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The magnetic properties of BiCu2PO6 have been analyzed by means of magnetic-susceptibility and inelastic
neutron-scattering measurements on powder samples by evaluating the spin-exchange interactions on the basis
of density-functional calculations and by simulating the inelastic neutron scattering in terms of spin-exchange
parameters. BiCu2PO6 exhibits magnetic properties described by the two-leg spin ladder with strong spin
frustration along each leg chain and has a gapped quantum singlet ground state with excited magnetic states,
showing an incommensurate dispersion arising from frustration.
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Frustrated antiferromagnets have received much attention
due to the possibility of finding unconventional ground states
with novel “quantum order.1” The geometric spin frustration
in these magnetic systems arises mostly from the competi-
tion between nearest-neighbor �NN� and next-nearest-
neighbor �NNN� exchange interactions. For a number of
simple spin-lattice systems, theoretical analyses have shown
that NNN exchanges play a decisive role in determining the
nature of the magnetic ground state. For example, for a spin-
1/2 Heisenberg chain with antiferromagnetic NN and NNN
exchanges JNN and JNNN, respectively, a quantum dimer or-
der is stabilized when JNNN /JNN� �0.2411.2,3 In a two-leg
spin ladder, another archetypal one-dimensional �1D� antifer-
romagnet, NNN exchanges can induce several phase transi-
tions from the rung-dimer ground state to other exotic quan-
tum states.4 For a two-dimensional �2D� square
antiferromagnetic lattice, strong NNN interactions are sug-
gested to prevent the classical long-range antiferromagnetic
order and possibly lead to a homogeneous spin liquid state.5

However, it has been rare to find real low-dimensional mag-
netic materials possessing such unusual ground states as pre-
dicted by theory6,7 because they generally undergo a phase
transition to a classical long-range-ordered Néel state at low
temperature due to extra exchange interactions neglected in
theoretical prediction.

In this Rapid Communication, we show that BiCu2PO6
�Refs. 8 and 9� exhibits a gapped quantum singlet ground
state with an incommensurate dispersion driven by magnetic
frustration. This is a coupled quasi-1D Heisenberg two-leg
ladder frustrated by strong NNN interactions along the legs.
Our conclusion is supported by performing magnetic-
susceptibility and inelastic neutron-scattering �INS� measure-
ments by evaluating the spin-exchange parameters on the
basis of first-principles density-functional theory �DFT� cal-
culations and simulating the INS in terms of spin-exchange
parameters.

In BiCu2PO6, the Cu2+ �S=1 /2� ions are arranged in zig-
zag ladders along the b axis �Fig. 1� and are interconnected
by diamagnetic Bi3+ and PO4

3− groups �not shown in Fig. 1

for simplicity�. The spin-exchange interactions necessary for
describing the magnetic properties of BiCu2PO6 include the
NN exchanges along the leg and rung of the geometrical
ladder �J1 and J3, respectively�, the NNN exchanges along
the leg �J2 and J2��, the interchain exchange between the lad-
ders �J4�, the diagonal exchanges �J5 and J5�� in each rect-
angle formed by J1 and J3, and the diagonal exchanges �J6
and J6�� in each rectangle formed by J1 and J4. Here J1 and J3
are Cu-O-Cu superexchanges �SEs�, but all others are
Cu-O. . .O-Cu supersuperexchanges �SSEs�. The SE J3 is ex-
pected to be weak because the associated �Cu-O-Cu bond
angle is close to 90° �i.e., 92°�.10 In contrast, the SSE J4 is
anticipated to be substantial because the �Cu-O. . .O-Cu di-
hedral angle is nearly zero �i.e., �1°� and the O. . .O contact
distances �2.746 Å� are within the van der Waals distance.11

We evaluated these exchange parameters on the basis of
DFT calculations using the Vienna ab initio simulation
package,12 the generalized gradient approximations �GGA�

FIG. 1. �Color online� Schematic representation of the Cu2+ ion
arrangement and the SE/SSE spin-exchange paths in BiCu2PO6.
The two crystallographically nonequivalent copper atoms are indi-
cated by blue and cyan circles, and the oxygen atoms by red circles.
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for the exchange and correlation corrections,13 the plane-
wave cutoff energy of 400 eV, 196 k points for the irreduc-
ible Brillouin zone, and the threshold of 10−6 eV for the
self-consistent-field convergence of the total electronic en-
ergy. To properly describe the electron correlation of the
Cu 3d states, the GGA plus on-site repulsion U �GGA+U�
method14 was employed with an effective U=4, 6, and 8 eV
on the Cu atom. It will be assumed that J2�=J2, J5�=J5, and
J6�=J6 since their geometrical parameters are similar. To de-
termine the six parameters J1−J6, we perform GGA+U cal-
culations for seven ordered spin states depicted in Fig. 2 and
also express their total spin-exchange interaction energies in

terms of the spin Hamiltonian, Ĥ=�i�jJijŜi · Ŝj, where Jij is
the spin exchange between the spin sites i and j, i.e., Jij
=J1−J6. The total spin-exchange energies of the seven or-
dered spin states per unit cell �i.e., per four formula units� are
summarized in the Fig. 2, where N is the number of unpaired
spins at each spin site �i.e., N=1 in the present case�. Thus,
in mapping the relative energies of the seven ordered spin
states determined from the GGA+U calculations �listed in
Fig. 2 under each state� onto the corresponding energies ob-
tained from the total spin-exchange energies �Fig. 2�, we find
the values of J1−J6 summarized in Table I.

The strengths of the calculated spin exchanges decrease in
the order J4�J1�J2�J3�J5, J6, which shows that J1 and
J4 form a two-leg spin ladder with significant spin frustration
in each leg chain due to the NNN exchange J2. Such frus-
trated two-leg spin ladders interact through the inter-spin-
ladder exchange J3, so that the spin lattice of BiCu2PO6 has
a 2D character. The three leading exchanges give rise to the
J1−J2−J4 frustrated spin ladder model for BiCu2PO6, which
differs from that presented by Koteswarao et al.,15 who de-
scribed BiCu2PO6 in terms of the two-leg spin ladder defined

by J1 and J3. In the following, we establish that the simplest
spin lattice needed to describe the magnetic properties of
BiCu2PO6 is the J1−J2−J4 frustrated spin ladder model.

That BiCu2PO6 has a nonmagnetic ground state has been
known from neutron-diffraction �D2b diffractometer,
Grenoble, France� measurements, specific heat15 and mag-
netic susceptibility.9 Indeed, these last measurements show
that this material has a �=2.9 meV spin gap. Koteswarao et
al.15 analyzed the magnetic susceptibility ��T� of BiCu2PO6
in terms of a non-spin-frustrated �J2=0� spin ladder model,16

to find that the ��T� data can be reasonably fitted only if they
reduce the susceptibility �ladder�T� calculated for the spin lad-
der by factor of m=0.41�2�, namely, ��T�=�o+C / �T−��
+m�ladder�T�, where �o is the temperature-independent sus-
ceptibility, and the C / �T−�� term takes care of a trace
amount of paramagnetic impurities. The use of such a scaling
factor m is highly unphysical. It is interesting to probe
whether the J1−J2−J4 spin-frustrated spin ladder model can
fit the ��T� data. Our data collected at 500 Oe have been

analyzed in terms of the extended Hamiltonian Ĥex

=�i,j=1
N JijŜi · Ŝj +g�B�i=1

N Ŝi ·H� , where Jij =J1, J2, or J4. We de-
termined the matrix representation of this Hamiltonian by
using a double ring made up of 12 spin-1/2 sites �i.e., each
leg chain forms a ring of six spin sites� and then diagonalize
the resulting matrix to find the magnetic states of the system
and hence adjust the magnetic susceptibility by using the
program SPIN.17 Then, the susceptibility �1−2−4�T� calcu-
lated for the J1−J2−J4 frustrated spin ladder model describes
the observed susceptibility well, i.e., ��T�
=0.0408�5� g2S�S+1�

4T +�1−2−4�T�, with J1 /kB�−137.8�8� K,
J2 /kB�−73.3�1� K, J4�−58.4�1� K, and g=2.1�2�. The
good qualitative agreement between the experimental and the
calculated susceptibility curves �Fig. 3�a�� supports our view
that the spin frustration associated with J2 is essential. Inter-
estingly, the J2 /J1 and J4 /J1 ratios deduced from the fitting
analysis are somewhat smaller than their calculated counter-
parts; �J2 /J1�fit=0.53 vs �J2 /J1�calc=0.55–0.79, and
�J4 /J1�fit=0.42 vs �J4 /J1�calc=1.00–1.19 �see Table I�. This
discrepancy is due in part to the neglect of the interladder
interaction J3 in the J1−J2−J4 frustrated spin ladder model.
The coupling of the J1−J2−J4 spin ladders via J3 leads to a
2D character, for which a reduction in the spin gap � is
expected.7,18 Furthermore, we checked that the spin gap �
calculated from the J1−J2−J4 frustrated spin ladder model

FIG. 2. �Color online� Seven ordered spin states �i.e., FM, AF1,
AF2, AF3, AF4, AF5, and AF6� of BiCu2PO6 employed to extract
the six spin-exchange parameters J1−J6 and their total spin-
exchange energies in terms of J1−J6. Only the Cu2+ sites are shown
for simplicity, and the up-spin and down-spin Cu2+ sites are repre-
sented by filled and empty circles, respectively. For each ordered
state, the three numbers in the parenthesis, from left to right, refer
to the relative energies obtained from the GGA+U calculations
with U=4, 6, and 8 eV, respectively.

TABLE I. Spin exchange parameters J1−J6 �in meV� of
BiCu2PO6 obtained from the GGA+U calculations �the numbers in
parentheses are the relative values with respect to the strongest
exchange parameter�.

U=4 eV U=6 eV U=8 eV Ref. 16

J1 31.87 �0.82� 21.01 �0.94� 14.37 �1.00� �1.00�
J2 21.49 �0.55� 16.20 �0.72� 11.40 �0.79� �0.34�
J3 13.06 �0.34� 14.47 �0.64� 7.98 �0.56� �1.00�
J4 38.76 �1.00� 22.43 �1.00� 14.34 �1.00� �0.74�
J5 −0.08 �0.00� 0.06 �0.00� 0.02 �0.00� �0.04�
J6 3.10 �0.08� 0.07 �0.00� −0.13 �−0.01� �0.03�
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increases with increasing J2 and J4 �Fig. 3�b��. It follows that
the fitted J2 /J1 and J4 /J1 ratios are underestimated due to the
effect of J3 in the real system.

To further probe the spin frustration in BiCu2PO6, we car-
ried out INS measurements for powder samples of BiCu2PO6
using the thermal and cold triple axis spectrometers at the
LLB-Orphee reactor. Use of powder samples leads to a par-
tial loss of the anisotropic information about the dispersion
of magnetic excitations. The intensity of neutron scattering,
proportional to a powder averaged spin-spin correlation
function, gives a measure of the density of state. A �−Q
mapping of the low-temperature �T=11 K� INS intensity
obtained by constant-energy scans is presented in Fig. 4�a�,
the most prominent features of which are the opening of a
spin gap and the two maxima observed at 4 and 6 meV.
These peaks are magnetic in nature because they vanish
above 50 K. The lowest excitation energy centered at 4 meV
is consistent with the spin gap �=2.9 meV deduced from
��T�. The �−Q mapping of Fig. 4�a� clearly indicates a sig-
nificant dispersion of the first magnetic excitation, with mini-
mum at Q�1 Å−1. The Q dependence at energy just above
the spin gap is also of great interest. This is illustrated in Fig.
4�b�, which presents a constant-energy scan taken at �
=4 meV and T=1.7 K. The corresponding structure factor
exhibits a maxima centered at Q=1 and 2 Å−1 followed by a
number of small subsequent oscillations.

To confirm the validity of the leading J1−J2−J4 frustrated
spin ladder model in BiCu2PO6, we simulate the powder-INS
data19,20 using MAGPACK,21 which enables one to compute
the structure factor S�Q ,�� of a magnetic system with up to
14 spins in terms of a Heisenberg spin Hamiltonian. We es-
pecially calculate S�Q ,�0�, where �0 is the energy of the
lowest excited state. Simple spin-lattice models, such as an
isolated dimer �J3 or J4� and a non-spin-frustrated chain �J1�,
fail to describe the neutron data. Among various 1D spin
lattices we tested �i.e., J1−J2, J1−J3, J1−J4, J1−J2−J3 or
J1−J2−J4�, only the J1−J2−J4 spin ladder model with strong
spin frustration reproduces the two experimental maxima at
Qmax=1 and 2 Å−1, as summarized in Figs. 4�b� and 4�c�. It
should be noted that the J1−J2−J3 frustrated spin ladder
model does not match the experimental INS data even with a
strong frustration J2 /J1 ratio �Fig. 4�c��.

The relative J1−J2−J4 values obtained from our GGA
+U calculations �typically, 	�J2 /J1=0.75 and J4 /J1=1
with U=8 eV; see Table I� yields the correct positions for
the S�Q� maxima at Qmax=1 and 2 Å−1. Moreover, S�Q ,�0�
calculated for J4 /J1=1 shows that the frustration ratio 	
=J2 /J1 should be in the 0.7–1 range to reproduce the experi-
mental INS data �Fig. 4�d��. In our J1−J2−J4 frustrated spin
ladder model, the splitting of the first S�Q ,�0� peak occurs
above the critical value 	c�0.5 �Fig. 4�d��; this frustration-
induced phenomenon is the clear signature of a Lifshitz
point, where the S�Q ,�0� peak starts moving away from a
commensurate Q value.22,23 This analysis shows that
BiCu2PO6 is located in the incommensurate region of the
phase diagram not far from the critical Lifshitz point. In
reproducing the S�Q ,�0� peaks at 1 Å−1 and 2 Å−1 in terms
of the J1−J2−J4 frustrated spin ladder model, the region of
the required J2 /J1 ratio is narrow �i.e., �0.75� but that of the
required J4 /J1 ratio is rather wide, i.e., 0.25
J4 /J1
1 �Fig.
4�c��. This indicates that the spin frustration within each leg
chain is largely responsible for the split of S�Q ,�0� peaks. It
should be noted that for a weakly frustrated ladder system,
such as La4Sr10Cu24O41, the observed dispersion is
commensurate.24

The frustrated spin ladder model for BiCu2PO6 forms a
rich playground for reaching exotic quantum ground states.
In the limit of J1, J2�J3, J4, the spin lattice becomes a
simple frustrated chain, in which the frustration ratio J2 /J1

FIG. 3. �Color online� Analysis of the magnetic susceptibility
and spin gap of BiCu2PO6 using the J1−J2−J4 frustrated spin lad-
der mode: �a� experimental �circles� and fitted �red line� magnetic
susceptibility. The typical gapped behavior �black solid line� is
shown after removing the paramagnetic contribution �black dotted
line�. �b� Evolution of the normalized spin gap � /J1 as a function of
the frustration ratio J2 /J1 �with J4 /J1 fixed at 0.25� and the rung to
leg ratio J4 /J1 �with J2 /J1 fixed at 0.50�.

FIG. 4. �Color online� �a� Map of S�Q ,�� measured for
BiCu2PO6 at 11 K on the three-axis cold spectrometer 4F1 �color
online�. �b� Experimental Q scan measured at 4 meV; the energy of
the lowest magnetic excitation in BiCu2PO6 at T=1.7 K�from the
thermal triple axis spectrometer 2T in counts per 2 minutes of ac-
quisition time�. �c� Magnetic structure factor S�Q ,�0� at the energy
�0 of the lowest magnetic excitation using the J1−J2−J4 and J1

−J2−J3 frustrated spin ladder models. The curves 1 and 2 are ob-
tained from the J1−J2−J4 model and the curve 3 from the J1−J2

−J3 model �curve 1: J4 /J1=1 and J2 /J1=0.75; curve 2: J4 /J1

=0.25 and J2 /J1=0.75; and curve 3: J3 /J1=1 and J2 /J1=0.75�. The
intensity is in arbitrary units. �d� Mapping of S�Q ,�0� as a function
of the frustration ratio 	=J2 /J1. The color scale represents the am-
plitude of S�Q ,�0�.
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induces a quantum phase transition from a gapless spin-fluid
phase to a gapped dimer ordered state at the critical ratio
J2 /J1�0.2411. In the limit of J1, J2, J4�J3, which describes
BiCu2PO6, a quantum phase transition between three differ-
ent gapped phases �i.e., the columnar-dimer, the staggered-
dimer, and the rung-dimer phases� is expected when the
J4 /J1 ratio is increased.4 Recent studies on frustrated n-leg
spin ladders �with n up to 8� suggest that frustration should
induce a transition from a dimer ordered phase at low n to a
homogeneous spin liquid state for the infinite n extension.18

Interestingly, the chemical adaptability of BiCu2PO6 is such
that it may be possible to tune the values of J1, J2, J3, and J4,
for instance, by substituting the VO4 group for the PO4
group.25,26 Thus, solid solutions BiCu2P1−xVxO6 may yield
promising systems to explore exotic magnetic ground states.
A preliminary investigation showed that BiCu2P1−xVxO6 de-

creases its spin gap with increasing x, eventually reaching a
gapless state at x�0.7, where the crystal structure of
BiCu2P1−xVxO6 becomes incommensurately modulated.9

In conclusion, our work shows that the simplest spin lat-
tice needed for BiCu2PO6 is a two-leg spin ladder with
strong spin frustration along each leg, and this frustration
drives BiCu2PO6 into a gapped quantum singlet ground state
with excited magnetic states, showing an incommensurate
dispersion.
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