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An effective low-energy model describing magnetic properties of alkali-cluster-loaded sodalites is derived
by ab initio downfolding. We start with constructing an extended Hubbard model for maximally localized
Wannier functions. Ab initio screened Coulomb and exchange interactions are calculated by constrained
random-phase approximation. We find that the system resides in the strong-coupling regime and thus the
Heisenberg model is derived as a low-energy model of the extended Hubbard model. We obtain antiferromag-
netic couplings �O�10 K�, being consistent with the experimental temperature dependence of the spin sus-
ceptibility. Importance of considering the screening effect in the derivation of the extended Hubbard model is
discussed.
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I. INTRODUCTION

Zeolites constitute a huge family of nonporous crystalline
aluminosilicates which have a wide variety of intriguing
properties.1 Because of their capability of hosting various
ions, atoms, molecules, and clusters in their subnanometric
pores with rich possibilities of crystal structure, they have
versatile functionalities such as high catalytic activities,
sorption characteristics, and ion-exchange abilities. Numer-
ous zeolites with various compositions and framework to-
pologies have been synthesized and exploited in many appli-
cations. Besides such diverse fascinating aspects, it is of
great interest to focus on electron correlations in this system.
A variety of zeolites have been viewed as three-dimensional
correlated s-electron systems providing a nontrivial play-
ground for a systematic control of many-body correlation
effects.2 For example, although all the ingredients of zeolites
are nonmagnetic elements, some of zeolites exhibit an in-
triguing magnetism for certain conditions; zeolite Linde type
A �LTA� and low silica type X �LSX� with potassium clusters
have ferromagnetic ground states depending on the number
of potassium atoms per cage,3–5 while sodalites loading
various alkali-metal clusters exhibit robust antiferro-
magnetism.6–9

When we study such characteristic many-body effects in
zeolitic materials, it is definitely impractical to calculate ev-
erything from first principles. The unit cell is extremely huge
and contains many atoms so that formidable numerical cost
would be required. On the other hand, recent conventional ab
initio studies have clarified that some zeolites have quite
simple low-energy electronic structures;2,10–13 for example,
in the sodalite system, the aluminosilicate cage forms a wide
gap more than 5 eV around the Fermi level and, in this
energy gap, electronic states due to guest alkali clusters make
narrow bands with the width �1 eV. Its band dispersion is
well represented by simple tight-binding models, which in-
dicates that the so-called “superatom” picture2 or the
“particle-in-a-box” model10 correctly captures essential as-
pects of the low-energy physics of the sodalite systems. With
this situation, rather than the full ab initio approach, the

three-stage approach is expected to work more successfully.
Here, in the first stage, we perform standard ab initio
density-functional calculations and, in the next step, we per-
form downfolding procedures, that is, construction of an ef-
fective low-energy model. Finally, we solve the resulting
model by high accurate and reliable solvers. The so-called
“LDA+DMFT” method14 combining local-density approxi-
mation �LDA� and dynamical mean-field theory is a typical
example of this approach. Recently, the three-stage approach
has been extensively applied to various correlated electron
systems. Especially, it has been demonstrated that the
scheme really works with high accuracy for various
transition-metal oxides.14,15

Recently, as a reliable tool for evaluating the values of
interaction parameters in the downfolding step, a constrained
random-phase approximation �cRPA� method is
formulated.16,17 Compared to the standard method based on a
constrained LDA technique,18 the cRPA has several advan-
tages; one can precisely exclude screening processes be-
tween the basis states of the effective model, which should
be considered in the last stage solving the effective model. In
addition, we can obtain onsite and offsite interactions at one
time. While the cRPA method has been employed in many
studies,15,19–21 applications to zeolitic materials have yet to
be done. Indeed, it is a highly nontrivial issue to determine
the values of interaction parameters of zeolites; the bases of
the low-energy model of these materials are no longer local-
ized at some specific atoms and are extended spatially be-
yond several guest atoms in the cage. So, we have to evalu-
ate the value of interaction parameters not for atomic orbitals
but for molecular orbitals. In order to construct automatically
such basis functions with nontrivial spatial spread, it is con-
venient to exploit maximally localized Wannier orbitals
�MLWOs�.22 Recently, MLWO is combined with cRPA cal-
culations to estimate the onsite Hubbard U as well as offsite
interaction parameters in the low-energy models of various
systems.20,21

It is of great interest to apply this state-of-the-art down-
folding technique based on the combination of cRPA with
MLWO to zeolitic materials and examine how it works. As a
benchmark for this purpose, we consider sodalites which are
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classified as the simplest zeolite. The framework of this ma-
terial is described as a body-centered-cubic �bcc� array of �
cages ��SiO2�3�AlO2

−�3, the smallest unit of the aluminosili-
cate cage� and each cage accommodates ionic alkali clusters
A4

3+ to neutralize the negative charge of the framework. Ex-
perimentally, it has been well established that the system can
be viewed as a crystal of F centers sitting on the center of the
tetragonal cluster A4

3+. Especially, a magnetic property of a
sodium electrosodalite �or black sodalite� is quite well under-
stood in terms of the S=1 /2 Heisenberg model on the bcc
lattice.6–9 Since the temperature dependence of the magnetic
susceptibility of the Heisenberg model can be calculated by
the high-temperature expansion scheme with high accuracy,
we can obtain the precise values of exchange coupling by
parameter fitting to the experimental data. Thus, the sodalites
are the best systems to examine the reliability of derived
parameters with the ab initio downfolding, in that we can
compare unambiguously the theoretical exchange values and
the experimental ones.

The purpose of the present study is to examine how ac-
curately we can construct a low-energy model of the sodalite
system by the ab initio downfolding technique. While one
can exploit direct ab initio calculations based on local spin-
density approximation to evaluate the exchange coupling,23

the present study focuses on an alternative approach which is
feasible to not only localized spin systems but also more
general cases. First, we construct a single-band extended
Hubbard model based on the ab initio downfolding scheme
and then derive an effective Heisenberg model by the
second-order perturbation. A similar strategy was taken in
the previous study10 but, there, the “kinetic-exchange” term24

only was evaluated and the “direct-exchange” term was com-
pletely neglected. As shown below, in the sodalite, the direct
exchange has the same energy scale as the kinetic exchange
and thus the two exchange couplings compete with each
other. In addition, in the past parameter estimations, the
screening effect was completely neglected. We will show the
importance of taking the screening effect into account in the
parameter derivation; if we neglect the screening effect, the
kinetic-exchange value is smaller than the direct-exchange
value and the net exchange becomes ferromagnetic. When
the screening effect is switched on, the kinetic exchange re-
verses the direct exchange, thus resulting in antiferromag-
netic interactions being consistent with the experiments.

This paper is organized as follows. In Sec. II, we describe
our basic strategy for deriving the effective Heisenberg
model from first principles. Section III is devoted to the ac-
curate estimation of the experimental exchanges using the
high-temperature expansion to the Heisenberg model. Fol-
lowing by recent measurement of the magnetic susceptibility
for the sodalites,9 we give the exchange parameters of the
sodium electrosodalite and the potassium electrosodalite and
discuss the differences between the two. In Sec. IV, ab initio
computational results are presented and compared with the
experimental results. The concluding remarks are given in
Sec. V.

II. AB INITIO CONSTRUCTION OF EFFECTIVE
HAMILTONIANS

We consider ab initio derivations of the effective Heisen-

berg model describing “low-energy” electronic structures.
Conventionally, the derivation is based on the second-order
perturbation to the single-band extended Hubbard Hamil-
tonian consisting of the transfer part Ht, the Coulomb-
interaction part HV, and the exchange-interaction part HJ as

H = Ht + HV + HJ �1�

with

Ht = �
�

�
ij

tijai�
† aj�, �2�

HV =
1

2�
��

�
ij

Vijai�
† aj�

† aj�ai�, �3�

HJ =
1

2�
��

�
ij

Jijai�
† aj�

† ai�aj�, �4�

where ai�
† �ai�� is a creation �annihilation� operator of an

electron with spin � in the Wannier orbital localized in the
ith sodalite cage. The tij parameters in Eq. �2� contain an
onsite energy �i= j� and hopping integrals �i� j�, written by

tij = ��i�H0�� j	 �5�

with ��i	=ai
†�0	 and H0 being the one-body part of H. The

Vij and Jij values in Eqs. �3� and �4� are screened Coulomb
and exchange integrals in the Wannier orbital, respectively,
expressed as

Vij = ��i� j�W��i� j	

=
 
 drdr��i
��r��i�r�W�r,r��� j

��r��� j�r�� �6�

and

Jij = ��i� j�W�� j�i	

=
 
 drdr��i
��r�� j�r�W�r,r��� j

��r���i�r�� , �7�

where W�r ,r�� is a screened Coulomb interaction. Vij at i
= j corresponds to onsite Hubbard parameter U.

Now, we consider a situation with the half-filling and
atomic-limit condition, where the parameters satisfy the fol-
lowing inequality

U − Vij � �tij� � 0. �8�

In this situation, with the second-order perturbation, the ef-
fective Hamiltonian which describes the fine low-energy
spectrum associated with the spin structure is given as the
following Heisenberg model25

Heff = 2�
i�j

JijSi · S j , �9�

where the local spin operator Si is conventionally repre-
sented in term of the creation and annihilation operators as
Si

x= 1
2 �ai↑

† ai↓+ai↓
† ai↑�, Si

y = 1
2i �ai↑

† ai↓−ai↓
† ai↑�, and Si

z= 1
2 �ai↑

† ai↑
−ai↓

† ai↓�. The effective exchange coupling in Eq. �9� is writ-
ten as
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Jij = Kij − Jij �10�

with

Kij =
2�tij�2

U − Vij
. �11�

The Kij is a kinetic-exchange term24 which stabilizes the an-
tiferromagnetic coupling between the local spins while the
second term in Eq. �10� is a direct-exchange term favoring
the ferromagnetic coupling. The competition between the
two-type exchange terms determines the net magnetic feature
of the system �i.e., whether the system prefers the antiferro-
magnetic or ferromagnetic state�.

The calculation of the effective exchanges Jij is basically
straightforward after parameterizations of tij, Vij, and Jij but
a careful treatment is needed for the calculation of the
screened Coulomb interaction of W�r ,r��. The screened in-
teraction considered in the extended Hubbard model should
not include screening formed in a target band of the model.
This screening should be considered at the step of solving
the effective model and, at the downfolding stage, we must
exclude the target-band screening effects to avoid the double
counting of this screening. In the RPA, this constraint is eas-
ily imposed,16,17 because the RPA polarization function is
given as the sum of the band pairs associated with individual
transitions; we first calculate the polarization function with
excluding the transitions in the target band and then evaluate
the screened interaction W�r ,r�� with using this polarization
function. Finally, we compute the Vij and Jij parameters as
the Wannier matrix elements of the W interaction.

There are two other choices on the treatment of the Cou-
lomb interaction. The first is the use of “bare” Coulomb in-
teraction v�r ,r��= 1

�r−r��
instead of W�r ,r��. The resulting Vij

and Jij parameters have no screening effect and will give
larger values than the constrained-RPA values discussed
above. The kinetic-exchange parameter Kij becomes small
because of the increase in U−Vij in Eq. �11�. We note that
this choice has been widely used in the literature so far10–13

but there is no justification. Another choice is the use of the
“fully” screened Coulomb interaction, where we calculate
the RPA polarization function with no constraint on the tran-
sitions. The result includes the target-band screening effect
and therefore the calculated Vij and Jij values will be largely
reduced compared to the constrained-RPA values. We com-
pute the interaction parameters Vij and Jij with the bare,
“constrained RPA,” and “full RPA” interactions and discuss
the importance of the screening effect on the derivation for
exchange values of the Heisenberg model.

III. ESTIMATION OF THE EXCHANGE COUPLINGS
FROM THE EXPERIMENT

Before presenting ab initio computational results, we con-
sider experimental values of exchange couplings, which are
estimated from the data for the temperature dependence of
the magnetic susceptibility. In the sodium electrosodalite, the
measured Weiss temperature �W is −170 K while the Néel
temperature TN is 50 K. The negative Weiss temperature and
the existence of the antiferromagnetic transition indicate the

antiferromagnetic interaction between neighboring spins
while inequality ��W��TN implies that there is strong frus-
tration in the system or equivalently the presence of next-
nearest-neighbor exchange couplings. In fact, magnetic prop-
erties of the sodium electrosodalite have been discussed with
the Heisenberg model up to the next-nearest neighbors. Re-
cently, the magnetic measurement has been performed for
the potassium electrosodalite and the �W and TN tempera-
tures are observed as −330 and 80 K, respectively.9 Here, we
determine the exchange parameters in the Heisenberg model
so that the calculated model Weiss and Néel temperatures
reproduce the experimental ones. Accuracy of �W and TN
obtained from solving the model critically affects the quality
of the exchange couplings. In this work, we calculate the
high-temperature series of the spin susceptibility up to tenth
order in inverse temperature26 using the finite cluster
method.27

The explicit form of the Heisenberg model on the bcc
lattice up to the next-nearest neighbors is given as

Heff = 2J1�
�ij	

Si · S j + 2J2�
�ij	�

Si · S j , �12�

where the first summation �ij	 is taken over the bonds be-
tween nearest neighbors and the second summation �ij	� over
the bonds between next-nearest neighbors. J1 and J2 repre-
sent the exchange couplings for the nearest neighbors and
next-nearest neighbors, respectively. Note that the suffices
“1” and “2” attached to J hereafter specify the bond between
the nearest neighbors and the bond between the next-nearest
neighbors, respectively.

The spin susceptibility for a general wave vector, ��q�,
can be expressed as25

��q� =
1

N



0

�

d	�
ij

�eHeff	Si
ze−Heff	Sj

z	eiq·�ri−rj�. �13�

Here, � is the inverse temperature and �¯ 	 represents the
thermodynamic average; i.e., �¯ 	
=Tr�¯e−�Heff� /Tr�e−�Heff�. Uniform and staggered spin sus-
ceptibilities are given as �=��0� and ��Q� with Q
= �
 ,
 ,
�, respectively. The � and ��Q� up to the first order
in � are given as

4�T = 1 − ��4J1 + 3J2� + O��2� , �14�

4��Q�T = 1 + ��4J1 − 3J2� + O��2� . �15�

The first-order coefficients −�4J1+3J2� and 4J1−3J2
above correspond to the high-temperature limit Weiss
temperature28 and the mean-field Néel temperature,29 respec-
tively. It should be noted here that the temperature range for
experimental �W is far from the high-temperature limit so
that the Weiss temperature given above is not a good esti-
mate for the experimental value. Furthermore, the mean-field
Néel temperature is seriously overestimated because the
quantum fluctuation is neglected.

To go beyond the first-order analysis and obtain the pre-
cise temperature dependence of the magnetic susceptibility,
we consider the higher-order expansion series of � and ��Q�.
In order to extrapolate the series down to low temperatures,
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we use the Padé approximation, in which a series of � and
��Q� is approximated as

PL�x�
QM�x� , where PL�x� and QM�x� are

the L-order and M-order polynomials, respectively. We call it
the �L ,M� Padé approximation. Figure 1 illustrates an ex-
ample of the extrapolation of �−1 at J2=0. We find that
various Padé approximations show good convergence down
to T /J1�3. To estimate the Weiss temperature, �W, we fit �
as �= �T−�W�−1 as shown in the dotted line in Fig. 1. The
fitting temperature range is 5�T /J1�10. �As shown below,
this range roughly corresponds to the experimental tempera-
ture range.� The �W estimated as −6.0J1 indicated by the
arrow in the figure is appreciably smaller than the first-order
value −4J1. The treatment can straightforwardly be applied
to the case of J2�0. In Fig. 2, the calculated Weiss tempera-
ture �dots� is shown as a function of J2 /J1.

The estimation for TN proceeds as follows: ��Q� is ex-
pected to have a pole at the finite � and behaves as

��Q� � �� − �N�−, �16�

where �N is the inverse of the antiferromagnetic transition
temperature �TN�1 /�N� and the  is the critical exponent.

In the three-dimensional Heisenberg model,  is known to be
�1.39 �Ref. 30�. By taking the logarithmic derivative of Eq.
�16�, we obtain27

d log ��Q�
d�

�
− 

� − �N
. �17�

Since the Padé approximation can describe simple poles ex-
actly, approximations to the logarithmic derivative should
converge much faster. In addition, we can evaluate  from a
residue of the pole as well as the location of the pole giving
the critical temperature. At J2=0, various Padé approxima-
tions show good convergence and give TN=2.76 and 
=1.39. For finite J2, however, the frustration lowers the Néel
temperature and it becomes difficult to estimate TN and 
accurately. Thus, to improve the convergence, we use the
Padé approximation of �1/ with  kept at 1.39. This assump-
tion works well even for the finite J2 and we obtain TN as a
function of J2 /J1 �crosses of Fig. 2�. The error bar comes
from the scattering of the various Padé approximations. By
using these data and referring the experimental �W and TN
temperatures, we reasonably estimate the exchange cou-
plings of the sodalite system. The resulting values are J1
=26 K and J2=8 K for the sodium electrosodalite and J1
=48 K and J2=20 K for the potassium electrosodalite.

IV. RESULTS AND DISCUSSIONS

Our ab initio calculations based on density functional
theory31,32 were performed with TOKYO AB INITIO PROGRAM

PACKAGE.33 With this program, electronic-structure calcula-
tions with the generalized-gradient approximation �GGA�
exchange-correlation functional34 were performed using a
plane-wave basis set and the Troullier-Martins norm-
conserving pseudopotentials35 in the Kleinman-Bylander
representation.36,37 The energy cutoff in the band calculation
was set to 49 Ry and a 5�5�5 k-point sampling was em-
ployed. The experimental crystal-structure data were taken
from Ref. 10 for sodium electrosodalite and Ref. 12 for po-
tassium electrosodalite. The calculations for the screened in-
teractions are followed by Ref. 21. The polarization function
was expanded in plane waves with an energy cutoff of 5 Ry
and the total number of bands considered in the polarization
calculation was set to 200. The Brillouin-zone integral on
wave vector was evaluated by the generalized tetrahedron
method.38 The additional terms in the long-wavelength po-
larization function due to nonlocal terms in the pseudopoten-
tials were explicitly considered following Ref. 39. A problem
due to the singularity in the Coulomb interaction, in the
evaluation of the Wannier matrix elements Vij and Jij, was
treated in the manner described in Ref. 39.

We show in Fig. 3 ab initio GGA band structures �red
solid lines� of �a� sodium electrosodalite and �b� potassium
electrosodalite. We see an isolated band near the Fermi level
�energy zero�. This band is due to confined electrons in the
sodalite cage and we employ this band as the target band of
the extended Hubbard model. The entangled band structures
below −4 eV and above +1 eV are associated with elec-
tronic states of the framework of the sodalite. The overall
band structure of the sodium electrosodalite is similar to that
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FIG. 1. �Color online� Inverse of the uniform spin susceptibility

at J2=0. �3,3�, �4,4�, �5,5�, �4,5�, and �5,4� Padé approximations are
shown. We also plot the Curie-Weiss fitting as the dotted line. An
arrow indicates the extrapolated Weiss temperature estimated as
−6.0J1. Notice that this value is largely deviated from the high-
temperature limit value −4J1.
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FIG. 2. Weiss temperature, �W, and Néel temperature, TN, as a
function of J2 /J1. Vertical error bars for TN represent the scattering
of the various Padé approximation. For sodium electrosodalite, the
experimental �W �−170 K� and TN �50 K� are well reproduced,
when J1 and J2 /J1 are set to 26 K and 0.31 �vertical dotted line�,
respectively. In the case of potassium electrosodalite, such J1 and
J2 /J1 were found to be 48 K and 0.42 �vertical dashed line�,
respectively.
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of the potassium electrosodalite. A notable difference is that
the target bandwidth of the sodium electrosodalite is 0.86 eV,
while that of the potassium electrosodalite is 1.01 eV, which
makes differences in the values of transfer integrals of the
two materials �see below�.

Figure 4 visualizes our calculated maximally localized
Wannier orbitals for the target band of �a� sodium electroso-
dalite and �b� potassium electrosodalite. We can see that the
resulting Wannier orbital is confined in the cage and has an s
symmetry around the cage center. The calculated spatial
spread of the Wannier orbitals are 2.66 Å for the sodium
electrosodalite and 2.91 Å for the potassium electrosodalite
and these values are smaller than the diameter of the cage
�7.6 Å for the sodium electrosodalite and 8.0 Å for the po-
tassium electrosodalite�.

We next calculate transfer integrals in Eq. �5� as matrix
elements of the Kohn-Sham Hamiltonian in the Wannier or-
bital. The nearest-neighbor transfer t1 and the next-nearest-
neighbor transfer t2 are found to be −57.3 and −32.1 meV
for the sodium electrosodalite. The results for the potassium
electrosodalite are −68.0 and −31.1 meV. It was found to be
negligibly small for other transfers beyond the third neigh-

bors; their magnitudes are less than a few meV. The band
dispersion calculated with t1 and t2 is shown as blue dots in
Fig. 3. We can see that the original band structure is quite
well reproduced with the two-parameter model. We note that
the Kohn-Sham Hamiltonian HKS is different from the exact
one-body Hamiltonian H0 in Eq. �5�. The difference between
the two requires involved discussions about the “downfold-
ing self energy,”16,17 so, in the present study, for the simplic-
ity, we employed the HKS instead of the H0.

Figure 5 plots the Wannier matrix elements of the
screened Coulomb interaction Vij �green dots� calculated
with constrained RPA, as a function of the distance between
the centers of the MLWOs; r= ���i�r��i	− �� j�r�� j	�. The pan-
els �a� and �b� show the results of the sodium electrosodalite
and of the potassium electrosodalite, respectively. The Vij
decays as an isotropic function of 1 / ��r� �dotted line�, where
� is a macroscopic dielectric constant calculated with cRPA.
The value of � is 3.2 for the sodium electrosodalite and 3.0
for the potassium electrosodalite. For comparison, we also
plot bare Coulomb interactions �red dots�, which should de-
cay as 1 /r �solid line� beyond the nearest-neighbor distance
��7 Å�. We see that the bare Coulomb interaction is re-
duced in less than half by considering the screening effect
with cRPA. On the top of this, the full RPA screened Cou-

(a) (b)

FIG. 4. �Color online� Calculated maximally localized Wannier
functions of �a� sodium electrosodalite and �b� potassium electroso-
dalite. The amplitudes of the contour surface are +1.5 /�v �blue� and
−1.5 /�v �red�, where v is the volume of the primitive cell. Si, O,
Al, and Na or K nuclei are illustrated by blue, silver, yellow, and
green spheres, respectively.
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FIG. 3. �Color online� Calculated ab initio band structures �red
solid lines� of �a� sodium electrosodalite and �b� potassium elec-
trosodalite. The blue dotted dispersions are obtained by the t1-t2

model, where t1 and t2 are nearest and next-nearest transfers, re-
spectively. For the values, see the text. The zero of energy is the
Fermi level.
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FIG. 5. �Color online� Calculated screened Coulomb interactions of �a� sodium electrosodalite and �b� potassium electrosodalite as a
function of the distance between the centers of maximally localized Wannier orbitals displayed in Fig. 4. The red, green, and blue dots
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lomb interactions are shown as blue dots, which are nearly
zero, except for the onsite value at r=0. The exchange inter-
actions of Jij were found to decay very quickly; the magni-
tude is nearly zero, except for the nearest and next-nearest
values. This quick decay was the same for the three cases of
the bare, cRPA, and full RPA.

We summarize in Table I the principal parameters in the
resulting Hubbard model of Eqs. �1�–�4�; the interactions up
to the next-nearest neighbors. The table compares U, V1, V2,
J1, and J2 calculated with the three-type interactions of the
bare, cRPA, and full RPA. We see that the calculated values
become small in order of increasing the screening �bare
→cRPA→RPA�. From cRPA to full RPA, the diagonal parts
of the Coulomb interaction, U, V1, and V2, are significantly
reduced by more than one order of magnitude. This is simply
because a metallic screening process is switched on at the
full RPA. In contrast, the off-diagonal parts of the Coulomb
interaction, J1 and J2, are not so screened.20 The kinetic-
exchange values K1 and K2 obtained via Eq. �11�, in the
bottom two in the table, exhibit increasing tendency with
bare→cRPA→RPA.

There are discernible differences between the sodium
electrosodalite and the potassium electrosodalite; for ex-
ample, for cRPA, U of the sodium electrosodalite �2.71 eV�
is somewhat larger than that of the potassium electrosodalite
�2.47 eV� and J1 of the sodium case �27.0 K� is nearly half of
the potassium case �44.5 K�. These results can be consis-
tently understood in terms of the smaller spatial spread of
maximally localized Wannier orbitals of the sodium case
�2.66 Å� than that of the potassium case �2.91 Å�.

The accuracy of the second-order perturbation in deriving
the exchange parameters in the Heisenberg model is checked

by an estimate of �U−V1� / t1. The values are large enough
for the both sodalites �in cRPA, 36.7 for the sodium elec-
trosodalite and 27.1 for the potassium electrosodalite�, indi-
cating that the system is close to the atomic limit enough and
the perturbation treatment is reasonably justified. All odd-
order contributions with respect to transfer Ht of Eq. �2� to
the kinetic exchanges vanish, independent of the lattice.40

The first correction to the second-order perturbation arises
from the fourth order, which is negligibly small.

We show in Table II the theoretical Heisenberg exchanges
J1 and J2 �Eq. �10�� obtained with the Hubbard-model pa-
rameters in Table I and compare those with the experimental
values derived in Sec. III. We see that the exchange cou-
plings qualitatively change by considering the screening ef-
fect; the sign of the couplings changes from negative �ferro-
magnetic interaction� to positive �antiferromagnetic
interaction� between the bare and cRPA. The values further
enhance as proceeding from cRPA to full RPA but the latter
gives a clear overestimate due to the large size of kinetic
exchanges �see Table I�. For the agreement between the
theory and experiment, the cRPA is clearly the best among
the three cases of the bare, cRPA, and full RPA.

However, the calculated values of J with cRPA are still
quantitatively underestimated from the experiment. This may
be partially attributed to errors in the derived Hubbard-model
parameters. A possible error is underestimation of the trans-
fer parameters calculated as matrix elements of the Kohn-
Sham Hamiltonian HKS. The HKS already includes the self-
energy effect due to electron-electron interactions in the
target bands of the Hubbard model as the exchange-
correlation potential. As mentioned above, in the downfold-
ing scheme,16,17 this self-energy must be excluded in the

TABLE I. List of interaction parameters in the single-band extended Hubbard model in Eq. �1�, together
with kinetic exchanges in Eq. �11�. The parameters obtained with the bare, cRPA, and full RPA are compared.
Suffices 1 and 2 attached to V, J, and K specify the nearest neighbors and the next-nearest neighbors,
respectively. Units are eV for U, V1, and V2 and K for J1, J2, K1, and K2.

Sodium electrosodalite Potassium electrosodalite

Bare cRPA RPA Bare cRPA RPA

U 5.79 2.71 0.13 5.34 2.47 0.17

V1 1.77 0.61 0.01 1.70 0.63 0.01

V2 1.54 0.54 0.00 1.47 0.54 0.00

J1 56.9 27.0 22.0 97.2 44.5 39.0

J2 22.4 10.6 8.6 20.9 9.9 8.1

K1 18.9 36.3 596.5 29.4 58.2 631.8

K2 5.6 11.0 182.5 5.8 11.7 129.2

TABLE II. List of parameters of the Heisenberg model in Eq. �9�, where J1 and J2 are the nearest and
next-nearest exchange couplings. The theoretical values with the bare, cRPA, and full RPA are compared with
the experimental results obtained in Sec. III. The unit is K.

Sodium electrosodalite Potassium electrosodalite

Bare cRPA RPA Expt. Bare cRPA RPA Expt.

J1 −37.9 9.3 574.5 26 −67.8 13.8 592.9 48

J2 −16.8 0.4 173.9 8 −15.1 1.8 121.1 20
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stage of the derivation of the Hubbard model. If we use the
exact H0 not including the target-band self-energy, the mag-
nitudes of the evaluated transfers will become larger quanti-
tatively. We found that an artificial enhancement of the trans-
fers by 20% leads to a satisfactory improvement to the
underestimation of J observed above. �For example, for the
sodium electrosodalite, with this modification, the J1 and J2
values change from 9.3 and 0.4 K to 25.3 and 5.2 K, respec-
tively.�

Another possibility of the error might arise in the interac-
tion parameters evaluated by the constrained RPA. The RPA
leaves out the vertex correction in the polarization function.
There are some studies in which the vertex correction is
treated within local-density approximation in density-
functional framework.39,41 By considering this effect, the
screening becomes larger. If we calculate the screened Cou-
lomb interaction W�r ,r�� with using this LDA dielectric
function instead of the RPA one, we will obtain smaller val-
ues of the interaction parameters. We found that the use of an
artificially smaller U by 25% in a J estimation leads to an
improvement; for sodium electrosodalite, we obtained J1
=26.6 K and J2=5.4 K. The quantitative discussions about
the beyond RPA treatment are, however, not simple and need
to be given more carefully in future studies.

Finally, we consider an effect of electron-lattice coupling
on the results. If an electron occupying a superatom localized
s orbital �see Fig. 4� is transferred to the next site, one may
then expect relaxation with an orbital expansion, leading to a
reduction in the onsite Coulomb repulsion; with this expan-
sion of the localized orbital, the excitation energy to the dou-
bly occupied state is reduced from U−Vij to U−Vij −�S,
where �S is a stabilization energy due to the orbital expan-
sion induced by a lattice deformation of tetrahedral cluster
Na4 confined in a � cage. Its energy scale can be the order
�0.1 eV,42 and thus taking into consideration of this effect
is expected to give a substantial improvement. The quantita-
tive estimation of �S from first principles is, however, not so
easy, which would require to solve technical issues including
ab initio calculation for electron-lattice coupling.

V. CONCLUSIONS

To conclude, we have presented effective Heisenberg
models describing the magnetic properties of alkali-cluster-
loaded sodalite systems. The derivation of the exchange cou-
plings is based on the second-order perturbation to a single-
band extended Hubbard model parameterized by ab initio
density-functional and constrained RPA calculations. Main
results in the present study are that �i� the direct-exchange
couplings, dropped in the past studies, were estimated from
first principles and were found to be the same energy scale as
the kinetic exchanges and �ii� importance of considering the

screening effect in the parameter derivation was found out;
when the screening is properly considered, the net exchange
couplings J1 and J2 become antiferromagnetic and the re-
sulting exchange values are in a reasonable agreement with
the experimental values on the order of 10 K.

In this work, we have considered a single-band system;
the low-energy electronic structures of the sodalite systems
were captured in view of a superatom s-electron picture. It is
interesting to apply the strategy presented here to other zeo-
lites; for example, zeolites LTA and LSX described by multi-
band systems. The cage size of these materials is bigger than
that of the sodalite and many alkali atoms more than four can
easily be doped. As a result, these materials will form par-
tially filled p-band structures of the superatoms. The minimal
model of these systems are clearly the multiband model, thus
leading to a new intriguing magnetic property due to the
Hund’s rule coupling and/or its competition with the kinetic
and direct exchanges. In fact, the temperature-dependence
data of the magnetic susceptibility of the LTA zeolite
strongly suggest the possibility of the highly nontrivial fer-
romagnetic ground state.5 �The antiferromagnetic behavior
suddenly changes to the ferromagnetic behavior at 50 K.�
There are active debates on this mechanism and ab initio
calculations aiming at the construction of the effective
Hamiltonians describing the low-energy physics of these sys-
tems will helpfully be contributed, which remains as future
study.
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