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We present low-temperature low-power intermodulation-distortion �IMD� measurements of high-quality
MgB2 thin films that are inconsistent with presumed s-wave symmetry of the order parameter. The measure-
ments were carried out in a stripline resonator at approximately 2 GHz between 1.8 K and Tc. The IMD arises
from the nonlinear Meissner effect in which the penetration depth is dependent on the RF magnetic field.
Specifically, the observed IMD vs temperature T for T�Tc /2 varies as T−2, while for an s-wave gap symmetry
in the clean limit, the low-temperature IMD decreases exponentially with decreasing temperature. We calculate
the IMD from first principles for different order-parameter symmetries using a Green’s function approach and
compare the results with the measured data. We propose that the observed upturn in the low-temperature IMD
implies an admixture of an order parameter with nodal lines into the energy gaps of MgB2. Most likely, this
admixture is prominent for the � gap. Within the constraints of the hexagonal crystal symmetry of MgB2, the
best fit with our IMD measurements is obtained with a gap ��� ,T�=�0�T�sin�6��, where � is the azimuthal

angle in the ab̂ plane, and �0�T� is the amplitude, weakly temperature dependent at low temperatures. This gap
symmetry entails six nodal lines. We also present low-temperature penetration-depth measurements that are
consistent with the proposed nodal gap symmetry. To relate our proposition with existing literature, we review
other low-temperature probes of the order-parameter symmetry. The literature presents conflicting results, some
of which are in direct support of the symmetry proposed here.
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I. INTRODUCTION

Third-harmonic generation and intermodulation-distortion
products �IMD� of a superconductor constitute the lowest-
order nonlinear responses to an electromagnetic field. The
IMD arises from the nonlinear Meissner effect �NLME� in
which the penetration depth is dependent on the RF magnetic
field. Third-order IMD is the mixing of two tones and is
experimentally simpler to measure than harmonic generation.
As demonstrated for YBCO at microwave frequencies,
where ����, � and � denote the circular frequency and
superconductor gap, respectively, this response is practically
frequency independent, a factor that simplifies the analysis
considerably. The low-temperature IMD is sensitive to the
existence of low-energy excitations in the superconductor,
hence to the presence of nodal lines or planes in the energy
gap, such as with the d-wave gap symmetry of YBCO. The
relationship of gap symmetry to IMD and the NLME has
been examined both theoretically1–3 and experimentally.4–7

With nodal lines in the gap, the IMD response diverges with
decreasing temperatures, while in the absence of low-energy
excitations, as for a gap with s-wave symmetry, the response
decays exponentially. The divergence at low T and the high
sensitivity of the measurement technique constitute the ad-
vantages of the IMD as a probe for nodal lines in the gap.
This methodology has been successfully applied to YBCO,
where the IMD power has been experimentally observed to
follow the theoretically predicted characteristic T−2 diver-
gence at low temperatures,3,4,7–9 and leads to the conclusion
that YBCO exhibits an energy gap with nodal lines.

Recently, penetration-depth measurements have provided
evidence that YBCO possesses multiple-gap symmetries

with in-plane �s+d�-wave symmetry.10,11 These measure-
ments are not in conflict with the YBCO IMD data, since at
low temperatures the IMD divergence as T−2 dominates the
exponentially small contribution of the s-wave gap compo-
nent. The presence of nodes in the gap leads to low-
temperature divergence even in cases of mixed symmetry
containing a small s-wave component as discussed in Sec.
III.

In this paper, we extend the methodology of IMD mea-
surements to MgB2. We find that the measured IMD in MgB2
increases at low temperature as T−2, resembling that in
YBCO. This result implies that MgB2 has at least some ad-
mixture of a nodal gap. We will show rigorously that a mix-
ture of nodeless and nodal gaps still lead to the IMD diver-
gence at low temperature. We conjecture that it is the � gap
that is either nodal or a mixture of nodeless and nodal with
the nodal component dominating.

The physical properties of MgB2 have been studied exten-
sively with a variety of probes such as specific heat, 11B
NMR experiments, and penetration-depth measurements
complemented by first-principles calculations.12–15 These
studies led to the conclusion that MgB2 entails two gaps,
underpinned by four disconnected Fermi-surface sheets. The
larger gap, denoted by �, results from pairing mediated by
electron-phonon interaction in the boron planes. It corre-
sponds to two, nested, cylinder-shaped Fermi surfaces
aligned along the ĉ direction. The smaller gap, denoted by �,
involves motion of the Mg and B atoms and corresponds to
two-dimensional and three-dimensional, torus-shaped Fermi
surfaces. The common assertion is that both gaps are s
wave.12 Typical values reported are 6.8 meV for the � and
1.8 meV for the �.14
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Since MgB2 has a single critical temperature, the gaps
corresponding to the � and � bands cannot be completely
independent; there must be some off-diagonal terms that mix
in the two gaps.16,17 However, this mixing is expected to be
small due to the rather different symmetries of the underly-
ing bands.18 Therefore MgB2 can be approximately described
in terms of two, effectively uncoupled gaps, i.e., the � and �
gaps. This point is discussed in more detail in Sec. III.

The characteristic low-temperature variation in the IMD
in the clean limit for an s-wave gap symmetry is an expo-
nential falloff �see Eq. �3.16��

PIMD�T� � T−5e−�2�0/kBT�, �1.1�

where kB is Boltzmann’s constant. Our IMD-power measure-
ments, Fig. 1, follow a qualitatively different low-
temperature variation, even after accounting for sample vari-
ability across the several measured samples. The low-
temperature IMD variation in Fig. 1 is in fact similar to that
of high-quality YBCO films, also shown in Fig. 1,4 where

PIMD�T� � T−2. �1.2�

Hence, unless our MgB2 IMD data reflect some extrinsic
factors, we are led to the conclusion that at least one of the
gaps entails nodal lines or planes or both. The important
issue regarding the effect of possible extrinsic factors is
elaborated in Sec. VI, with the conclusion that most likely
the data in Fig. 1 reflect the film’s intrinsic response.

In the clean limit, the crystal-symmetry group imposes
constraints on the allowable gap symmetries.19 For the hex-
agonal crystal symmetry of MgB2, out the four possible
positive-parity gap symmetries, the best fit to our low-
temperature IMD measurements is obtained with the gap
function

���,T� = �0�T�sin�6�� , �1.3�

where � is the azimuthal angle with respect to the k̂x axis in

the basal ab̂ plane. Details are given in Sec. III. To further
test the proposed symmetry of Eq. �1.3�, we compare its

implication for our low-temperature penetration depth data
and find good agreement.

Our findings naturally raise the question of consistency
with existing literature on the MgB2 gap symmetry. The lit-
erature reviewed in Sec. VII reveals conflicting data from
different groups where several of the experiments support the
notion of a nodal gap.

The paper is organized as follows. In Sec. II we describe
the experimental approach, while Secs. III and IV describe
the theoretical analysis of the low-temperature variations in
the IMD power and penetration depth in the clean limit. Sec-
tion V is a comparison of theory to our data. In Sec. VI we
discuss the possibility that our data are dominated by extrin-
sic effects whereas in Sec. VII we review the literature per-
taining to the gap symmetry. Section VIII is devoted to a
summary of our results and suggestions for additional ex-
periments to test the proposed gap, Eq. �1.3�.

II. EXPERIMENT

The IMD was measured by the stripline-resonator tech-
nique, described below,4,5 employing thin films of MgB2 that
were deposited by the reactive-evaporation method,20,21 in
which boron is deposited in vacuum onto a substrate that
rapidly rotates through a region of high-pressure magnesium
vapor where the MgB2 film is formed. This method yields
very clean, stable, large-area, double-sided MgB2 films on a
multitude of substrate materials. The films were deposited
onto 5-cm-diameter sapphire and lanthanum aluminate
�LAO� substrates and have Tc=39 K and low resistivity. The
film thickness in these experiments was either 150 or 500
nm. More detail about the films is given in Ref. 22.

The films were patterned using standard photolithography
and ion milling. After patterning, the wafers were diced, and
the etched striplines were assembled with ground planes
from the same wafer to form stripline resonators. The prop-
erties of the patterned line dominate the performance of the
resonator because the current density is approximately a fac-
tor 100 higher in the line than in the ground plane. The
stripline center-conductor width is 150 	m. The quality fac-
tor Q and resonant frequency f0 of the resonators were mea-
sured as a function of the microwave power at temperatures
between 1.8 K and Tc. The measurements were carried out at
the fundamental frequency of 2.3 GHz for films on the sap-
phire substrates, and at 1.5 GHz for films on the LAO sub-
strate. The third-order IMD was measured in the usual way,
in which two closely spaced tones of equal power at frequen-
cies f1 and f2 are combined and applied to the resonator. The
frequencies are centered about the resonant frequency with a
tone separation of approximately 1/32 of the low-power 3 dB
bandwidth. The frequencies of the tones were adjusted at
each power level and temperature to maintain the same rela-
tionship to the bandwidth and resonant frequency. The power
PIMD of the third-order mixing products at frequencies
2f1− f2 and 2f2− f1 is then measured in a spectrum analyzer
as a function of the input power to the resonator.

For the data analysis, the measured PIMD is converted to a
normalized IMD power PNORM, which removes the depen-
dence of the IMD on the unloaded Q value of the resonator
and insertion loss5
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FIG. 1. �Color online� Comparison of IMD vs reduced tempera-
ture for representative MgB2 samples and a typical YBCO sample
�Ref. 4� at a circulating power of +5 dB m. �, YBCO, � and �,
MgB2 on sapphire articulating power of −5 dB m. The MgB2

samples show higher IMD, but show the increase at low tempera-
tures that is similar to that of YBCO. The low-temperature increase
in the latter results from the d-wave symmetry of the energy gap.
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PNORM =
PIMD

rv�1 − rv�Qc
. �2.1�

In Eq. �2.1� rv denotes the voltage insertion ratio, which is
related to the insertion loss IL in dB by

rv = 10−IL/20 �2.2�

and Qc is the unloaded Q of the resonator. The input power P
is converted to circulating power PCIRC associated with the
standing wave in the resonator at resonance according to the
expression

PCIRC =
4Ql�1 − rv�rvP

�
, �2.3�

The data are then plotted as normalized IMD power PNORM
vs PCIRC. Figure 2 shows data measured at the indicated
temperatures for a representative sample on a LAO substrate.
Note that the IMD generally increases with a slope between
2 and 3 in the double logarithmic plot, and the slopes vary
with temperature and input power. The question of slope
values has been discussed in the literature and is beyond the
scope of this paper.7

The focus of this work is the IMD vs temperature at a
fixed, low circulating power. The data, however, are of ne-
cessity measured at fixed values of temperature with varying
input power. In order to extract the IMD vs T curve from the
measured data, we select a value of circulating power and
make a polynomial fit to the data in the vicinity of that cir-
culating power. The values of PNORM are then extracted from
these fits.

Figure 3 is a plot of IMD �PNORM� vs temperature at
PCIRC=−5 dB m circulating power, a fairly low value, for
five different samples on sapphire and LAO substrates. All
samples except one show an upturn at low temperatures,
which is the focus of the rest of this paper. As was found in
YBCO,7 the IMD magnitude varies from sample to sample.
Unlike the IMD measurements in YBCO,4,7 the measured
MgB2 data show structure, which is not well understood and
is discussed in later sections of this paper.

In addition to the IMD, the stripline resonator is used to
measure small variations in the penetration depth 
0 as a

function of temperature by measuring the change in reso-
nance frequency f�T�. This method, however, does not yield
the absolute value of 
0. The change in the resonance fre-
quency �f can be related to the change in penetration depth
by23

−
2�f

f
=

�L

L
=

2
0�
� J2�x,y,
�dA

� 	0H2�x,y�dA

�2.4�

where L is the inductance per unit length of the stripline, J is
the current density in the stripline, and H is the RF magnetic
field in the dielectric. Equation �2.4� is based on the assump-
tion that the change in reactance is due entirely to the change
in kinetic inductance arising from the change in 
0. This is a
standard assumption. Since the current density in a stripline
is dependent on 
0, the integral in Eq. �2.4� must be evalu-
ated numerically23 and an iterative method used to determine
�
.

III. THEORY OF IMD

We follow the approach developed for and applied to the
IMD power in YBCO in the clean limit.3 In this approach the
focus is on the constitutive relation that relates the pair cur-
rent to the vector potential in momentum space, which is of
the form

j�S�q�� = −
c

4�
K�q��A� �q�� = −

c

4�
� 1


0
2 + KNL„�A� �q���2…�A� �q�� .

�3.1�

In Eq. �3.1� the pair-current density is denoted by j�S�q��, A� �q��
denotes the vector potential in the static limit, K�q�� and
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FIG. 2. �Color online� Typical measurements of normalized
IMD power IMD �dB m�PNORM vs PCIRC at three selected tempera-
tures. �; T=35 K; �, T=1.8 K, and �, T=15 K. The MgB2 film
is deposited on LAO. More temperatures were measured but are not
shown for reasons of clarity. As discussed in the text, the slopes
depart from the expected slope of three.
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FIG. 3. �Color online� Normalized IMD vs temperature for rep-
resentative samples from different fabrication runs all measured at
−5 dB m circulating power. Samples were deposited under the
same conditions. The open symbols are for samples 500 nm thick,
and the closed symbols are for samples 150 nm thick. The sub-
strates are sapphire except for the � symbols which depict a film on
LAO. All samples except the one depicted with � show the 1 /T2

increase at low temperature. The solid line is a 1 /T2 dependence to
guide the eyes. The sample that does not show a low-temperature
increase has the highest IMD of the thicker samples, indicating that
it is dominated by extrinsic IMD sources which mask the intrinsic
1 /T2 dependence of the other samples. The 150-nm-thick samples
have higher IMD at the same circulating power since the current
density in them is higher.
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KNL(�A� �q���2) denote the total and nonlinear kernels of the
constitutive kernel, respectively, and c is the speed of light.
The cgs unit system is employed throughout this work. The
nonlinearity of the kernel KNL is reflected in its dependence
on the vector potential and is embodied in its Taylor series
expansion

KNL„�A� �qz��2… = K�2��qz��A� �qz��2 + K�4��qz��A� �qz��4 + ¯ .

�3.2�

Figure 4 shows the chosen coordinate system. For the thin
films employed in our experiments, a one-dimensional ge-
ometry is appropriate and the Miessner effect occurs at the
film edges. Thus, the current flows along the x̂ direction, is
assumed uniform along the �thickness� ŷ direction, but varies
along the ẑ direction, i.e.,

j�S�x�� = x̂ jSx�z�, A� �x�� = x̂Ax�z�, q� = �0,0,qz� ,

	A� �q��

j��q��

 =� dx�e−iq� ·x�	A� �x��

j��x��



= �2��2��qx���qy��	Ax�qz�
jx�qz�


,0,0� ,

	Ax�qz�
jx�qz�


 =� dze−iqzz	Ax�z�
jx�z�


 . �3.3�

The IMD power is associated with the lowest-order term
in expansion �3.2�. This term and the higher-order terms have
been calculated in the Green’s function approach for the
clean limit.3 In particular, the explicit expression in the long-
wavelength limit for a single gap is

K�2��qz = 0��A� �qz = 0��2A� �qz = 0�

=
qS

4�

4�4�6mc4
0
2 

n=−�

� � dk�k��A� �qz = 0� · k̂�3

�	 ��k�

�kx

3

��Ĝ0�k�,�n��4��1,1�,

 =
1

kBT
, �n =

�2n + 1��
�

. �3.4�

In Eq. �3.4� qS is the single-carrier charge �positive or nega-

tive�, � is a dimensionless number on the order of unity, k̂
denotes a unit vector associated with the momentum vector
k�, �k� =�k� −	 is the band energy �k� relative to the chemical

potential 	, Ĝ0 denotes the homogeneous-superconductor
Green’s function matrix, and �n are the Matsubara frequen-
cies. In case of more than one band �gap� and a single Tc,
there must be matrix elements that mix the gaps.16,17 The
admixed gaps have to be calculated self-consistently.11,16,17

For MgB2 with a single Tc, the matrix elements that mix the
two gaps are very small,18 hence admixtures are expected to
be weak. The corresponding two-band Green’s function ma-
trix is of dimensionality 4�4 with a 2�2 block correspond-
ing to each band and small, off-diagonal matrix elements that
mix the diagonal blocks.24–26 Therefore, for MgB2 the non-
linear kernel in Eq. �3.1� can be expanded as

K�2��qz = 0� = K�
�2� + K�

�2� + K��
�2� , �3.5�

where the kernels K�
�2� and K�

�2� involve solely the diagonal
blocks of the � and � bands, respectively, while the K��

�2�

kernel involves matrix elements that couple the �1,2� and
�3,4� blocks. Provided these coupling matrix elements are
sufficiently small in comparison to the diagonal terms, the
K��

�2� kernel can be neglected in comparison to the K�
�2� and

K�
�2� kernels. This approximation corresponds to the

uncoupled-gap model adopted in this work, where the � and
� gaps are treated individually, as in Eq. �3.4�. Hence,

K�
�2� � 

n=−�

� � dk�k��A� �qz = 0� · k̂�3	 ��k����

�kx

3

��Ĝ0�k�,�n��4��1,1�,

K�
�2� � 

n=−�

� � dk�k��A� �qz = 0� · k̂�3

�� ��k����

�kx
�3

��Ĝ0�k�,�n��4��3,3�. �3.6�

The IMD power calculation for a single-band �gap� super-
conductor, Eq. �3.4�, starts with the exact summation of the
Matsubara-frequency dependence


n=−�

�

��Ĝ0�k�,�n��4��1,1�

= − 	4�4

48

�− 2 + cosh���2 + �2��sech4	

2
��2 + �2
 .

�3.7�

In Eq. �3.7� the symbol � denotes the gap where its tempera-
ture and k� dependencies have been suppressed to simplify
notation. Note that by inserting the explicit expressions for

Ĝ0 into the left-hand side of Eq. �3.7� it follows �not shown
here� that for low temperatures, i.e., when ��1, the low-n
terms are positive while the n�1 terms are negative. These
two groups of terms almost cancel, where the latter is

z

y

x

w

d

FIG. 4. �Color online� Coordinate system for the
calculations.
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slightly larger than the former. This near cancellation poses a
challenge for a numerical summation of Eq. �3.7�.

Inserting Eq. �3.7� into Eq. �3.6� and taking the long-
wavelength limit we find for the nonlinear kernel in the one-
dimensional geometry defined in Fig. 4 the general expres-
sion

K�2��qz = 0;��

= −
1

263�4

qS
4�3

�mc2���c�2
0
2� dkx� dky� dkzkx	 ���

�kx

3

��− 2 + cosh����
2 + ��

2 ��sech4	

2
���

2 + ��
2
 .

�3.8�

This applies for the � gap as the integration is three dimen-
sional. The k� dependence of � and � have been suppressed to
simplify notation. For the particular case of ĉ-axis-aligned
cylindrical Fermi surfaces and a gap with s-wave symmetry
�the � band�, Eq. �3.8� takes the form

K�2��qz = 0;��

= −
1

28�3

qS
4�3

�mc2���c�2
0
2� K2dK� dkz	 ���

�K

3

��− 2 + cosh����
2 + ��

2��sech4	

2
���

2 + ��
2
 ,

�3.9�

where K and kz denote the radial and z components in the
cylindrical coordinate system.

In terms of the nonlinear kernels of Eq. �3.6� the single-
band expression for the IMD power is3

PIMD�T� � �K�2��qz = 0��2. �3.10�

Equation �3.10� is readily generalized for the case of a su-
perconductor with two coupled bands.

PIMD � �K�2��qz = 0��2 = �K�
�2� + K�

�2� + K��
�2��2

� �K�
�2��2 + �K�

�2��2. �3.11�

Equation �3.11� entails two approximations. The first is the
neglect of the kernel K��

�2� , provided the off-diagonal coupling
terms in the 4�4 Green’s function are sufficiently small. As
discussed above, this approximation is well justified.18 The
second, implicit approximation in Eq. �3.11� is the neglect of
interference term between the � and � kernels at the low-
temperature limit which is at the focus of this work. This
approximation conforms to our presumption that the � gap
and � gap are predominantly s wave and non-s wave �nodal
gap�, respectively. This point is further discussed in Sec. VII.
Under these simplifying approximations, Eq. �3.11� implies
that the analysis can proceed on a single-gap configuration,
to which we turn now.

To evaluate the low-temperature behavior of PIMD�T�
when ��1, we consider first the Green’s function factor,
Eq. �3.7�. In the low-temperature limit, this is the fastest-
varying factor in the integrand, and it can be simplified to

lim
��1

�− 2 + cosh���2 + �2��sech4	

2
��2 + �2
 = 8e−��2+�2

.

�3.12�

Furthermore, transforming the integration in Eq. �3.8� to cy-
lindrical coordinates and invoking a change in variables
K→� yields

K�
�2��qz = 0� = C13�

−�

�

d��
0

2�

d��
−kc

kc

dkz

��K2	 �K

��

	 ��

�kx

3

cos����e−��2�k��+��k�,T�2
.

�3.13�

In Eq. �3.13�, all temperature-independent factors and the
weakly varying 
0�T� factor in Eq. �3.8� are lumped into the
constant C1. Moreover, since the exponential is the fastest-
varying factor in Eq. �3.13� it is justified to pull out all fac-
tors in the curly brackets from under the integral sign and
replace them by a suitable average value, whose details, in-
cluding the band structure ��k�� specifics, are unimportant.
This step leaves only the exponential factor in the integrand
of Eq. �3.13�. The remaining integrations must be carried out
exactly. The � integration gives the exact result27

�
−�

�

d�e−��2+�2
= 2��2K1���2� ��2���2


e−��2

.

�3.14�

In Eq. �3.14� the symbol K1�z� denotes the modified Bessel
function that is approximated by its asymptotic limit.28 Pull-
ing the curly bracket factors from under the integration in
Eq. �3.13� and carrying out the associated � integration yields
for the low-temperature limit of the nonlinear kernel

K�
�2��qz = 0;T�

� C25/2�
0

2�

d��
−kc

kc

dkz����,kz;T�2�1/4e−����,kz ;T�2
,

�3.15�

where all the above-mentioned slowly varying factors in
temperature are lumped into the constant C2 and the remain-
ing temperature and momentum dependencies have been
made explicit. For an s-wave gap symmetry, ��� ,kz ;T�
=�0�T�, the � and kZ integrations in Eq. �3.15� collapse into
a constant factor.

The structure of expression �3.15� shows that the low-
temperature variation in the kernel strongly depends on the �
and kz dependencies of the gap. These, in turn, are con-
strained by the hexagonal crystal-symmetry group of
MgB2.19 Limiting ourselves to the positive-parity, one-
dimensional representations for the hexagonal crystal-
symmetry group, there are only four possibilities. These are
listed in Table I with corresponding gap functions that are
parameterized such that the amplitudes, �0�T�, are positive
and have dimensionality of energy. Note that the �1

+ gap with
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symmetry kx
2+ky

2=K2 is taken as a constant since for both �
and � bands the Fermi surface is characterized by an ap-
proximately constant K value.29,30

With the gap parametrizations of Table I, the correspond-
ing low-temperature IMD temperature variations are derived
from Eq. �3.15�. Table II summarizes the ensuing tempera-
ture dependencies for all possible gap parametrizations of
Table I. Details are differed to the Appendix.

As an illustration of PIMD, consider the simple case of an
s-wave symmetry, i.e., the �1

+ gap listed in the first line in
Table I. In this case Eq. �3.15� yields

PIMD�T� � 5�0�T�e−2�0�T�. �3.16�

As Eq. �3.16� indicates, for an s-wave gap the low-
temperature variation in PIMD�T� is exponentially decreasing
with temperature, Eq. �1.1�, reflecting the freeze-out of all
thermal excitations in this temperature domain.

IV. THEORY OF THE PENETRATION DEPTH

In the clean low-power limit, the expression of the pen-
etration depth in terms of the Green’s function is31

1


0
2�T�

=
qS

2

�2mc2�2


n=−�

� � dk�k�� ���k��
�kx

���Ĝ0�k�,�n��2��1,1�

+
4�qS

2

mc2 nTOTAL. �4.1�

The chosen coordinate system is defined in Fig. 4, and
nTOTAL denotes the total single-carrier density.

To establish the low-temperature limit of 
0�T� we follow
the method detailed in Sec. III. Consequently, we first per-

form the exact summation over the Matsubara frequencies.
This yields


n=−�

�

��Ĝ0�k�,�n��2��1,1� = − 	2�2

4

sech2	

2
��2 + �2
 .

�4.2�

Inserting Eq. �4.2� into Eq. �4.1� and introducing the relation
between the paired single-carrier density ns�T� and the pen-
etration depth from the phenomenological London’s theory32

1


0
2�T�

=
4�ns�T�qs

2

mc2 �4.3�

yields the general, well-convergent expression

ns�T�
nTOTAL

= 	
0�T = 0�

0�T�


2

= 1 −


16�3nTOTAL

�� dk�kx
���k��
�kx

sech2	

2
���k�,T�2 + ��k��2
 .

�4.4�

To check expression �4.4� consider the textbook case of an
s-wave gap where ��k� ,T�=�0�T�, and a parabolic band
structure �k� = �2k2

2m −	. In this case it is convenient to use in
Eq. �4.4� the polar coordinate system. The angular integra-
tions then yield

TABLE I. Even-parity one-dimensional gap structure for the hexagonal lattice symmetry.

Irreducible
representation Basis function Gap parametrization Nodal structure

�1
+ 1 ,kx

2+ky
2 ��T�=�0�T� No nodal lines, planes

�1
+ kz

2 ��kz ;T�=�0�T�kz
2 / kc

2 Nodal plane

�2
+ − 1

2sin�6�� ��� ,T�=�0�T�sin�6�� Six nodal lines

�3
+ kz cos�3�� ��� ,kz ;T�=�0�T�

kz

kc
cos�3�� Nodal plane and three nodal lines

�4
+ −kz sin�3�� ��� ,kz ;T�=�0�T�

kz

kc
sin�3�� Nodal plane and three nodal lines

TABLE II. Low-temperature variation of the � kernel, Eq. �3.15�.

Irreducible
representation Gap parametrization

K�2��qz=0;� ;T� /C2 �Eq. �3.15��
Low-T variation for �0�T��1

�1
+ ��T�=�0�T� kc

5/2��0�T�e−�0�T�

�1
+ ��kz ;T�=�0�T�kz

2 / kc
2 kc

3/2 / ��0�T�

�2
+ ��� ,T�=�0�T�sin�6�� kc

�0�T� �2+ 15
4��0�T��2 + ¯ �

�3
+

��� ,kz ;T�=�0�T�
kz

kc
cos�3��

kc

�0�T� �0.656+ln��0�T��− 15
16��0�T��2 +¯�

�4
+

��� ,kz ;T�=�0�T�
kz

kc
sin�3��

kc

�0�T� �0.656+ln��0�T��− 15
16��0�T��2 +¯�
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ns�T�
nTOTAL

= 	
�T = 0�

0�T�


2

= 1 −
�2

12�2mnTOTAL
�

0

�

dkk4 sech2	

2
��0

2 + ��k�2
 .

�4.5�

Noting the functional form of the Fermi distribution and its
derivative

fFERMI�,E� =
1

1 + eE ,
� fFERMI�,E�

�E
= −



4
sech2	E

2

 ,

�4.6�

expression �4.5� yields precisely the textbook result.33 In par-
ticular, inserting the expression applicable for parabolic band
structure nTOTAL= 1

3�2 � 2m	

�2 �3/2 �Ref. 33� and noting that
sech2 z�4e−2z for z�1, yields the well-known low-
temperature limit for an s-wave gap symmetry34

ns�T�
nTOTAL

= 1 − �2��0�T��1/2e−�0�T�. �4.7�

Note that the exponent in Eq. �4.7� is half of that in the
corresponding IMD expression, Eq. �3.16�, since the penetra-
tion depth does not involve squaring the constitutive-relation
kernel.

To evaluate the low-temperature limit of Eq. �4.4� for a
general gap symmetry we follow steps and arguments corre-
sponding to those in Sec. III, since the fastest varying factor
in the integrand of Eq. �4.4� is the sech2�z�. For z�1 it
follows that sech2 z�4e−2z. Skipping all intermediate steps,
the final result is

nS�T�
nTOTAL

= �
�T = 0�

�T� �2

= 1 − C31/2�
0

2�

d��
−kc

kc

dkz����,kz�2�1/4

�e−����,kz�
2
, �4.8�

where all the slowly varying factors in temperature are
lumped into the constant C3. The integral term in Eq. �4.8� is
identical with that in Eq. �3.15� except for the power of 
prefactor, i.e., 1/2 vs 5/2. Hence, the low-temperature limit of

Eq. �4.8� is readily deduced from Table II by the appropriate
adjustment of the -prefactor power. The results in Table III
show that except for an s-wave gap symmetry, the tempera-
ture dependence of the penetration depth follows a power
law and a logarithmic dependence in T.

So far, we have considered the one-band case. Unlike the
IMD case where the contribution of the s-wave-dominated
gap vanishes exponentially at low temperatures and can be
neglected, in the case of the penetration depth contributions
of both gaps in MgB2 must be considered because both re-
main finite. As mentioned above and discussed in Sec. VII,
we approximate the two gaps as uncoupled, each with a dif-
ferent predominant symmetry. In this approximation, the lin-
ear constitutive relation between the current and vector po-
tential takes the generalized form

j�S = �j�S��� + �1 − ��j�S��� =

LINEAR

−
c

4�
� �

�0�
2 +

1 − �

�0�
2 �A�

= −
c

4�

1

�0
2A� ,

�4.9�

where � denotes the relative weight of the �- and �-band
contributions and 
0��T� and 
0��T� are evaluated according
to Eq. �4.8� with the appropriate gaps. As will be shown
below, the exact value of � is unimportant when considering

�T� at low temperatures. From Eq. �4.9�, the measured pen-
etration depth 
0 is given by

1


0
2�T�

=
�


0�
2 �T�

+
1 − �


0�
2 �T�

. �4.10�

As Eq. �4.8� indicates, at low temperatures a convenient con-
struct is the penetration-depth deviation with respect to a
chosen �low, nonzero� reference temperature. For a finite ref-
erence temperature T0 the measured deviation is defined as

�0�T;T0� �

0�T�

0�T0�

− 1. �4.11�

On the other hand, the calculated quantity in Eq. �4.8� refers
to single-gap deviations with T0=0. The relation between
these two kinds of deviations is obtained by inserting the
penetration-depth deviation in Eq. �4.11� and the analogous
deviations for the � and � gaps into Eq. �4.10�, and invoking

TABLE III. Low-temperature variation of the pair density, Eq. �4.8�.

Irreducible
representation Gap parametrization

−�nS�T� / nTOTAL −1� / C3 �Eq. �4.8��
Low-T variation for �0�T��1

�1
+ ��T�=�0�T� 4�kce

−�0�T����0�T�+ 3
8��0�T� �

�1
+ ��kz ;T�=�0�T�kz

2 / kc
2 2�kc / ��0�T�

�2
+ ��� ,T�=�0�T�sin�6�� 2��kc

�0�T� �2+ 15
4��0�T��2 +¯�

�3
+

��� ,kz ;T�=�0�T�
kz

kc
cos�3�� 4��kc

�0�T� �0.656+ln��0�T��− 15
16��0�T��2 +¯�

�4
+

��� ,kz ;T�=�0�T�
kz

kc
sin�3�� 4��kc

�0�T� �0.656+ln��0�T��− 15
16��0�T��2 +¯�
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the linear transformation between the deviations with respect
to a finite T0 and with respect to T0=0. To the lowest order in
the latter deviations, simple manipulations yield

�0�T;T0� = a�����T;T0 = 0� − ���T0;T0 = 0��

+ a�����T;T0 = 0� − ���T0;T0 = 0�� ,

�i�T;T0 = 0� =

0i�T�


0i�T0 = 0�
− 1, i = � or � . �4.12�

In Eq. �4.12� the penetration-depth deviations on the right-
hand side are calculated from Eq. �4.8� for the chosen T0 and
the pertaining gap symmetries. The measured quantity is the
left-hand side, and both sides of the equation are related in
terms of two fitting parameters a� and a�. The explicit ex-
pressions of a� ,a�, and the value of the � parameter, �
�0.5,18 are not needed.

The dimensionless deviations calculated from Eq. �4.8�,
�
0i�0� /
0i�T��2=1−Di, are typically very small. Hence, in
the context of Eq. �4.12� they are related to the penetration-
depth deviations by

�i�T;T0 = 0� =

0i�T�

0i�0�

− 1 =
1

�1 − Di

− 1 �
Di

2
,

for Di � 1, i = �,� . �4.13�

V. COMPARISON OF THEORY AND MEASUREMENTS

The analysis in Secs. III and IV provides a framework for
comparison with our measurements. As argued below, the
clean-limit expressions in Secs. III and IV apply since there
are strong grounds for assuming that no extrinsic effects
mask the intrinsic low-temperature variation in our films.

A. IMD measurements

In Fig. 5�a� the low-temperature portion of the MgB2 data
of Fig. 1 is redrawn and compared with the four possible
low-temperature variations listed in Table II. The comparison
clearly indicates that the best fit to the available data is a gap
with the �=6 symmetry ��2

+�, i.e.,

���,T� = �0�T�sin�6�� ⇒ PIMD�T� � T−2. �5.1�

Figure 5�b� is another presentation of the temperature varia-
tion of the IMD for several samples over the entire tempera-
ture range in comparison with the predicted �=6 gap sym-
metry PIMD�T��T−2 of Eq. �5.1�. Note the good comparison.
In the next section, we further discuss this result.

B. Penetration depth measurements

The proposed symmetry in Eq. �5.1� has ramifications on
the low-temperature variation in penetration depth, see Eq.
�4.8� and Table III. In particular, for the symmetry of Eq.
�5.1�, Table III ��2

+� yields

���T;T0 = 0� =

��T�

��0�

− 1

= C4�2	 1

�T��0�T�

 +

15

4
	 1

�T��0�T�

3� ,

�5.2�

where C4 is a temperature-independent constant, see the Ap-
pendix.

In Fig. 6 we plot the two-parameter fitting formula, Eq.
�4.12�, for two representative cases: �a� where we assume an
s-wave gap symmetry for both gaps �the first �1

+ presentation
in Table III�; �b� where the � gap has the proposed �=6 as
the dominant symmetry �Eq. �5.2�� while the � gap is pre-
dominantly s wave. The temperature dependencies �0�T� are
taken from Ref. 14. As Fig. 6 shows, cases �a� and �b� follow
the data closely throughout the considered temperature do-
main with slightly different curvatures. Hence, the penetra-
tion depth data in Fig. 6 is consistent with the proposed �
=6 �-gap symmetry of Eqs. �1.3� and �5.1�. We note that a
single s-wave gap with either the � or � magnitude yields a
poor fit.
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FIG. 5. �Color online� �a� Comparison of theory and experiment
for several candidate symmetries. The points are the measured val-
ues for one of the 150-nm-thick films shown in Figs. 1 and 3.
Long-dashed line, s wave or the first line of Table I ��1

+�; long-
short-long-dashed line, the second line of Table I ��1

+�; short dashed
line, third line of Table I ��2

+�; and solid line in black: fourth line of
Table I ��3

+�. The �2
+ curve yields the best fit to the data. �b� Com-

parison of the measured IMD with the 1 /T2 prediction of the theory
for the low-power, low-temperature asymptote of the IMD. The
points are the same data as shown in Fig. 3 where � is MgB2 on
LAO and � is MgB2 on sapphire each at −5 dB m circulating
power and � is MgB2 on sapphire at 0 dBm circulating power. The
film thickness is 500 nm. The solid lines are simply 1 /T2 behavior,
which shows as a straight line on the double logarithmic plot.
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VI. POSSIBLE EXTRINSIC EFFECTS ON IMD

Thus far, we have presented the evidence that the low-
temperature upturn in IMD and penetration-depth tempera-
ture dependence reflect the existence of nodal lines, specifi-
cally, the symmetry with six nodal lines, Eq. �1.3�, most
likely in the �-band energy gap. In the following, we exam-
ine the question of whether the observed upturn in the low-
temperature IMD could result from extrinsic causes rather
than the symmetry of the gap. We examine two of the most
important extrinsic sources of nonlinearity, weak links, and
two-level systems, and argue that neither of these can explain
our experimental results.

A. Weak links

Defects and grain boundaries can be origins of weak
links, and weak-link effects attributed to grain boundaries
have been observed in MgB2.35 Weak links behave as Jo-
sephson junctions with critical currents that are smaller than
the macroscopic value of the critical current. The existence
and behavior of weak links are well documented and are
known to provide sources of RF nonlinearities, such as
IMD.36–38 The IMD generated in a weak link is related to the
weak-link critical current Ic. The smaller the Ic the larger the
IMD.38 Thus, the temperature dependence of the IMD gen-
erated by a weak link is related to that of the critical current
Ic�T�, which is given by the Ambegaokar-Baratoff model39

Ic�T� =
Ic�0�

�	1 −
T

Tc

 . �6.1�

Therefore, since the weak-link IMD is inversely related to Ic,
Eq. �6.1� implies that it increases monotonically as the tem-
perature increases and it is relatively constant at temperatures
T�Tc /2. This has been demonstrated experimentally in Ref.
5, where the IMD of YBCO films on sapphire was found to

be monotonic in temperature. Thus, weak links as the origin
of the increase in IMD at low temperatures can be ruled out.

B. Two-level systems

Two-level systems �TLS� are saturable absorbers, which
have been typically observed at low temperature in glasses.40

TLS have also been observed in single-crystal MgO �Ref.
41� and  alumina42 at temperatures comparable to 5 K. At
low temperatures and low-power levels where the population
difference between the two levels is maintained, the TLS
absorb energy. At higher temperatures, or when the power is
high enough to populate both levels equally, the TLS become
inactive as absorbers because the populations of the upper
and lower levels are equalized. Thus, TLS in a stripline reso-
nator lead to anomalous resonator Q values as a function of
power: the Q value increases as the circulating power in the
resonator increases until saturation of the TLS occurs after
which the Q vs power is constant. The opposite is observed
in a superconductor, where, above a certain level, the Q de-
creases with increasing power. The saturation effects of the
TLS are obviously nonlinear and produce IMD. In addition,
since the TLS become active only at low temperatures, one
would expect an increase in IMD at low temperatures as the
TLS become active.

The unambiguous signature of TLS is the anomalous
power dependence of the resonator Q and an anomalous tem-
perature dependence of the low-power Q, showing a de-
crease in Q as the temperature is decreased.41 In our mea-
surements of MgB2 these signatures of TLS are completely
absent. None of the MgB2 resonators show anomalous power
or temperature dependence of the Q. In addition, the similar
behavior of the IMD on sapphire and lanthanum aluminate
substrates constitutes another reason for the exclusion of
TLS as the explanation of the IMD vs T. TLS are associated
with the substrate or the interface,43 and therefore the similar
behavior on different substrates indicates that TLS are an
improbable explanation.

VII. RELATION OF OUR FINDINGS TO EXISTING
LITERATURE

It is often stated that MgB2 is a conventional s-wave
superconductor.12 While some data support this, the literature
also contains numerous examples of measurements incom-
patible with s-wave gap symmetry. Here we consider
whether the proposed symmetry, Eqs. �1.3� and �5.1�, is con-
sistent with the literature. As we shall show, some of the data
are consistent with our symmetry proposition. Specifically,
we consider data on specific heat, NMR, the penetration
depth, and tunneling.

The electronic specific heat Ces played an important role
in identifying the two-gap structure of MgB2.12,13 Its expres-
sion is44,45

Ces =
V

�2��32kB� dk�	−
� f�E�

�E

	E2 − T�

d�

dT

 , �7.1�

where V denotes the sample volume and the quasiparticle
Fermi distribution function, Eq. �4.6�, is
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��(
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/��
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0)
-1

FIG. 6. �Color online� Comparison of the measured penetration
depth deviation, 
0�T� /
0�T0�−1, Eq. �4.11�, with the computed
values for two different candidate symmetries. The open blue
circles are the data for MgB2 on sapphire at low power. The solid
red line is the computed curve, Eq. �4.12�, for the �=6 symmetry of
the � gap and s-wave symmetry of the � gap. The best fit yields
approximately equal weights of the two gaps. The dashed green line
is the computed curve, Eq. �4.12�, for two s-wave gaps with ap-
proximately equal weights of the two gaps. Both fits compare with
the data approximately equally well.
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f =
1

eE + 1
, E = ��2�k�� + �2, � = ��k�,T� . �7.2�

At low temperatures, the T��d� /dT� term in Eq. �7.1� is
negligible. Also, as argued in Secs. III and IV, the exponen-
tial factor in the quasiparticle Fermi distribution dominates,
hence �f�E� /�E�−e−E. These steps yield for the low-
temperature specific heat

Ces�T� � C6�2� d��
0

2�

d���2 + �2����e−���2+�2���

� C6�2� d��
0

2�

d��2���e−���2+�2���

= C7�3/2�
0

2�

d��2�����2����1/4e−���2���

⇒
�→�

�3/2�15��

2�7/2 	 � T2,

[

�7.3�

where we have assumed a gap with the �=6 symmetry. The
temperature-independent constants C6 and C7 lump together
all factors irrelevant in the present context, in analogy to the
steps that led to Eq. �3.15�. The exact � integration follows
Eq. �3.14� while the exact � integration for the �=6 gap
symmetry, Eqs. �1.3� and �5.1�, yields a complicated expres-
sion containing hypergeometric functions. In Eq. �7.3� only
the →� limit of that expression is quoted. Note that the
low-T dependence of the specific heat in Eq. �7.3� applies
also for a gap with a d-wave symmetry �not shown here�. By
comparison, the specific heat of an s-wave gap has the char-
acteristic exponential temperature dependence, e−�0.

As Eq. �7.3� indicates, the �=6 nodal gap symmetry pre-
dicts that Ces�T� /T�T at low temperatures. The low-
temperature specific-heat measurements from four groups are
consistent with this linear temperature variation in the tem-
perature range of 2�T�10 K, where presumably the �-gap
contribution dominates.46–50 In one paper the linear tempera-
ture dependence of Ces�T� /T is explicitly interpreted to im-
ply nodal lines in the gap.49 The data for T�2 K vary
among these groups, most likely reflecting experimental
limitations. We note also that first-principles calculations
based on a presumed s-wave �-gap symmetry14,51 do not
agree well with the data in the 2�T�10 K temperature
domain. Hence, we interpret these specific-heat measure-
ments and calculations to be consistent with nodal lines.

Related to the low-temperature specific heat at zero mag-
netic field is the low-field variation, at low temperature, of
the Sommerfeld constant �, defined as Ces�H ,T� /T=��H�.
For an s-wave superconductor a linear-field dependence
��H��H is expected,52,53 while for a nodal gap, ��H�
�H1/2.54,55 The data from several groups vary in the
details,46,47,56–58 but in all cases at low fields the data follow
��H��Hn with 0�n�1. Clear low-temperature low-field
dependence ��H��H1/2 is reported in recent single-crystal
experiments56–58 which is in direct support of the proposed
�-gap symmetry of Eq. �1.3�. The other reported field depen-

dencies of the ��H� in polycrystalline samples46,47 may be
related to the microstructure. Thus, in no case to our knowl-
edge does the Sommerfeld-constant data preclude the nodal-
gap symmetry proposed here.

A second class of experiments employing a bulk probe
that reflect on the gap symmetry are NMR studies, where
�T1S�T��−1, the inverse of the nuclear spin-lattice relaxation
rate, is measured as function of temperature. The gap sym-
metry is reflected in two features of �T1S�T��−1, the Hebel-
Schlichter peak �also, referred to as the coherence peak� at
temperatures just under Tc �Refs. 59 and 60� and the charac-
teristic low-temperature variation. For a nodal gap, such as
the d-wave gap symmetry in YBCO, the Hebel-Schlichter
peak is absent61,62 while for an s-wave gap this peak is
prominent and provided one of the first successes of the BCS
theory.60 At low temperatures �T1S�T��−1�T3 for a nodal
gap19 while for a s-wave gap, �T1S�T��−1 decays exponen-
tially. Most experiments measured the 11B NMR response.
The experiment in Ref. 63 reports a small Hebel-Schlichter
peak, followed by an exponential drop with decreasing tem-
perature. This exponential drop supports an s-wave gap sym-
metry for the � gap which dominates the temperature range
near Tc. The data stops at T=12 K where it is expected that
the low-temperature variation will start to dominate. A simi-
lar small Hebel-Schlichter peak was observed by another
group64 while other groups do not observe it at all.65–68 The
issue of the Hebel-Schlichter peak in MgB2 is to our knowl-
edge still open.62 As for the low-field low-temperature varia-
tion in �T1S�T��−1, the data in Ref. 64 �down to T=5 K�
show a markedly slower decrease with temperature than an
exponential decay. Similarly, in Ref. 65 the single experi-
mental point shown for T=2 K clearly deviates from the
exponential decay observed at higher temperatures. In sum-
mary, the low-temperature NMR data reviewed here is in-
consistent with an s-wave gap symmetry, whereas the mea-
surements of the Hebel-Schlichter peak are inconsistent
among the various groups, where some of the data indicate
the existence of a nodal gap.

Consider now the experimental situation regarding the
low-temperature penetration depth. As demonstrated in Sec.
V, our measured low-temperature penetration-depth data
compare well with the prediction of the presumed nodal gap
of Eq. �1.3�. However, as demonstrated in Fig. 6 over a lim-
ited low-temperature range our data are hardly distinguish-
able from a model with both � and � gaps having pure
s-wave symmetries as suggested by one set of data.69 From
experience with YBCO, however, it seems that it is neces-
sary to reach temperatures well below 0.05Tc to differentiate
between different symmetries by methods of microwave
response.70 Other data, derived from muon spin rotation71

and optical conductivity,72 yield the penetration-depth �T2

while an ac susceptibility experiment fits the penetration-
depth data with a temperature dependence T2.7.73 These
works are clearly inconsistent with the exponential falloff
expected for a s-wave gap, Eq. �4.7�. Thus, to our knowledge
the penetration-depth data as a probe of the gap symmetry
has not yet reached a consensus.

Tunneling spectroscopy has the capacity to discern the
gap symmetry, but it has the disadvantage of sensitivity to
surface quality. The measured quantity is the low-
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temperature conductance G�V�=dI /dV where I and V denote
the current and voltages across a tip. This observable mea-
sures the density of states as function of excitation energy.

For a gap with nodal lines in the ab̂ plane, the conductance
signature is a V-shaped minimum for tunneling in the ĉ di-
rection, centered at V=0.74 On the other hand, for an s-wave
gap the conductance vanishes over the voltage range −�
�eV��, indicating zero density of states below the gap. As
with the probes mentioned above, not all data are consistent
with each other. In one experiment75 at T=0.32 K with a
single crystal, a G=0 flat voltage minimum was observed
and interpreted to imply an s-wave superconductor. How-
ever, the extension of that flat minimum is �2 meV, about
half of the expected extension 2���4 meV.12 Another
study, with a sputtered MgB2 film at T=1.5 K, finds a flat
conductance minimum of the correct extension; however,
G�0 at the conductance minimum as expected for a s-wave
gap.76 Other groups find a V-shaped conductance minimum,
which is consistent with a nodal gap, Eq. �1.3�.77,78

The above data survey indicates that there is no low-
temperature experimental consensus regarding the �-gap
symmetry. While some experiments suggest s-wave symme-
try others support the notion of a gap with nodal lines. The
IMD and penetration-depth measurements reported here are
consistent with the existence of a gap with symmetry that
entails six nodal lines. The advantage of the IMD probe in-
voked in this work is its clear nodal gap signature, as articu-
lated in Eqs. �1.1� and �1.2�, and the relative simplicity of the
interpretation.3,5

VIII. SUMMARY AND CONCLUSIONS

Our analysis assumes that the � and � gaps are effectively
decoupled. However, since MgB2 exhibits a single critical
temperature, some coupling between them must exist16 and
hence both the � and � gaps have a small admixture of the
symmetry of the other gap: s-wave symmetry for the � gap
and �=6 symmetry for the � gap. This admixture of a mi-
nority component to the order parameter does not affect the
low-temperature T−2 divergence of the IMD since the contri-
bution of the nodal lines at low temperatures dominates. In
support of this conclusion note a similar situation for YBCO,
believed to have a d-wave gap symmetry. Evidence has re-
cently been presented that YBCO entails a small amount of
s-wave coupled into the predominant d-wave symmetry,10

yet in high-quality YBCO films the low-temperature T−2 di-
vergence is a prominent feature of the IMD.3–7 Furthermore,
a recent calculation of the d- and s-wave gap coupling in
YBCO �Ref. 11� reveals a temperature dependence of the
gap reminiscent of that measured for MgB2.13

Our low-temperature IMD-power measurements on high-
quality MgB2 thin films are inconsistent with pure s-wave
symmetry of the order parameter. The data provide a strong
indication that at least one of the two energy gaps contains a
component that exhibits a symmetry with nodal lines, spe-
cifically the �=6 symmetry, ��� ,T�=�0�T�sin�6��, with six
nodal lines. This is the maximum number of nodal lines for
the hexagonal crystal symmetry, in analogy to the d-wave
gap symmetry in YBCO, which contains the maximum num-

ber of nodal lines for the tetragonal crystal symmetry. Both
IMD and penetration-depth data are consistent with the as-
sertion that the dominant symmetry of the � gap is the
�=6 symmetry.

A review of the existing literature pertinent to gap sym-
metry reveals a lack of consensus, where experiments such
as muon spin-rotation, some specific-heat experiments, and
some data on the low-field variation in the Sommerfeld con-
stant are in support the �=6 symmetry. This situation calls
for additional experiments sensitive to the gap symmetry to
resolve the issue. Following the developments that estab-
lished the d-wave gap symmetry in YBCO,79 we can suggest
examining the existence or absence of a zero-bias anomaly

for tunneling in specific ab̂ plane directions74 or establishing
a fractional flux vortex in a tricrystal experiment.80
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APPENDIX: NONLINEAR KERNEL K(2) LOW-
TEMPERATURE VARIATION

The first nontrivial application of Eq. �3.15� is for the �1
+

gap that entails one nodal plane. A simple change in vari-
ables yields

K�2��qz = 0;�;T� � 5/2��0�T��
0

1

dxxe−�0�T�x2

=
3/2

��0�T�
�1 − e−�0�T�� �

3/2

��0�T�
�A1�

The next case is the �2
+ gap, which entails six nodal lines, the

maximum possible for the hexagonal crystal structure. In this
case Eq. �3.15� has an analytic expression

K�2��qz = 0;�;T�

� 5/2��0�T��
0

2�

dx�sin2��x��1/4e−�0�T��sin2��x�

= �5/2��0�T����2�3/2��0�T��

��I−3/4��0�T�
2

�I1/4��0�T�
2

�
− I−1/4��0�T�

2
�I3/4��0�T�

2
�� �A2�

for �=2,4 ,6 and where the symbol I denotes the modified
Bessel functions of the first kind. The integral in Eq. �A2�
remains unchanged if we replace in it the function sin with
cos. With a focus on the low-temperature variation, consider
the limit of Eq. �A2� for �0�T��1. The leading terms in
this limit are
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��2�3/2��0�T���I−3/4��0�T�
2

�I1/4��0�T�
2

�
− I−1/4��0�T�

2
�I3/4��0�T�

2
��

=
��

��0�T��3/2�2 +
15

4��0�T��2 + ¯�
for �0�T� � 1. �A3�

Combining Eqs. �A2� and �A3� and taking the low-
temperature limit yields for this case

K�2��qz = 0;�;T� �


�0�T��2 +
15

4��0�T��2

+ ¯� for �0�T� � 1. �A4�

The other two gap symmetries in Table I, i.e., �3
+ and �4

+ have
nodal lines and a nodal plane. They yield exactly the same
low-temperature variation when inserted in Eq. �3.10�. The
exact double integration in Eq. �3.15� is available in closed
form; however, its rather complex from is not quoted here.
Instead, we quote here only the �0�T��1 limit of that ex-
pression, i.e.,

K�2��qz = 0;�;T� � 5/2��0�T�

��4
− 2 + � + ln�8� + ln��0�T��

��0�T��3/2

−
15

4��0�T��7/2 + ¯�
=

4

�0�T��0.656 + ln��0�T��

−
15

16��0�T��2 + ¯� for �0�T� � 1.

�A5�

We have checked numerically that Eq. �A5� provides an ex-
cellent approximation for �0�T��2.

For the low-temperature ��0�T��1� specific-heat calcu-
lation, Eq. �7.3�, the following integral exists in a closed, yet
rather complex form. Its low-temperature limit is

�
0

2�

dx sin2��x��sin2��x��1/4e−�0�T��sin2��x�

=
15��

2��0�T���7/2� + ¯ for �0�T� � 1. �A6�
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