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The physics of heat conduction in layered, anisotropic crystals is probed by measurements of the cross-plane
elastic constant C33 and thermal conductivity � of muscovite mica as a function of hydrostatic pressure.
Picosecond interferometry and time-domain thermoreflectance provide high-precision measurements of C33

and �, respectively, of micron-sized samples within a diamond-anvil cell; � changes from the anomalously
low value of 0.46 W m−1 K−1 at ambient pressure to a value more typical of oxides crystals with large unit
cells, 6.6 W m−1 K−1, at P=24 GPa. Most of the pressure dependence of � can be accounted for by the
pressure dependence of the cross-plane sound velocities.
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I. INTRODUCTION

Recently, ultralow thermal conductivity—i.e., thermal
conductivity � significantly lower than predicted by the
model of the minimum thermal conductivity—was observed
in disordered layered crystals.1 A subsequent theoretical
study suggested that a high degree of elastic anisotropy plays
a critical role in suppressing the thermal conductivity in the
cross-plane direction.2 Measurements of the thermal conduc-
tivity as a function of pressure enable a critical test of this
idea by enabling a continuous tuning of the anisotropy of the
elastic constants; typically, the softer elastic constant in the
cross-plane direction of a layered crystal has a higher anhar-
monicity and therefore increases more rapidly with pressure
than the stiffer in-plane elastic constants.

Low thermal conductivity in layered crystals may find
applications in improving thermal barriers and materials for
thermoelectric energy conversion.3–6 We have chosen a pro-
totypical layered crystal, muscovite mica, for these initial
studies. Even though the layered structure of muscovite is
not disordered, � in the cross-plane direction is extremely
small for an oxide, 0.46 W m−1 K−1,7,8 a factor of �2
smaller than the predicted minimum thermal conductivity in
the cross-plane direction, 0.9 W m−1 K−1. �The longitudinal
and transverse speeds of sound in the cross-plane direction at
ambient pressure, vl=4.5 km s−1 and vt=2.4 km s−1, were
calculated from the elastic constants C33=58.6 GPa,
C44=16.5 GPa,9 and mass density �=2.83 g cm−3. The
atomic density is n=8.26�1022 cm−3� The thermal conduc-
tivity at ambient pressure is also highly anisotropic; the in-
plane thermal conductivity is �4 W m−1 K−1.7

To obtain high-precision data for � at high pressures, an
advance in experimental methods was required. The pressure
dependence of the thermal conductivity of solids has been
extensively studied at pressures up to �2 GPa.10–14 How-
ever, much higher pressures, �20 GPa, are needed to sig-
nificantly alter the anisotropy of a layered oxide crystal.
Studies of � up to or beyond 20 GPa are rare in the scientific
literature and are essentially limited to studies of molecular

crystals;15 and relatively recent work applying the Ångström
method within a 5000-ton multianvil apparatus16 and flash
diffusivity within a diamond-anvil cell.17 Here, we present
our study of the cross-plane elastic constant C33 and thermal
conductivity of an anisotropic layered crystal, muscovite
mica, from ambient pressure to 24 GPa using optical pump-
probe methods combined with the diamond-anvil cell
techniques.18

II. EXPERIMENTAL DETAILS

A sheet of �20-�m-thick muscovite mica,
KAl2�Si3Al�O10�OH�2 �grade V-1 from SPI Supplies�, was
first coated with an Al film of �80 nm thick and loaded,
together with a small crystal of ruby, into a diamond-anvil
cell �DAC� with culet size of �500 �m and pressurized by
high-pressure gas loading with Ar �Ref. 19� �see Fig. 1�. �The
schematic unit cell of muscovite is shown in Ref. 9.� Hydro-
static pressure was determined by ruby fluorescence.18 The
cross-plane thermal conductivity � of muscovite was mea-
sured at room temperature by time-domain thermoreflectance

FIG. 1. Schematic drawing of the pump-probe optical measure-
ments �TDTR and picosecond interferometry� of a muscovite
sample in a diamond-anvil cell. An Al thin film serves as a trans-
ducer that absorbs energy from the pump beam and enables mea-
surements of temperature through changes in optical reflectivity.
The pressure medium is Ar.
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�TDTR�.20–22 In the TDTR measurement, the output of a
mode-locked Ti:sapphire laser was split into a pump beam,
which heats the surface of the Al film on the muscovite
sample, and a probe beam, which subsequently examines the
resulting changes in reflectivity due to changes in tempera-
ture of the Al film.23 The in-phase Vin and out-of-phase Vout
components of the small variation of the reflected probe
beam intensity that are synchronous with the 10 MHz modu-
lation frequency of the pump beam were measured by a pho-
todiode detector and rf lock-in amplifier. We found the ther-
moreflectance of Al at 785 nm crosses through zero at P
�6 GPa �Ref. 24�; we used a laser wavelength of 765 nm to
obtain data near this pressure. �At 765 nm, the thermoreflec-
tance of Al is zero near P�8 GPa.�

To determine the cross-plane thermal conductivity of
muscovite, we compared the ratio Vin /Vout as a function of
delay time to calculations using a thermal model25 that was
modified to take into account heat flow into the muscovite as
well as into the Ar pressure medium.26 The thermal penetra-
tion depth at the modulation frequency of the pump beam is
50–200 nm, small compared to the radius of the laser spot
size, 7.5 �m, and heat flow is predominately one dimen-
sional in the cross-plane direction. Example data and fits to
the thermal model are shown in Fig. 2�a�.

The thermal model has many parameters—laser spot size,
Al film thickness, thermal conductivity, and heat capacity of
each layer—but the thermal conductivity of muscovite is the
only significant unknown. The thickness of Al was deter-
mined by picosecond acoustics. The pressure dependent ther-
mal conductivity of Ar at room temperature was taken from
recently published computer simulations.27 Because the ther-
mal conductivities of muscovite and Ar are small, the ther-
mal model is insensitive to the thermal conductance G of the
Al interfaces. We set G=200 MW m−2 K−1 for the Al/
muscovite interface and find that the data can be fit well
using G=80 MW m−2 K−1 for the Al/Ar interface at low
pressures while at high pressures G=200 MW m−2 K−1 pro-
vides the best fit. Therefore, we linearly scale the pressure
dependence of thermal conductance of Al/Ar interface by
G=70+5.2P MW m−2 K−1, where P is the pressure in GPa.

The heat capacities of Al, muscovite, and Ar at high pres-
sures are not known; therefore, we estimate the pressure de-
pendence of the heat capacities from data for the pressure
dependence of the atomic density and elastic constants. Be-
cause of the relatively low Debye temperature of Ar, we fix

the heat capacity per atom at the classical value: C=1.36,
1.86, and 2.16 J cm−3 K−1 at P=2, 10, and 20 GPa,
respectively.28 For Al, we assume that changes in the specific
heat at high pressure can be estimated from the ambient pres-
sure specific heat at reduced temperature; for example, at 10
and 20 GPa, the Debye temperature of Al increases by 24%
and 43%,29 respectively, and therefore we use the measured
specific heats of Al at T=242 K and T=210 K to calculate
the heat capacities at 10 and 20 GPa. For Al, the pressure
dependence of atomic density n is stronger than the pressure
dependence of the specific heat and the heat capacity per unit
volume �C=2.42 J cm−3 K−1 at ambient pressure� increases
by 5% at 10 GPa and 9% at 20 GPa.30,31 For muscovite, we
use data for the pressure dependence of elastic constants of
MgSiO3 �Ref. 32� to estimate the changes in the Debye tem-
perature. �MgSiO3 has nearly the same average atomic
weight as muscovite and the temperature dependence of the
specific heats are nearly identical over a wide temperature
range.30� By this calculation, the heat capacity of muscovite
�C=2.3 J cm−3 K−1 at ambient pressure� increases by 9% at
10 GPa and 15% at 20 GPa. The density of muscovite in-
creases by 11.5% at 10 GPa and 20% at 20 GPa.33

The elastic constants of minerals are often measured by
inelastic light-scattering: inelastic light scattering from
acoustic modes is typically referred to as Brillouin scattering
and the frequency shift of the scattered light is known as the
Brillouin frequency f . For longitudinal modes in a back-
scattering geometry, f =2Nv /�, where N is the index of re-
fraction, v the longitudinal speed of sound, and � the laser
wavelength. In our experiments, we measured f of muscovite
by picosecond interferometry.34,35 Thermal expansion of Al
created by heating by the pump-laser pulses generates a
strain pulse; interference of probe pulses reflected from the
strain pulse and the Al surface creates periodic oscillations of
frequency f in the in-phase signal Vin �see Fig. 2�b��.

III. RESULTS AND DISCUSSION

Figure 3�a� shows the pressure dependence of f . To deter-
mine the corresponding cross-plane elastic constant C33
shown in Fig. 3�b�, we calculated the pressure dependence of
the density � from the equation of state of muscovite33 and
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FIG. 2. �a� Example data for the ratio Vin /Vout as a function of
delay time and fits �solid lines� to the heat-flow model of Ref. 25;
data and fits are labeled by the pressure. �b� Example data for the
oscillations in Vin as a function of delay time that are used to mea-
sure the Brillouin frequency of muscovite.
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FIG. 3. Pressure dependence of the �a� Brillouin frequency and
�b� C33 of the muscovite. C33 is derived from the Brillouin fre-
quency data using the equation of state of muscovite and assuming
that the index of refraction follows the Lorentz-Lorenz equation.
The estimated C11=184 GPa+4P and previously measured bulk
modulus BT=61.4 GPa+6.9P �Ref. 33� are plotted as solid and
dashed line, respectively, for comparison.
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calculated the index N using the Lorentz-Lorenz formula
�N2−1� / ���N2+2��=A, where A is a constant.36 At ambient
pressure, N=1.56, �=2.83 g cm−3, and A=0.114; N in-
creases by 4.8% at 10 GPa and 9% at 20 GPa.

We cannot measure the pressure dependence of the in-
plane elastic constant C11 in our apparatus but if we assume
that dC11 /dP�4, a typical value for many silicates,37,38

C11=184 GPa+4P and C33�C11 at the upper end of our
pressure range �see Fig. 3�b��. As muscovite is compressed,
the decreasing interplanar distance increases the force con-
stants of the interaction between the silicate layers.36

Figure 4 shows the pressure dependence of the cross-
plane thermal conductivity � of muscovite; � increases
monotonically with pressure14 and increases by a factor of
�3 and �15 at a pressure of 5 and 24 GPa, respectively.
This data set includes measurements for both increasing and
decreasing pressure. We also measured the thermal conduc-
tivity at ambient pressure after unloading the cell and ob-
tained the same value, 0.46 W m−1 K−1, as we obtained be-
fore the muscovite was compressed. Thus, the changes in
thermal conductivity are fully reversible and we have not
observed significant hysteresis in the data. Our measure-
ments do not support a previous report of a crystal-to-
amorphous transition in muscovite at P�20 GPa.33

We compare the thermal-conductivity data to two simple
models. First, we consider the thermal conductivity in the
relaxation-time approximation, �=C�vz

2��, where C is the
heat capacity per unit volume of the vibrational modes that
contribute significantly to heat transport, � is the relaxation
time, and �vz

2� is the average of the square of the cross-plane
components of the group velocities of the vibrational modes.
If we can assume the heat capacity and relaxation time are
weakly dependent on pressure, changes in � are only the
result of changes in �vz

2�.

In an anisotropic Debye model, the phonon dispersion is
	2= �kxcx�2+ �kycy�2+ �kzcz�2, where ki and ci are the wave
vector and speed of sound along the i direction. The group
velocity in the cross-plane direction is vz=�	 /�kz. With cx
=cy,

�vz
2� = cz

2	
0


/2 cz
2 cos2 �

cx
2 sin2 � + cz

2 cos2 �
sin �d� . �1�

To evaluate Eq. �1�, since cx
2=C11 /� and cz

2=C33 /�, we as-
sume the pressure dependence of cx

2 and cz
2 follows the pres-

sure dependence of C11 and C33. The solid line in
Fig. 4 shows the predicted � using �vz

2� from Eq. �1�
and a fit to � at ambient pressure; i.e., �=�0�vz

2�, with
�0=4.2�10−8 J s m−3 K−1. We cannot exclude the effects
of changes in relaxation time with pressure, but the good
agreement between the data and the prediction based on
Eq. �1� suggests that most of the pressure dependence of �
can be accounted for by changes in the sound velocities.

The good agreement between the data and this simple
model also suggests that acoustic phonons are the dominant
heat carriers in the cross-plane direction in muscovite. In
most nonmetallic crystals, acoustic phonons are known to be
the dominant heat carriers but this conclusion is not obvi-
ously true for the cross-plane direction of muscovite because
the thermal conductivity is much smaller than the predicted
minimum value and only a minority of the vibrational modes
are acoustic modes with large group velocities.

The Leibfried-Schlömann �LS� equation—often used to
model the pressure dependence of �—can also describe the
data,

� = A
V1/3	D

3

�2T
, �2�

where V is the volume, 	D the Debye frequency, � the Grü-
neisen constant, T the temperature, and A is a constant that is
independent of pressure.39 If we model the pressure depen-
dence of 	D through the pressure dependence of C33, i.e.,
	D
C33, then the prediction of Eq. �2� scales approxi-
mately as C33

3/2 and is also in good agreement with the data
�see Fig. 4�. �The Grüneisen constant for longitudinal modes
in the cross-plane direction, �= �1 /2�dC33 /dP�3.8, is ap-
proximately independent of pressure.� We note, however,
that the scaling 	D
C33 is difficult to justify since the LS
equation is derived for an isotropic crystal.

IV. CONCLUSION

In conclusion, we have combined the techniques of pico-
second interferometry, time-domain thermoreflectance, and
the diamond-anvil cell to investigate the pressure depen-
dence of thermal conductivity at pressures sufficiently high
to significantly alter the anisotropy of a prototypical layered
crystal, muscovite. The approach we have developed is gen-
eral and applicable to any material that can be prepared with
a smooth surface, coated with a metal film, and loaded into a
diamond-anvil cell. While these initial studies are limited to
room temperature, we anticipate that the upper temperature
range of the measurements will only be limited by the physi-
cal and chemical stability of the metal film.
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FIG. 4. Measurements �solid symbol� and theoretical predictions
of the cross-plane thermal conductivity � of muscovite as a func-
tion of pressure. Error bars on the data points are dominated by
uncertainties in the parameters in the thermal model used to analyze
the data. The predicted � based on a constant relaxation time and
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elastic anisotropy. The prediction of the LS equation using the scal-
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