Within the regular solution model,
the excess free energy of mixing can be approximated by the
enthalpy of mixing, which can be easily evaluated in MD

0
4k
s |
€ |
S |
S
= 8¢
=T
=
< Liquid Au-Ge alloy
-12F ——o——  Experiment
I 1685K
—e—— A-EAM (SW)
Lo v
0 0.2 0.4 0.6 0.8 1
(b) XGe

FIG. 5. (Color online) Enthalpy of mixing of (a) liquid Au-Si alloy at 1500 K and (b) liquid Au-Ge alloy at 1685 K. The values predicted
by the A-EAM (SW) potential are shown by red circles and experimental data (Ref. 35) is shown by green diamonds.
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simulations performed for different temperatures and compo-
sitions (see Sec. IV). The large difference in atomic sizes of
Au and Si, along with other contributions to the excess
entropy,*** however, may result in the entropy of mixing
significantly exceeding that of an ideal solution, making the
above approximation unreliable.*® Therefore, the excess
Gibbs free energy of mixing is calculated in this work based
on the results of semi-grand canonical MC (SGCMC)
simulations,*” 9 as discussed below.

The SGCMC simulations provide a convenient method
for evaluation of the difference in the excess chemical poten-
tials of Au and Si, A, =pu%,—ué. To calculate the excess
chemical potential difference for a given phase state, the ini-
tial systems are first prepared and equilibrated in MD simu-
lations performed at zero pressure and desired temperatures
and compositions. In the subsequent MD simulation, we per-
form a series of virtual trial MC moves, where each move
corresponds to a virtual switch in the identity of a randomly
selected Si atom to Au. The change in the potential energy of
the system AUg;_, o, and the corresponding Boltzmann factor
exp(—AUsg;_, oo/ kpT) associated with the switch are calcu-
lated and the identity of the atom is switched back to Si. In
this combined MD-MC approach, the constant-pressure
constant-temperature MD serves the purpose of providing
equilibrium configurations for the execution of the virtual
switches of the SGCMC algorithm. A commonly used alter-
native for exploring the configurational space is to include
random displacements of atoms and random changes in vol-
ume of the computational cell in the MC simulation.*748-30
We verified the equivalence of the two approaches by per-
forming MD-MC calculations of the boundary outlining the
solid phase-separation regions (miscibility gaps) in the low-
temperature parts of the phase diagrams for SW and Tersoff
Si-Ge and comparing the results to the predictions of earlier
SGCMC calculations.'>3!

After a large number of the virtual trail moves is per-
formed, the excess chemical potential difference can be cal-
culated using the following equation,*’

Ng; ( AUSHAu>
A =—kgT1 - , 21
Mex B Il< NAu +1 exXp kBT ( )

where Ny, and Ng; are the number of Au and Si atoms in the
system. Once Au,, is calculated for different temperatures
and compositions of the alloy, the excess Gibbs free energy
of mixing can be obtained from the Gibbs-Duhem equation,
by integrating the excess chemical potential difference

_[AGmu(XSi’ T)] ==

Aw, (X, T). 22
X51 /-Lex( Si ) ( )

For the Au-Si system, the three phases that have to be con-
sidered are the « (fcc) phase, the B8 (diamond cubic) phase,
and the L (liquid) phase. The Gibbs free energies of mixing
obtained for these three phases from Egs. (20)-(22) have
different reference states (phases of the pure components be-
fore mixing). Using notation that explicitly shows the refer-
ence states for the two components in the brackets,*’ the
Gibbs free energies of mixing for the three phases are
AGS, {a;a}, AGP {B; B}, and AGE, {L;L}. To enable a di-
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rect comparison of the Gibbs free energies of mixing of these
three phases, the same reference state should be used for
each of the two components in all three cases. Choosing the
reference states as pure fcc « for Au, and pure diamond
cubic B for Si, the Gibbs free energies of mixing can be
written as

AGY, {a; By = AGS, {a; a} + X AGYH ™, (23)

AGE fa: By = AGE {B: B} + (1 - X)AGSL P, (24)

AGE {a; By = AGE {L; LY + (1 = Xg) AGYEE + X AGYPF,
(25)

where AGY*=Ggi - GL&B, AGY 7 P=GP -G, AGSE

=G% - fo\‘;, and AGOBﬂ =Go- G(S)B are the dlfferences in
the Gibbs free energies of dlfferent phases for the corre-
sponding pure components.

The application of the combined MD-MC approach for
calculation of the Gibbs free energies of mixing for the solid
phases, Egs. (23) and (24), is hampered by the loss of stabil-
ity of the solid phases with solute concentrations exceeding
20 at. % in MD simulations performed at 300 K or above.
The high energy of Si substitutional impurities in fcc Au and
Au substitutional impurities in diamond cubic Si, along with
the limited stability of the solid solutions at finite tempera-
tures, suggest that the Gibbs free energies of mixing given by
Egs. (23) and (24) are increasing sharply and become posi-
tive at small concentrations of solute atoms, thus allowing to
assume that Au and Si are mutually insoluble in the solid
state at all temperatures. This assumption eliminates the need
for calculations of the G-X curves for the solid phases, as the
common tangent construction can be drawn to the end points
of the range of composition (Xg;=0 and Xg;=1). The lack of
mutual solubility of Au and Si in the solid state is also ob-
served experimentally,® with less than 2 at. % Si soluble in
Au and less than 2 X 10™ at. % Au in Si.

The Gibbs free energy of mixing in the liquid state,
AGE, {L;L}, is calculated based on the results of SGCMC
simulations, Egs. (20)—(22), as discussed above. To illustrate
the calculation procedure, the values of the excess chemical
potential difference, Au,,, obtained in the SGCMC simula-
tions for the liquid alloy at 700 and 1100 K are shown in
Figs. 6(a) and 6(b), respectively. The excess Gibbs free en-
ergy of mixing, AGY (Xg;,T), is then calculated with Eq.
(22) and used in Eq. (20) to obtain the Gibbs free energy of
mixing of the liquid alloy. The final step is to change the
reference states in the expression of the Gibbs free energy of
mixing from the liquid phase components to the « phase for
Au and B phase for Si, Eq. (25). This change in the reference
states requires knowledge of the corresponding differences in
the Gibbs free energies of pure components in the solid and
liquid states. The values of AGY* " and AGY~* are calcu-
lated in this work based on the results of MD simulations
performed for fcc Au, diamond cubic Si, and liquid phase Au
and Si. The simulations are performed under constant pres-
sure conditions for ranges of temperatures limited by the
temperatures of maximum superheating for the solid phases
and by the temperatures of the maximum undercooling be-
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FIG. 6. Plots of the excess chemical potential difference and the Gibbs free energy of mixing calculated for the liquid Au-Si alloy based
on the results of SGCMC simulations. Interatomic interactions are described by the A-EAM (SW) potential. The results are presented for two
temperatures, [(a) and (c)] 700 K and [(b) and (d)] 1100 K. The tangent lines drawn in (c) and (d) to the G-X curve for the liquid phase define
the boundaries of liquid-solid coexistence regions (liquidus lines shown in Fig. 7).

fore the onset of crystallization for the liquid phases. Using a
procedure described in Ref. 52, the temperature dependences
of the heat capacity are calculated for the liquid and solid
phases from the temperature dependences of the enthalpy
obtained in MD simulations, Cp=(JH/JT) p. The temperature
dependences of the heat capacity are then used to calculate
the temperature dependences of the entropy for the four
phases. The reference values for the enthalpy and entropy
temperature dependences for the liquid phases are obtained
from the values of the latent heat of melting, AH,,, and the
entropy change in melting, AS,,=AH,,/T,,, with the equilib-
rium melting temperatures, 7,,, determined in a separate set
of liquid-crystal coexistence simulations performed for EAM
Au and SW Si. The Gibbs free energies of pure components
are then determined from the values of the enthalpy and en-
tropy, and the changes in the Gibbs free energy upon melting
of Au and Si are obtained for different temperatures as AG
=AH-TAS.

Once all the terms of Eq. (25) are known, the G-X curves
for the liquid phase can be plotted for different temperatures
and the common tangent constructions can be used to deter-
mine the equilibrium lines on the phase diagram. The plots
of the G-X curves and the common tangent constructions are
shown for temperatures of 700 and 1100 K in Figs. 6(c) and
6(d), respectively. The temperature of 700 K is below the

melting temperatures of both EAM Au (963 K) (Ref. 52) and
SW silicon (1677 K).>3 As a result, the liquid curve has posi-
tive end points at both Xg=0 (AGY*"“>0) and Xg=1
(AGSP~E>0). As discussed above, due to the lack of mutual
solubility of Au and Si in the solid state, the G-X curves for
the solid phases are assumed to have their minima very close
to the compositions of pure components. The common tan-
gent constructions are then reduced to tangent lines drawn
from the points corresponding to pure « and B phases
(AGS {a; B}=0, X5=0 and AGE, {a;B}=0, Xg=1) to the
curves corresponding to the liquid phase (AG%. {«;8}). Each
common tangent construction gives a point on a liquidus line
below which the liquid solution is in equilibrium with the
corresponding solid phase. The temperature of 1100 K is
above the melting temperature of Au but below the melting
temperature of Si. Thus, only one common tangent construc-
tion can be drawn in Fig. 6(d), defining the boundary of the
liquid-solid Si coexistence region on the phase diagram.
The equilibrium phase diagram predicted by the A-EAM
(SW) potential for the Au-Si system is shown in Fig. 7(a).
The liquidus lines on the phase diagram are obtained by
computing the Gibbs free energy of mixing for the liquid
phase at different temperatures, and then using the common
tangent construction, as described above. The phase diagram
is of the simple eutectic type and matches relatively well the
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FIG. 7. Phase diagrams of the Au-Si alloy as (a) predicted by the A-EAM (SW) potential and (b) obtained experimentally (Ref. 35). The
eutectic temperatures and compositions are 590 K and 31 at. % Si in (a) and 636 K and 18.6 at. % Si in (b).

experimental phase diagram shown in Fig. 7(b). The A-EAM
(SW) potential predicts a eutectic temperature of 590 K,
which is comparable to the experimental eutectic tempera-
ture of 636 K. The eutectic composition of 31 at. % Si, pre-
dicted by the A-EAM (SW) potential, however, exhibits a
substantial deviation from the experimental value of
18.6 at. % Si. The overestimation of the eutectic composi-
tion and underestimation of the eutectic temperature can be
attributed to the lower melting point of the EAM Au material
(963 K determined in MD simulations,’” as compared to the
experimental value3* of 1338 K), as well as to the shift of the
location of the minimum of the composition dependence of
the enthalpy of mixing to higher values of Si concentration
compared to the experimental data, Fig. 5(a). Thus, a more
accurate fitting of the Au-Si cross interaction to the enthalpy
of mixing of the liquid alloy, along with improved melting
properties of the EAM Au can be expected to result in a
more accurate representation of the experimental Au-Si
phase diagram by the A-EAM (SW) potential.

VI. SUMMARY

A relatively simple and computationally efficient descrip-
tion of interatomic interactions in metal-covalent systems
can be achieved with an angular-dependent embedded atom
method potential combining the EAM potential with the SW
potential in a compatible form. The design of the A-EAM
(SW) potential involves a reformulation of the electron den-
sity function of the conventional EAM potential to include
an explicit three-body angular dependence. The effects re-
lated to the charge transfer in the interactions between atoms
with different electronegativities can be accounted for in the
potential by defining the partial electron density contribu-
tions based on the type of the pair of atoms forming a bond,
rather than the types of individual atoms.

The A-EAM (SW) potential reduces to well-established
and thoroughly tested potentials developed for pure compo-
nents and provides an attractive alternative to the design of
new alloy potentials with original functional forms. The
functional form and parameters used in the description of the
interactions between atoms of the same type are directly de-

fined by the original EAM and SW potentials and do not
need to be adjusted in the alloy potential, thus eliminating
the need for extensive testing and limiting the scope of the
potential parameterization to only the cross interaction be-
tween the components. Moreover, the A-EAM (SW) poten-
tial allows for an easy extension to multicomponent systems
for which the EAM and SW potentials have been parameter-
ized. For example, the EAM potential used in this work for
Au has also been parameterized for 15 other metals'® with
simple alloy model enabling simulations of multicomponent
metallic alloys. With the development of the A-EAM (SW)
potential, the range of alloy systems accessible for atomistic
modeling can be expanded to include Si and Ge.

The ability of the potential to provide an adequate de-
scription of binary systems with mixed metallic-covalent
type of bonding is illustrated for Au-Si and Si-Ge systems
with sets of parameters for Au-Si and Au-Ge interactions
chosen based on the results of DFT calculations performed
for several bulk structures and small clusters. The depen-
dences of the enthalpy of mixing in Au-Si and Au-Ge liquid
alloys on the composition are calculated with the A-EAM
(SW) potential and compared with experimental data. In
agreement with experimental dependences, the calculated
values of the enthalpy of mixing are negative in the whole
range of compositions and the dependences have asymmetric
shapes, with minima shifted to the Au-rich side of the alloy
compositions. To further test the performance of the A-EAM
(SW) potential in the description of thermodynamic proper-
ties of the alloys, the equilibrium lines on the Au-Si phase
diagram are calculated based on the values of the excess
chemical potential difference between Au and Si, evaluated
in a series of SGCMC simulations. The Au-Si phase diagram
predicted by the A-EAM potential is of the simple eutectic
type with the eutectic temperature being within 50 K (8%)
from the experimental value. Overall, the calculations dem-
onstrate the ability of the A-EAM (SW) potential to capture
the main characteristics of the experimental dependences and
to provide an adequate semiquantitative description of the
structural and thermodynamic properties of binary systems
with mixed type of bonding. With clear pass existing for
parameterization of cross interactions between Si/Ge and a
broad range of metals, the A-EAM (SW) potential shows a
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considerable promise for enabling large-scale atomistic
simulations of metal-Si/Ge systems.
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