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We calculate the x-ray diffraction peak profiles from distributions of misfit dislocations in the whole range
of their positional correlations, from completely random to periodic. Both the spatial integration and the
integration over the dislocation ensemble are performed by Monte Carlo techniques. The diffraction peaks
from thin relaxed films consisting of a narrow coherent and a broad diffuse component are explained. Corre-
lation functions are calculated analytically for different types of positional correlations between dislocations.
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I. INTRODUCTION

Epitaxial growth of a film with lattice parameters different
from the ones of the substrate gives rise to elastic strain in
the film. The accumulated elastic strain energy is propor-
tional to the film thickness and is released at some stage
either plastically, through the introduction of dislocations, or
elastically, by the formation of surface undulations or three-
dimensional islands. The elastic relaxation can sufficiently
reduce the strain energy only in rather thin films, so that
further deposition leads to plastic relaxation. As a result, suf-
ficiently thick mismatched epitaxial films are plastically re-
laxed by networks of dislocations located at the film-
substrate interface �misfit dislocations�.

Plastic relaxation proceeds differently in systems with
small and large misfits �let us say, below and above 1%�. If
the misfit is small, a smooth strained dislocation-free layer
grows first. Dislocations reduce the elastic energy only after
the thickness exceeds some critical value. The critical thick-
ness can be calculated either by considering elastic forces
acting on the dislocation,1 or by comparing the elastic ener-
gies of the films with and without dislocations.2 The energet-
ics and the relaxation kinetics of films with small mismatch
are well-studied, both theoretically and experimentally �see,
e.g., the reviews�.3,4 The dislocations nucleate at the film
surface and glide through the film to the interface. Since their
glide planes are inclined with respect to the interface, they
cannot move along the interface to further reduce the elastic
energy. The positions of the misfit dislocations are deter-
mined by the dislocation sources at the surface.

In systems with large misfit, the critical thickness de-
creases to just a few, or even less than one, atomic layer.
Misfit dislocations are introduced from the edges of small
three-dimensional islands before islands coalesce, or they
even form at the interface together with the nucleating is-
land. These dislocations are usually edge dislocations with a
Burgers vector in the interfacial plane �Lomer-type disloca-
tions�. Such dislocations most efficiently release the elastic
strain and, at the same time, can glide along the interface.
Since a periodic dislocation array realizes the lowest energy
state for a given dislocation density, Lomer dislocations tend
to arrange periodically. Let us also mention, for the sake of

completeness, the case of very large misfit �let us say, larger
than 10%�. In such systems, a coincidence lattice, rather than
misfit dislocations, forms at the interface �see, e.g., Ref. 5
and references therein�. We do not consider this case in the
present paper.

X-ray diffraction is commonly used to detect plastic re-
laxation in heteroepitaxial systems. The degree of relaxation
and hence the misfit dislocation density is determined di-
rectly from the relative positions of the film and the substrate
peaks.6–8 The information on the dislocation distribution that
is contained in the peak profiles, however, relatively rarely
becomes the subject of study.

The x-ray diffraction peak profiles from epitaxial films
with misfit dislocations9 differ from the diffraction peaks of
bulk dislocated crystals.10,11 The coherent peak is present
even for positionally uncorrelated misfit dislocations, while
it is absent for dislocations in bulk crystals. This is a result of
the elastic strain relaxation at the free film surface. The long-
range component of the dislocation strain, which decays as
r−1 �where r is the distance from the dislocation�, is compen-
sated by the image dislocation, similarly to the electrostatic
problem of a charge placed at some distance from a conduc-
tive plane. Since the dislocation makes a dipole with its im-
age dislocation, the strain due to a dislocation parallel to the
free surface decays as r−2, the Debye-Waller factor remains
finite, and the coherent peak survives. For uncorrelated misfit
dislocations, however, the coherent peak can practically be
observed only if the mean distance between dislocations is
large compared to the film thickness.9

The correlations between dislocations in bulk crystals act
to reduce the elastic energy of the crystal by screening the
dislocation strain field by surrounding dislocations.12–14

Similar screening is characteristic for threading dislocations
in epitaxial films.15–17 The driving force for correlations be-
tween misfit dislocations is quite different. They do not
screen each other but produce the collective effect to release
mismatch. Their correlations are directed to minimize the
energy of the system by developing a periodic dislocation
array. Periodic arrays of misfit dislocations have been proven
to exist in several systems18–24 by the presence of satellite
peaks.
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The diffraction peaks calculated for large densities of un-
correlated misfit dislocations are notably broader than the
experimentally observed peaks.9 A correction to pair correla-
tions between the dislocations was proposed by assuming
that the mean distance between dislocations is much smaller
than the correlation length which, in turn, is much smaller
than the film thickness. Large correction factors were re-
quired to quantitatively describe the experiments. On the
other hand, all characteristic features of the diffraction pat-
tern �relative widths of the peaks, orientation of the spots in
reciprocal space maps, etc.� were in good agreement with the
model of uncorrelated dislocations. An explanation found
later by analyzing the GaAs/Si�001� system25 is that, the mis-
fit dislocation network consists of two parts. The majority of
the dislocations are Lomer dislocations that order periodi-
cally and do not cause broadening of the diffraction peaks. A
smaller number of 60° dislocations glide from the surface
and add an uncorrelated distribution at the interface. These
dislocations determine the width of the diffraction peak.

Another type of diffraction pattern was found experimen-
tally for epitaxial films with a misfit of a few percent and
thicknesses of tens of nanometers. It consists of a narrow
central peak accompanied by a broad diffuse background.
Such a pattern was observed for various metal,26–38

semiconductor,20,21,39,40 oxide,41–43 and ferroelectric44–46 epi-
taxial films. Different authors finally agreed that the misfit
dislocations are the source of the two-component profiles.
Barabash et al.47 proposed a quantitative treatment of the
peaks. They noted that the Debye-Waller factor for misfit
dislocations in epitaxial films is not zero, in contrast to the
case of dislocations in bulk crystals, and the coherent peak
persists. However, a detailed calculation of the coherent peak
for uncorrelated misfit dislocations �see Fig. 5 in Ref. 9�
shows that the coherent intensity decreases by two orders of
magnitude, compared to a dislocation-free film, already for a
film thickness equal to the mean distance between disloca-
tions. The coherent intensity decreases exponentially with
further increasing the film thickness. This conclusion is con-
firmed by the calculations below, see the thick �green� line in
Fig. 3�a�: for uncorrelated dislocations with a mean distance
between the dislocations two times smaller than the film
thickness, the transverse peak already assumes a Gaussian
shape, a coherent peak is absent. The calculations below
show that sufficiently strong correlations in the dislocation
positions are required to retain the coherent peak.

The aim of the present work is to theoretically investigate
the x-ray diffraction peaks arising from misfit dislocation
arrays in the whole range of possible order, from completely
uncorrelated to nearly periodic. We show that both the sta-
tistical average over the dislocation distribution and the spa-
tial integration to obtain the diffracted intensity can be per-
formed by the double randomization Monte Carlo method.48

We also demonstrate that this method is a powerful tool to
calculate x-ray diffraction profiles due to various defect dis-
tributions with given statistical properties. We have already
presented a brief description of the Monte Carlo method and
used it to explain the x-ray diffraction measurements on the
GaN epitaxial films.49

Recently, Holy et al.50 employed our initial idea of the
Monte Carlo calculation of the diffraction peaks. They gen-

erated just one set of threading dislocations at random and
performed the spatial integration by the standard quadra-
tures. Since strongly oscillating functions make numerical
integration very difficult, they simplified the spatial integrals
using the stationary-point approximation. In the present
work, in contrast to Ref. 50, we take into account the corre-
lations in the dislocation positions, perform statistical aver-
aging over the dislocation ensemble, and carry out the spatial
integration also by the Monte Carlo method.

The atomic displacements in the epitaxial film are the
sums of the displacements caused by the individual disloca-
tions. Since the dislocation displacements only slowly de-
crease with the distance, a large number of dislocations con-
tribute to the total displacement of a given atom. We find that
the total displacements, considered as random functions of
the dislocation positions, reach the normal distribution as
soon as the mean distance between dislocations is smaller
than the film thickness. This allows us to evaluate the dif-
fracted intensity through the correlation function of the dis-
location positions. We obtain the correlation functions ana-
lytically for a variety of short and long-range correlations.

II. MONTE CARLO CALCULATION
OF THE DIFFRACTED INTENSITY

The diffraction geometry most suited to study arrays of
misfit dislocations and commonly used in the experiments is
at the same time most suitable one for the intensity calcula-
tions, see Fig. 1. We consider an array of dislocations ran-
domly positioned at the film-substrate interface. The scatter-
ing plane is the plane of the figure, and the dislocation lines
are perpendicular to it. We restrict ourselves to symmetric
Bragg reflections, since primarily these reflections are mea-
sured experimentally. The calculation method developed be-
low, however, is generic and equally well-suited for any
other dislocation arrangement or diffraction geometry. In the
common case of a 001 oriented cubic crystal, the dislocation
array shown in Fig. 1 completely determines the diffuse in-
tensity in the transverse scans.9 The second array, with the
dislocation lines parallel to the scattering plane, only pro-
vides a static Debye-Waller factor.

We consider a half-infinite crystal with the surface z=0
and misfit dislocations located at the interface z=d between
the substrate �z�d� and the epitaxial film �0�z�d�, see
Fig. 1. The scattering plane is the xz plane, the dislocation
lines run along the y axis. The x-ray scattering amplitude
from the film is given by the integral

A�qx,qz� = �
−�

�

dx�
0

d

dz exp�i�qxx + qzz + V�x,z��� , �1�

where we denote V�x ,z�=Q ·U�x ,z�. Here, U�x ,z� is the dis-
placement at the point �x ,z� caused by all dislocations, Q is

z

x0

d

film

substrate

FIG. 1. �Color online� Geometry of the misfit dislocations in a
relaxed epitaxial film.
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the reciprocal lattice vector, and �qx ,qz� are small deviations
of the scattering vector from Q in the scattering plane, along
x and z directions, respectively. Equation �1� takes into ac-
count that the displacement U�x ,z� due to dislocations shown
in Fig. 1 does not depend on y. Hence, we omit the integra-
tion over y of the term exp�iqyy�. The intensity calculated
below needs to be multiplied with a delta-function ��qy�
originated from this integration. We do not include it in the
equations explicitly, since we are interested in the intensity
distribution in the scattering plane. The vectors Q and U are
generally three-dimensional vectors. We restrict the calcula-
tions below to the symmetric Bragg case, Q= �0,0 ,Q�, and
to edge dislocations with the Burgers vector in the interfacial
plane, b= �b ,0 ,0�. Then, only one component of the dis-
placement vector, namely, Uz�x ,z�, is relevant to the present
problem.

The total displacement at a point �x ,z� due to all misfit
dislocations is given in linear elasticity theory by the sum
U�x ,z�=� ju�x−� j ,z� of the displacement fields of individual
dislocations located at random positions � j at the interface
and running perpendicular to the scattering plane �along the
y axis�. We can represent V�x ,z� as a sum

V�x,z� = �
j

v�x − � j,z� , �2�

where v�x ,z�=Q ·u�x ,z�. The explicit expressions for the
displacement u�x ,z� due to a dislocation parallel to the free
surface are well-known.51 A complete set of expressions for
all Burgers vector components is collected in Appendix B of
Ref. 9. The displacement component involved in the calcu-
lations of the present paper is given in the Appendix to the
present paper, see Eqs. �A1�–�A3�.

It is also useful for the analysis below to introduce the
microscopic dislocation density

g�x� = �
j

��x − � j� , �3�

where ��x� is the delta function. The mean dislocation den-
sity is 	g�x�
=�. Then, V�x ,z� can be represented by the
integral

V�x,z� = �
−�

�

v�x − �,z�g���d� . �4�

The scattered intensity is I�qx ,qz�= 	�A�qx ,qz��2
, where
the angular brackets 	 . . . 
 denote the average over statistics
of the random positions � j of the dislocations. The intensity
can be written as

I�qx,qz� = �
−�

�

dx� �
0

d

dz1dz2eiqxx+iqz�z1−z2�G�x,z1,z2� ,

�5�

where the function G�x ,z1 ,z2� is given by

G�x,z1,z2� = 	exp�i�V�x1,z1� − V�x2,z2���
 . �6�

We take into account that the system is homogeneous in the
xy-plane, so that only the distance between two points

x=x1−x2 is relevant. There is no such homogeneity in the z
direction, however.

Both the spatial integration �5� and the average over the
dislocation statistics �6� can be performed by a Monte Carlo
method: generate a set of dislocations �xj� according to their
distribution, generate a random point �x ,z1 ,z2�, and make
contributions for all points �qx ,qz� of interest. Such a
straightforward calculation encounters a difficulty in the in-
tegration over the x coordinate: the function G�x ,z1 ,z2� ap-
proaches a finite value in the limit x→�, which results in a
delta-function ��qx� in the integral �5�. It represents the co-
herent diffraction peak. The experiment does not suffer from
this difficulty because of its finite resolution. We take care of
this problem by introducing an appropriate resolution func-
tion in the Monte Carlo calculation.

Let us consider a measurement of diffracted intensity �5�
with a finite-resolution R�qx�. We take a Gaussian resolution
function,

R�qx� =
�x

�2	
exp−

1

2
�q�x�2� , �7�

where �x is the real-space resolution �the coherence length�.
We consider the resolution in the x direction only. The reso-
lution along qz could be introduced in exactly the same way.
However, the real-space resolution �x used in the calcula-
tions below is several times larger than the film thickness d,
so that the introduction of a similar z resolution does not
change the calculated intensity distributions. In other words,
we do not need to take into account the qz resolution as long
as the thickness fringes are resolved in the diffraction pat-
tern.

The finite-resolution intensity distribution is obtained as
the convolution

I�qx,qz� =� I�qx�,qz�R�qx − qx��dqx�. �8�

One can proceed from the convolution to the product of
the Fourier transforms, since the intensity I�qx ,qz� is already
represented by a Fourier integral �5�

I�qx,qz� = �
−�

�

dx� �
0

d

dz1dz2	J
R�x� , �9�

where

J = ei�qxx+qz�z1−z2�+V�x1,z1�−V�x2,z2�� �10�

and R�x�=exp�− 1
2 �x /�x�2�.

Let us consider the integration over x and represent Eq.
�9� as

I�qx,qz� = �
−�

�

F�x�p�x�dx , �11�

where
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F�x� = �2	�x� �
0

d

dz1dz2	J
 . �12�

We define p�x�= ��2	�x�−1R�x�, so that p�x� is normalized,
�−�

� p�x�dx=1. One can treat p�x� as a probability density.
Then, the integral �11� is the function F�x� averaged over the
probability density p�x�. The Monte Carlo calculation of this
integral consists in the summation of the values F�x� at the
points x chosen according to the distribution p�x�. Since our
resolution function is Gaussian �7�, we can generate random
points x possessing a Gaussian distribution with the well-
established and efficient algorithms and codes.52

The Monte Carlo estimate of the intensity �9� is the sum

I�qx,qz� =
V
N

�
n=1

N

Jn, �13�

where N is the number of generated configurations n
= �x ,z1 ,z2 , �� j�� and Jn is the value of J calculated for a con-
figuration n by Eq. �10�. A “coherence volume” V is defined
as V=�2	�xd

2. The values of z1 and z2 are uniformly dis-
tributed from 0 to d, the values of x possess a Gaussian
distribution with the dispersion �x, and the dislocations are
positioned at �� j� according to the physical model of their
correlations. We explore several models of dislocation distri-
butions in the next sections.

The accuracy of the approximation that replaces the inte-
gral �9� by the finite sum �13� is given by the statistical error,

�I /�N, in which the dispersion �I

2 can be estimated as

�I
2 = V2 1

N
�
n=1

N

Jn
2 − � 1

N
�
n=1

N

Jn�2� . �14�

The two sums, the ones of Jn and Jn
2, can be accumulated in

parallel without extra computational effort. We also found it
useful to calculate both the real and imaginary parts of the
sum �13�. Since the intensity is a real quantity, the imaginary
part is of the same order as the statistical error and decreases
as the number N of the generated configurations increases.
Equations �13� and �14� are ideally suited for parallel com-
putation: different parts of the sums can be independently
calculated and combined at the end.

III. CALCULATION RESULTS

In this section, we apply the Monte Carlo method to cal-
culate diffraction peak profiles for plausible models of dislo-
cation distributions. We find that the experimentally ob-
served peaks in different epitaxial systems can be explained
by these distributions.

We consider mean distances between dislocations compa-
rable to the film thickness d. A decorrelation of the disloca-
tion positions is expected at distances exceeding d. As the
simplest model, we assume that, once the position � j of the
dislocation is specified, the position of the next dislocation is
� j+1=� j +�x, where the random increment �x does not de-
pend on the number j. Its mean is equal to the average dis-
tance between dislocations, 	�x
=�−1, where � is the linear
dislocation density. In this model, the positions of the dislo-

cations form a Markov chain, which allows an analytical
calculation of the correlation function, see Sec. V A. It is
convenient to take the gamma distribution

p�x� =
�����x��−1e−��x

����
�15�

to model the dislocation distances. Here, ���� is the gamma
function and � is a parameter that allows a smooth transition
from the case of random uncorrelated dislocations with an
exponential probability distribution at �=1 to the case of
periodic dislocations at �→�. For �1, the distribution
�15� has a bell-shaped peak centered at x̄=�−1 with a half-
width proportional to �−1/2. Efficient algorithms and codes to
generate random numbers possessing a gamma distribution
are readily available.52

Figure 2 illustrates Monte Carlo calculations of the inte-
gral �9�. First, we generate a set of dislocations as a Markov
chain with the gamma distribution of distances between sub-
sequent dislocations and a given dislocation density �. Then,
we generate the points z1 and z2, uniformly distributed over
�0,d�, and the point x possessing the Gaussian distribution
with the dispersion �x chosen as the spatial resolution. The
term �10� is calculated for a predefined set of values �qx ,qz�
that are of interest and added to the sums �13� and �14� to
calculate the mean value of intensity and the error, respec-
tively. The spatial integration over x, z1, and z2 and the sta-
tistical average over the dislocation distribution �xj� are in-
dependent. Since the random number generation takes about
half of the computation time, the generation of a new dislo-
cation distribution for every spatial point is not efficient. We
use the dislocation distribution, once generated, for a number
of spatial points roughly equal to the number of dislocations
�which varies from hundreds to thousands�.

Figure 2�a� presents a qz scan of the intensity at qx=0
calculated by the Monte Carlo method as described above. It
reproduces the well-known thickness fringes. The peak posi-
tion is given by the mean displacement, 	V�x ,z�
. Using Eq.
�4�, we obtain

	V�x,z�
 = �
−�

�

v�x − �,z�	g���
d�

= ��
−�

�

v�x,z�dx

= − Qb��d −
�

1 − �
z� , �16�

where � is the Poisson ratio. As already described in the
previous section, we consider only symmetric Bragg reflec-
tions, Q= �0,0 ,Q�, and edge Lomer-type misfit dislocations
with the Burgers vector b= �b ,0 ,0�. The last equality in Eq.
�16� is a result of the analytical calculation of the integral
with the displacement field of the dislocation parallel to the
free surface of an elastic semispace. Since Eq. �16� possesses
a linear dependence on z, the peak position is
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qz0 = −
�

1 − �
Qb� . �17�

This value is just half of the peak shift due to misfit disloca-
tions �cf. Eq. �10� in Ref. 9�, since we consider only dislo-
cations perpendicular to the scattering plane. The disloca-
tions parallel to the scattering plane provide the second half
of the peak shift. We do not include them here since they do
not influence the peak shapes analyzed below. All qx scans
are calculated at the peak position qz=qz0.

Figures 2�c�–2�e� illustrate an improvement of the calcu-
lated peak profile as the number of the generated configura-
tions N increases. The central peak is resolved with little
computational effort, taking just few seconds of CPU time. It
takes hours, however, to resolve the satellites. A direct cor-
respondence to the data collection in the experiment is evi-
dent: the error decreases as a square root of the number of
attempts, 1 /�N, like the counting statistics in the experiment.
Figures 2�c�–2�e� clearly show that a reduction in the error
by one order of magnitude requires the increase in the num-
ber of the generated configurations by two orders. In the
present paper, we have restricted ourselves with a simple
crude Monte Carlo scheme. It can be much improved by
more sophisticated versions with variance reduction and
quasi-Monte Carlo sequences, see, e.g., Refs. 53–55.

The central regions of the peaks calculated with different
resolution are compared in Fig. 2�b�. The corresponding
Gaussian resolution functions are also shown by thin lines.
The high resolution offers the advantage of resolving the
coherent peak; other than that, low resolution is sufficient

and allows to save the computation time. Everywhere else,
the curves are identical, allowing us to calculate different
parts of the peak profiles with different resolutions when
appropriate. The low-resolution calculation requires less
computation time and can be extended to lower intensities,
thus revealing the satellite peaks in Fig. 2�e�.

The calculated peak profile in Fig. 2�e� reproduces the
main qualitative features of the peaks observed in the experi-
ments discussed in the introduction. The peak consists of a
resolution-limited coherent peak due to long-range order and
the diffuse intensity caused by the lattice disorder due to
dislocations. Since the mean distance between dislocations
is �−1, the satellite peaks appear at qx=2	�m, where m
is an integer. The first-order satellites �m= 
1� are clearly
visible in Fig. 2�e�, very similar to the experimental
observations.20,21 At small qx, the diffuse intensity I�qx� is a
straight line in the logarithmic plot. This common feature of
the experimental curves is well-reproduced in Fig. 2�e�.

We investigate the calculated diffraction profiles further in
Fig. 3 by varying the relevant parameters in the model. Fig-
ure 3�a� shows the variation in the peak shape as a function
of the distribution sharpness �. The case �=1 corresponds to
random uncorrelated dislocations and produces a broad
Gaussian-shaped peak. As � is increased, the central coher-
ent peak appears and becomes higher, the satellites appear
and increase in intensity, and the central part of the diffuse
peak obtains its characteristic exponential shape �straight line
in the logarithmic plot�.

Figure 3�b� shows the transformation of the peak profile
with increased reflection order. We assume the Burgers vec-
tor b equal to the lattice parameter and define the reflection
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FIG. 2. �Color online� Monte Carlo calculation of the diffraction peaks with low ��x /d=3� and high ��x /d=25� resolutions: �a� the qz

scan, �b� the central part of the qx scan at qz=qz0, and �c–e� development of the calculated peak profile with improving data collection
statistics. The numbers of generated configurations N and the CPU time are indicated. The thin lines in �b� show the Gaussian resolution
functions. The horizontal bars in �c–e� show the statistical error, 3�I /�N. The dislocation density is �d=2, the dislocation positions obey a
gamma distribution with �=25.
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order as n=Qb /2	. Accordingly, the reflections presented in
Fig. 3�b� are 00n reflections. The coherent peak is pro-
nounced for n=2, becomes weak for n=4, and disappears at
n=6. The satellites also become weaker and disappear, and
the diffuse peak becomes broader. The insert in Fig. 3�b�
presents the same curves with the wave vector qx scaled by
the reflection order. The ratio qxd /n is proportional to the
angular scale of the transverse scan �� scan� in the experi-
ment. The scaled curves are very close, which reproduces the
experimental observation.39,40 We note that this coincidence
of the scaled curves is not universal but takes place only in a
limited range of parameters.

Figure 3�c� shows the dislocation density dependence of
the peaks for ordered dislocations ��=25�. As the dislocation
density is increased, the satellite peaks become weaker and
shift to larger qx, according to the formula for their position
qx=2	�n. The coherent peak decreases and disappears, and
the peaks assume the Gaussian shape characteristic for large
dislocation densities. Figure 3�d� presents similar calcula-
tions performed for the case of random uncorrelated disloca-
tions ��=1�. The Monte Carlo calculation reproduces the
features of the peaks that are well-established for uncorre-
lated dislocations.9 The peak is Gaussian with a width pro-
portional to �� /d. The insert in Fig. 3�d� shows that the peak
has a Gaussian shape only in the central part and reaches the
power asymptotic ��qx

−4� at larger wave vectors, also in a
good agreement with the previous study.56

Figure 4 explores another type of dislocation correlations.
The dislocations are initially placed periodically and then
uncorrelated random shifts are added to the positions. Hence,

the dislocation positions are � j = j�−1+�x, where �x is a ran-
dom shift. Figure 4 presents the results obtained for the
Gaussian distribution of �x with the standard deviations w
given in units of the mean distance between dislocations �−1.
We perform the same study as above for a Markov chain of
the dislocation positions. A comparison of Figs. 3�a� and 4�a�
clearly shows that the mean periodicity in the dislocation
positions results in resolution-limited satellites that do not
broaden as the disorder increases. Rather, their intensity de-
creases.

Another difference seen in Fig. 4�c� is the dislocation den-
sity dependence of the diffuse scattering. As the dislocation
density is increased in Figs. 4�c� and 4�d�, the diffuse inten-
sity decreases, which is opposite to the case of Figs. 3�c� and
3�d�. Such a difference can be understood if we take into
account that, for a periodic dislocation array, the nonuniform
crystal lattice distortions are confined in a layer with a thick-
ness less than the mean distance between dislocations.23 The
disturbance of the periodicity by uncorrelated random shifts
of the dislocation positions gives rise to a distorted crystal
layer, but its thickness decreases as the dislocation density is
increased.

Further insight in the difference between the two types of
correlations in the dislocation positions can be achieved by
comparing the correlation functions of the dislocation posi-
tions. This is done below in Sec. V. It is shown there that the
Markov chain gives rise to the short-range correlations ex-
ponentially decaying with distance, while the periodic dislo-
cations with random shifts keep the long-range order. The
broadened satellites in the first case and the resolution-

FIG. 3. �Color online� X-ray diffraction peaks calculated by the Monte Carlo method for misfit dislocations forming a Markov chain with
the gamma distribution for the distances between subsequent dislocations: variation in the diffraction peaks with changing �a� the order
parameter � of the gamma distribution, �b� the reflection order, �c,d� the dislocation density �d for �c� ordered, and �d� disordered
dislocations. The insert in �d� shows the q−4 asymptote of the peak profile.
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limited satellites in the second case are due to this difference
in the long-range order.

IV. PEAK PROFILES FOR GAUSSIAN FLUCTUATIONS

The displacement in the film U�x ,z� is a random function,
since it is the sum of displacements u�x−� j ,z� from many
randomly located dislocations. According to the central limit
theorem, the distribution of U�x ,z� tends to the normal dis-
tribution if the number of the dislocations that provide com-
parable contributions to U�x ,z� is large enough. This is cer-
tainly the case for �d1. We find, however, that the normal
distribution is well-approached already at �d�1: the number
of dislocations contributing to U�x ,z� becomes large enough
due to a slow decay of the dislocation displacements with
distance x. Figure 5 presents the probability distribution cal-
culated by the Monte Carlo method for �d=2. The distribu-
tion is already very close to Gaussian.

The normal distribution of the displacements radically
simplifies the statistical average �6�. We rewrite Eq. �6� as

G�x,z1,z2� = 	ei��V1−V̄1�−�V2−V̄2��
ei�V̄1−V̄2�. �18�

Here, we introduce, in comparison with Eq. �6�, the labels 1
and 2 to denote the points �x1 ,z1� and �x2 ,z2�, respectively,

and subtract the mean values V̄j �	Vj
 from the fluctuating

quantities. The aim is to average Vi− V̄i with zero mean val-
ues. The difference V1−V2 depends on the distance x=x1
−x2 only, due to the uniformity of the system in the lateral

plane. The difference of the mean values V̄1− V̄2 is equal,
according to Eqs. �16� and �17�, to qz0�z1−z2�. Then, for the
normally distributed Vi’s Eq. �18� reduces to

G�x,z1,z2� = e−T�x,z1,z2�eiqz0�z1−z2�, �19�

where

T�x,z1,z2� =
1

2
	��V1 − V̄1� − �V2 − V̄2��2
 . �20�

We rewrite the latter expression as

T�x,z1,z2� =
1

2
�	V1

2
 − V̄1
2� +

1

2
�	V2

2
 − V̄2
2� − �	V1V2
 − V̄1V̄2�

�21�

and proceed to the evaluation of 	V1V2
, having in mind that
the mean squared 	V1

2
 can be directly obtained from it by
substituting the coordinates of point 2 by the ones of point 1.

FIG. 4. �Color online� X-ray diffraction peaks calculated by the Monte Carlo method for misfit dislocations with uncorrelated random
shifts from a periodic array: variation in the diffraction peaks with changing �a� the width w of the displacement distribution, �b� the
reflection order Q, �c,d� the dislocation density �d for �c� ordered, and �d� disordered dislocations. The insert in �d� shows the q−4 asymptote
of the peak profile.

-6 -4 -2 0 2 4 6
0.0

0.1

0.2

0.3

V <V>�

p
ro

b
a

b
ili

ty
d

e
n

s
it
y

� d = 2

� = 25
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Using Eq. �4�, we represent

	V1V2
 =� �
−�

�

W�� − ���v�x1 − ��v�x2 − ���d�d��, �22�

where W��−����	g���g����
 is the covariance function of
the dislocation positions, and our aim now is to evaluate it.
Using Eq. �3�, we find

	g���g����
 =� ��
j

��� − � j��
k

���� − �k��p����d��

= �
j

�
k
� ��� − � j����� − �k�p����d��

= �
j

�
k
� p�. . . ,�, . . . ,��, . . .�d�� jk

̂. �23�

Here, �� = ��1 , . . . ,�m , . . .� is a sequence of random positions
with the constant mean density 	g���
=� and the probability

density p����, and the notation d�� jk
̂ is used to indicate that the

integration over d�� is carried out over all points excluding � j
and �k. The arguments � and �� are at the jth and kth posi-
tions in p�. . . ,� , . . . ,�� , . . .�. The last equality in Eq. �23�
shows that W��−���= 	g���g����
 is the two-particle prob-
ability density to find dislocations at the points � and ��. It
depends on the difference �−�� due to the stationarity of the
random process and consists of a singular part ����−���,
arising from the coinciding points � j and �k in the sum �23�,
and a regular part, which is a continuous function of the
argument �−��

W�� − ��� = ����� − ��� + w�� − ���� . �24�

Here, w��−��� is the conditional probability density to find a
dislocation at a nonzero distance �−�� from the first disloca-
tion, provided the position � is fixed.

When the distance between dislocations increases and
their positions decorrelate, the conditional probability w
tends to the mean density �. We denote

w�� − ��� = ��C�� − ��� + 1� , �25�

thus introducing the correlation function C�x� that tends to
zero for decorrelated dislocations. This function is evaluated
below in Sec. V for different types of correlations. Hence,

W�� − ��� = ���� − ��� + �2�C�� − ��� + 1� . �26�

It is convenient to Fourier transform the functions in-
volved in Eq. �22�,

W�x� =
1

2	
�

−�

�

Wqeiqxdq, v�x,z� =
1

2	
�

−�

�

vq�z�eiqxdq ,

�27�

and obtain

	V1V2
 =
1

2	
�

−�

�

Wqvq�z1�vq�z2�eiqxdq . �28�

Substituting Wq=�2�Cq+2	��q��+� and subtracting the
mean values, we arrive at

	V1V2
 − V̄1V̄2 =
�

	
�

0

�

��Cq + 1�vq�z1�vq�z2�cos qxdq . �29�

Then, collecting all terms �21�, we finally have

T�x,z1,z2� =
�

2	
�

0

�

dq��Cq + 1� � �vq
2�z1� + vq

2�z2�

− 2vq�z1�vq�z2�cos qx� . �30�

Equations �5�, �19�, and �30� present the diffracted intensity
in quadratures. Analytical expressions for the function Cq are
derived in the next section for the types of correlations in-
volved in our Monte Carlo calculations.

The only assumption made in the calculations is the nor-
mal distribution of the random displacements U�x ,z�, which
is valid under the rather weak restriction �d�1. Then, all
correlations are expressed through the pair correlation func-
tion C�x�, since all statistical moments of the Gaussian dis-
tribution are uniquely defined by the first two moments, the
expectation and the covariance. In his original treatment,
Krivoglaz10,57 avoided the assumption of a normal distribu-
tion and used Poisson statistics for the case of uncorrelated
dislocations. Applied to the case of uncorrelated misfit
dislocations,9 the correlation function �19� is replaced by

G�x,z1,z2� = exp�− T�x,z1,z2�� , �31�

where

T�x,z1,z2� = ��
−�

�

d��1 − ei�v��,z1�−v��−x,z2��� . �32�

The power expansion of the exponential function in Eq. �32�
to first order gives exp�iqz0�z1−z2�� in Eq. �19� and, to sec-
ond order, our function T�x ,z1 ,z2� with C�x��0. This expan-
sion assumes that the difference v�� ,z1�−v��−x ,z2� is small,
which is approved by the main contribution to the integral
from distant dislocations, x�.

Equation �32� can be used in the limit of small dislocation
densities, �→0. Then, the exponent in Eq. �31� can be ex-
panded to the first order and the diffracted intensity becomes
proportional to the dislocation density. In this limit, the scat-
tering amplitude, Eq. �1�, can be written for each dislocation
separately. The scattering intensity comes to be the sum of
intensities due to different dislocations, since the distance
between dislocations tends to infinity and their displacement
fields do not overlap. On the other hand, accounting for the
correlations in the Krivoglaz approach is fairly complicated,
based on the Kubo cumulant expansion.10 For the normal
distribution, the higher-order correlations are expressed
through the pair correlations, which allows us to derive the
closed formula �30�. The normal distribution is approached
for sufficiently large dislocation densities and does not allow
the limit of small densities.

The expressions for the diffracted intensity can be drasti-
cally simplified if the values of the function T�x ,z1 ,z2� do
not exceed 1 in the whole range of its arguments. If this
condition is satisfied, one can expand exp�−T��1−T. Al-
though this expansion is possible only in a rather narrow
range of parameters specified below, it allows a qualitative
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understanding of the components that constitute the peak.
The condition T�1 requires first �d to be on the order of 1.
If the dislocation density is small, the normal distribution of
displacements is not reached and Eq. �19� cannot be used. If
the dislocation density is large ��d1�, the function T in-
creases proportional to �d and becomes larger than 1. If in
addition to �d�1 the positional order of dislocations is high
enough ��1 for the Markov chain�, the function T is in-
versely proportional to � and the values of T do not exceed 1
in the whole range of coordinates. Then, the exponential
function �19� can be expanded and the integration �5� can be
performed analytically.

The expansion G�x ,z1 ,z2��1−T�x ,z1 ,z2� splits the inten-
sity into the coherent and diffuse parts, I= Icoh+ Idiff. The in-
tegration over x in Eq. �5� of the first constant term gives rise
to the delta-function ��qx�, i.e., it describes the coherent
peak. When the finite resolution is taken into account in Eq.
�9�, the coherent intensity is

Icoh�qx� = �2	d2R�qx� . �33�

The diffuse intensity is obtained, according to Eq. �5�, as the
Fourier transform of T�x ,z1 ,z2�, which itself is given by a
Fourier integral �30�. This results in a simple formula

Idiff�qx� = �v̄q
2��Cq + 1� . �34�

Here, we have defined v̄q=�0
dvq�z�dz and assumed that the

resolution is good enough, so that the diffuse intensity dis-
tribution is much broader than the resolution function. The
analytical expression for v̄q is given in the Appendix, see Eq.
�A9�.

Figure 6 compares the diffraction peak profiles calculated
by different methods and in different approximations for one
and same set of parameters. Curve a is similar to the curves
in Fig. 3�a�. It is calculated by the Monte Carlo method for a

dislocation array forming a Markov chain with �=125.
Curve b shows the results of a numerical integration by Eqs.
�5�, �19�, and �30�. It uses the Fourier transformed correlation
function Cq obtained below, see Eq. �37�. The good agree-
ment of curves a and b demonstrates that the approximation
of a Gaussian distribution of the total displacements is appli-
cable. We have performed a similar comparison �not shown
here� of the results of the Monte Carlo calculations and the
numerical integration and found that they agree in a wide
range of parameters. The diffuse intensity calculated by Eq.
�40� is shown by curve c. This simplified formula has a nar-
row applicability range, as discussed above. However, it al-
lows us to single out two main components determining the
peak profile. One can see that the displacement fields of the
individual dislocations �Fourier transformed over x and inte-
grated over z to obtain wq� define the diffuse scattering in the
vicinity of the coherent peak. The dislocation correlations
only weakly influence this region. They determine the satel-
lite peaks at the positions where the dislocation displacement
term wq smoothly varies. Such decomposition of the diffrac-
tion peaks is quantitatively correct only for �1, but quali-
tatively can be applied to understand the formation of the
peak profiles at smaller � in Fig. 3 as well.

V. CORRELATION FUNCTIONS OF DISLOCATION
POSITIONS

A. Markov chain of positions

We consider, as in the Monte Carlo calculations above, a
Markov chain of dislocation positions with a probability den-
sity p�x� of a distance x between two subsequent disloca-
tions. Our aim is to calculate the conditional probability w�x�
to find a dislocation at the position x, provided there is a
dislocation at the origin. We consider first x�0 and intro-
duce a function w̃�x�=w�x���x�, where ��x� is equal to 1 for
x�0 and 0 for x�0. The probability that the next disloca-
tion is at distance x from the origin is p�x�. The probability
of a dislocation at x with an intermediate dislocation in be-
tween is �0

�p���p�x−��d�. Although this integral is written
with an infinite upper limit, the actual integration range is
0���x, since the probability p�x� is identically equal to
zero for x�0. Continuing to the general case of n−1 dislo-
cations in between, we arrive at

w̃�x� = p�x� + �
0

�

p���p�x − ��d�

+� �
0

�

p���p����p�x − � − ���d�d�� + . . . �35�

This equation can be written as

w̃�x� = p�x� + �
0

�

w̃���p�x − ��d� . �36�

Fourier transforming this equation and using the convolu-
tion formula, we obtain, for q�0, w̃q= pq+ pqw̃q, and, there-
fore, w̃q= pq / �1− pq�. Now, we take into account that the
function w�x� is even for the stationary process and w�x�
= w̃�x�+ w̃�−x�. Then,
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Cq =
2

�
Re

pq

1 − pq
, �37�

and the correlation function C�x� is expressed finally as

C�x� =
2

	�
�

0

�

Re
pq

1 − pq
cos qxdq . �38�

For the gamma distribution �15�, the Fourier transformation
of the probability density can be performed analytically,

pq =
1

�1 + iq/���� . �39�

Figure 7 shows the correlation function �38� and its Fou-
rier transform �37�. We also calculated C�x� by the Monte
Carlo method, by generating dislocation arrays and counting
the probability to find two dislocations separated by a given
distance x. The results of both calculations coincide. The
case �=1 corresponds to an exponential distribution of dis-
tances between dislocations and the absence of correlations,
C�x�=0. As � is increased, the order of dislocations progres-
sively increases. C�x� becomes close to −1 for small x, which
corresponds to a low probability ��C�x�+1� to find two dis-
locations very close to each other. This probability is maxi-
mum at multiples of the mean distance between dislocations,
with the maximum values decaying with increasing x. The
curves in Fig. 7�a� are characteristic for short-range order.

Accordingly, they give rise to the finite-width peaks in Cq.
These peaks become higher and sharper as � is increased.
They define the satellites in Figs. 3 and 6.

B. Periodic dislocations with uncorrelated
random positional shifts

Let us now calculate the correlation function for disloca-
tions with random uncorrelated shifts from initial periodic
positions. Consider two dislocations, with the initial posi-
tions 0 and � j = j�−1. Here j is an integer, and j�0 since we
consider two different dislocations. As a result of the shift,
the first dislocation takes a random position � with the prob-
ability p��� and the second one a position �� with the prob-
ability p���−� j�. The probability of a distance x=�−�� be-
tween these dislocations is equal to �−�

� p���p��−x−� j�d�.
The sum of these probabilities over all dislocations is equal
to w�x�. Hence, we have

w�x� = �
j=−�

j�0

� �
−�

�

p���p�� − x − � j�d� . �40�

The Monte Carlo calculations in Fig. 4 are performed for a
Gaussian probability distribution with the standard deviation
w, i.e., p�x�= ��2	w�−1exp�− 1

2 �x /w�2�. Then, the integrals in
Eq. �40� can be calculated analytically and we obtain

C�x� + 1 = �
j=−�

j�0

�
1

2�	�w
exp− � x − j�−1

2w
�2� . �41�

Figure 8 presents the functions C�x� calculated by Eq.
�41�. We have also obtained these functions by a direct
Monte Carlo calculation, and found a coincidence of the re-
sults. Similar to the Markov chain case in Fig. 7�a�, C�x� is
close to −1 at small x and has maxima at positions corre-
sponding to the mean distances between dislocations. In con-
trast to the former case, however, the maximum values do
not decrease as the distance x increases. This long-range or-
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FIG. 7. �Color online� �a� Correlation function of dislocation
positions C�x� and �b� its Fourier transform Cq for dislocations
forming a Markov chain, with the gamma distribution for the dis-
tances between dislocations. The values of its parameter � are
indicated.

FIG. 8. �Color online� Correlation function of dislocation posi-
tions C�x� for dislocations with random uncorrelated shifts from an
initially periodic array. Gaussian distribution of random shifts, the
standard deviations w are given in units of the mean distance be-
tween dislocations.
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der results in the delta functions in Cq and in the resolution-
limited satellite peaks in Fig. 4. The Fourier transform of Eq.
�41� is

Cq = 2	�−1e−�wq�2� �
k=−�

k�0

�

���q − 2	�k� − 1� . �42�

C. Periodic dislocations with correlated positional shifts

In the analysis above, we have generated correlated ran-
dom positions for dislocations in two different intuitively
evident ways, either as a Markov chain or providing uncor-
related random shifts from periodic positions. The correla-
tion functions C�x� were calculated afterwards. It may be
instructive to approach the problem of correlated dislocations
in the opposite direction: let us produce correlated shifts
from the periodic initial positions with a correlation function
for the shifts that is given in advance. A method for the
generation of such a dislocation distribution is proposed be-
low. As an additional advantage, this method requires just a
few random numbers to generate a set of dislocations, irre-
spective of the number of dislocations in the set. However, it
is not as intuitive as the methods described above.

Let us start with a periodic dislocation array, xj = j�−1, and
define shifts �xj of these positions according to the formula

�xj = w��1 cos �xj + �2 sin �xj� . �43�

Here, �1 and �2 are two independent random variables, the
same for all j, possessing the standard Gaussian distribution
with zero mean value, and � is another random variable also
sampled once for all j independent of �1 and �2. The prob-
ability density p��� is not specified yet, and w is a constant
that also remains to be defined. It is the rms of the random
shifts �xj, i.e., w2= 	��xj�2
. We introduce the correlation
function for the shifts B�x�= 	�xi�xj
, where x=xi−xj. Its cal-
culation is straightforward, taking into account that 	�1

2

= 	�2

2
=1, 	�1�2
=0, and B�−x�=B�x�

B�x� = 	�xi�xj
 = w2�
0

�

�	�1
2
cos �xi cos �xj

+ 	�2
2
sin �xi sin �xj�p���d�

= w2�
0

�

p���cos �xd� . �44�

Hence, the probability density p��� is the spectral function of
w−2B�x�,

p��� =
2

	w2�
0

�

B�x�cos �xdx , �45�

and the constant w is obtained from the normalization con-
dition �0

�p���d�=1, which gives w2=B�0�.
For example, if the target correlation function has a

Lorentzian form,

B�x� =
w2

1 + �x/c�2 , �46�

where the constant c is a correlation length scale, then the
probability density has the form p���=c exp�−c��. It is simu-
lated as �=−log�rand� /c, where rand is a random number
from a uniform distribution on the interval �0,1�.52 As an-
other example, the exponential correlation function

B�x� = c exp�− cx� �47�

has a Lorentzian spectrum, which is simulated as �
=c tan�	�2rand−1� /2�.52

We improve the ergodic properties of the random process
�43� by averaging over a large number of independent pro-
cesses �typically, we take 20 terms�. This also ensures �by the
central limit theorem� that the random process �xj has a mul-
tidimensional Gaussian distribution. In contrast to single
control parameter of the correlation functions in Secs. V A
and V B, we can now independently vary two parameters,
namely, the standard deviation w of random shifts �xj and
the decorrelation parameter c in Eqs. �46� and �47�. Figure
9�a� illustrates a variety of correlation functions for the dis-
location positions C�x� that can be obtained with the Lorent-
zian function B�x�, Eq. �46�. The curves are obtained by a
direct Monte Carlo calculation. They show the correlation
functions which have the same first oscillations but different
decay with increasing distance x. Figure 9�b� presents the
diffraction profiles obtained for these correlation functions.
Faster decay of the correlations results in larger diffuse scat-
tering and broadening of satellite reflections.

FIG. 9. �Color online� �a� Correlation functions for dislocation
positions C�x� and �b� the calculated diffraction peaks for disloca-
tions with the shifts from an initially periodic array correlated by
Eq. �46�. The parameter c for the random variable � and the stan-
dard deviation w for Gaussian random variables �1, �2 in Eq. �43�
are given.
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VI. CONCLUSIONS

We have proposed a Monte Carlo method to calculate the
x-ray diffraction peaks from crystals with arbitrarily corre-
lated crystal lattice defects. The method is formulated on the
example of misfit dislocations and triple crystal diffractom-
etry but it is equally applicable to any other geometry of
dislocations and diffraction experiment. In this method, both
spatial integration and the average over dislocation statistics
are performed simultaneously by the Monte Carlo technique.
The distribution of spatial points in the integration is dictated
by the experimental resolution. Different parts of a diffrac-
tion curve can be obtained with different resolution and then
combined. The results of the calculations explain the diffrac-
tion peak profiles observed in various epitaxial systems with
a misfit of a few percent and film thicknesses of several tens
of nanometers.20,21,26–46

The displacements of atoms in the film are sums of the
contributions from the dislocation displacement fields and
can be considered as random functions of the dislocation
positions. If the mean distance between dislocations is
smaller than the film thickness, the displacements possess the
normal distribution, due to contributions from a sufficiently
large number of dislocations. In this case, the diffracted in-
tensity can be expressed in quadratures through the correla-
tion function of the dislocation positions. We have proposed
different types of the correlation functions and obtain diffrac-
tion peak profiles for them.
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APPENDIX: DISPLACEMENT DUE TO A DISLOCATION
PARALLEL TO THE SURFACE OF HALF-SPACE

The z component of the displacement u�x ,z� due to an
edge dislocation with the Burgers vector b= �bx ,0 ,0� parallel
to the surface of an elastically isotropic half-space can be
written as a sum of three terms,9,51

uz�x,z� = uz1 + uz2 + uz3. �A1�

The sum consists of the dislocation displacement in the infi-
nite medium

uz1 =
bx

2	
1 − �

2
ln�x2 + �z − d�2� +

�x2

x2 + �z − d�2� , �A2�

the image dislocation

uz2 = −
bx

2	
1 − �

2
ln�x2 + �z + d�2� +

�x2

x2 + �z + d�2� ,

�A3�

and the additional relaxation term

uz3 = −
bxd

	
 z + d

x2 + �z + d�2 +
�z��z + d�2 − x2�
�x2 + �z + d�2�2 � . �A4�

Here, �=1 / �2�1−���, where � is the Poisson ratio. We take
�=1 /3.

The Fourier transform of uz�x ,z� over the coordinate x can
be calculated analytically

uq�z� = u1q + u2q + u3q, �A5�

where

u1q�z� =
bx

2q
e−q�d−z��1 − ��1 − q�d − z��� , �A6�

u2q�z� = −
bx

2q
e−q�d+z��1 − ��1 − q�d + z��� , �A7�

u3q�z� = bxde−q�d+z��1 + �qz� . �A8�

In Eq. �40�, we also need the integral over z, v̄q=�0
dvq�z�dz,

which is

v̄q = −
Qzbx

2q2 �1 − 2�1 − qd�e−qd + �1 − 2qd�1 + �qd��e−2qd� .
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