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Much of the discussion in the literature of the low-frequency part of the density of states of amorphous
solids was dominated for years by comparing measured or simulated density of states to the classical Debye
model. Since this model is hardly appropriate for the materials at hand, this created some amount of confusion
regarding the existence and universality of the so-called “boson peak” which results from such comparisons.
We propose that one should pay attention to the different roles played by different aspects of disorder, the first
being disorder in the interaction strengths, the second positional disorder, and the third coordination disorder.
These have different effects on the low-frequency part of the density of states. We examine the density of states
of a number of tractable models in one and two dimensions and reach a clearer picture of the softening and
redistribution of frequencies in such materials. We discuss the effects of disorder on the elastic moduli and the
relation of the latter to frequency softening, reaching the final conclusion that the boson peak is not universal
at all.
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I. INTRODUCTION

The study of the density of states of solid materials started
with attempts to understand the temperature dependence of
the specific heat at low temperatures, say CV���U /�T�V
where U is the energy and T the temperature of the system.
This called for a microscopic theory for solids, and the first
one was developed by Einstein, assuming that in d dimen-
sions each atom is represented as a d-dimensional harmonic
oscillator1 �in the original paper the case d=3 was consid-
ered�. In this paper Planck’s quantization assumption, which
was originally applied to radiation, was extended to solid
vibrations.2 In the case of dN linear oscillators each with its
own frequency �i, Einstein’s result can be expressed as

CV = dNkB�
0

� � ��

2kBT
�2

csch2� ��

2kBT
�g���d� . �1�

Here kB and � are Boltzmann’s and Planck’s constants, re-
spectively, and the density of states g��� is defined by

g��� =
1

dN
�

i

dN

��� − �i� , �2�

where ��x� is the delta function.
Both the theoretical calculation and experimental mea-

surement of g��� attracted enormous attention over the last
century. We are interested in amorphous system such as
glasses, gels, foams, etc., in which randomness appears to
influence the low-frequency part of the density of states
g���. In particular, the relation between the low-frequency
behavior and the low-temperature thermodynamics of such
systems is of great interest. Studies of the low-frequency part
of the density of states are dominated by dividing g��� by
the prediction of the Debye model, focusing on the deviation
between the two, and, in particular, on the so-called “boson
peak” which emerges in many cases. There exist numerous
claims about the boson peak, its universality3 and its relation

to softening or hardening of the materials under changes of
material parameters.4 In this paper we first explain the clas-
sical approaches to the issue, including the Debye model and
beyond, and then we examine the issue of universality of the
boson peak in one and two dimensions using tractable mod-
els that can be computed to desired accuracy. We conclude
that there is nothing universal about the boson peak, and that
different types of disorder result in very different redistribu-
tions of the low-frequency modes over the spectral domain.
There is in general no correlation between the size or the
position of the boson peak and the increase or decrease in
elastic moduli.

The structure of this paper is as follows: In Sec. II we
review Debye’s theory and the historical origins of the boson
peak. In Sec. III we remind the reader what is entailed in
computing the density of states by solving the appropriate
eigenvalue equation. We then remind the reader that even for
a perfect cubic crystal the Debye model is not exact with
corrections at frequencies which become lower as the mate-
rial gets softer. To understand the effect of disorder in the
interparticle forces we review some known results and
present some results for one-dimensional chains in Sec. IV.
In Sec. V we discuss tractable models of disorder in two
dimensions, aiming to better model the typical disorder ex-
hibited by glass-forming systems. We first examine the ef-
fects of disorder in the spring constants or, equivalently, in
the positions of the particles. Second, we consider disorder in
the coordination numbers �the number of nearest neighbors�,
demonstrating that this can lead to major corrections to the
Debye form and to very large boson peaks. This is in general
agreement with the idea that the scenario of glass formation
can be encoded by the changing coordination numbers as a
function of temperature �so-called upscaling5–11�. In Sec. VI
the elastic moduli and the Debye frequencies which define
the “Debye point” are discussed. In Sec. VII we offer a sum-
mary of the paper and some concluding remarks.
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II. DEBYE’S MODEL AND THE BOSON PEAK

A. Debye’s model

For the sake of simplicity in comparing with experimental
results, Einstein employed a minimal model in which all the
oscillators have the same frequency �E.1 Then g���=���
−�E� and the specific heat is given by

CV = dNkB� �E

2T
�2

csch2 �E

2T
, �3�

where �E���E /kB is the so-called Einstein temperature.
This minimal model agreed qualitatively with experimental
observations of the specific heat; nevertheless careful
measurements show that the low temperature behavior of
Eq. �3� for a three-dimensional solid, i.e. CV
�3NkB��E /T�2exp�−�E /T� falls off faster than experimental
values. To explain the observed data one needs to account for
more adequate vibrational spectra of actual solids. Debye
was the first to link the oscillator frequencies in Eq. �1� with
the collective vibrations of the solid. He treated a solid as an
elastic isotropic continuum and estimated the density of vi-
brational states for the case of a spherical body.12 Later it
was shown that the frequency distribution is independent of
the shape if the size of a body is large enough and the surface
contribution can be neglected.13 The modern simple deriva-
tion of the Debye distribution can be found, e.g., in Ref. 14.
The main statement of the continuum approximation is the
linear-dispersion relation between the frequency and the ab-
solute value of the wave vector k, �=usk, where us is the
sound velocity. In an isotropic body there exist one longitu-
dinal and d−1 transverse sound waves, therefore, for spatial
dimension d�1 one needs two dispersion relations. The De-
bye density of states is given by

g��� = 	 d

�D
� �

�D
�d−1

, if � � �D

0, if � � �D,

 �4�

where �D is the Debye frequency which defines the cutoff
frequency in the spectrum

1

��D�d =
�d

�2	�d
d
� 1

�ul�d +
d − 1

�ut�d � . �5�

Here �d= �	d/2� /��1+d /2� is the coefficient in the volume
definition of d-dimensional hypersphere of radius r, Vd
=�drd, ��x� is the gamma function, 
 is the particle number
density, ul and ut are the speeds of propagation of longitudi-
nal and transverse sound waves

ul =dK + 2�d − 1��
dm


, ut = �

m

, �6�

where K and � are the bulk and shear moduli, respectively,
and m is the molecular mass.

Debye’s model has the advantage of a simple analytical
form depending on the elastic properties of a solid only. Due
to the long-wavelength approximation it is insensitive to the

microscopic structure. Nevertheless experimental measure-
ments indicated from the start that Debye’s model is far from
being the end of the story.

B. Boson peak

The vibrational properties of solids can be investigated
experimentally by studying the inelastic interactions of ex-
ternal radiation with the solid vibrations. For inelastic scat-
tering of photons one observes the Raman effect, discovered
by Raman15 in liquids and by Landsberg and Mandelstam16

in crystals. As a result of this effect the frequency of the
incident photon is either redshifted �Stokes scattering with
high amplitude� or blueshifted �anti-Stokes scattering with
low amplitude�.

In crystals, due to the periodic structure, selection rules
give rise to a discrete set of lines. In amorphous materials
these spectral lines broaden, giving rise to a continuous spec-
trum. The Raman line shape was related to the density of
states of amorphous materials in Ref. 17 under some as-
sumptions in the harmonic approximation. The result can be
rewritten for Stokes scattering in the following form

Iexp���
��n��,T� + 1�

= C���
g���
�2 , �7�

where Iexp��� is the observed Raman intensity at the fre-
quency shift equal to � and

n��� =
1

exp�−
��

kBT
� − 1

�8�

is the Bose distribution function. The function C��� is an
empirical function called “the average light vibration cou-
pling constant.” Thus the right-hand side of Eq. �7� is inde-
pendent of temperature, meaning that the temperature depen-
dence of the Raman intensity should be compensated by the
temperature dependence of the Bose distribution function.
This conclusion was confirmed by experiments �see, e.g.,
Ref. 18�. At low frequencies the Raman spectrum has a
bump whose amplitude changes with temperature. Once
scaled by the Bose function the data at different temperatures
collapse to a temperature-independent peak, which is there-
fore usually referred to as the boson peak.

Analysis of Raman spectra for different amorphous mate-
rials indicates the existence of a boson peak.19 Therefore, it
was suggested that Raman spectra indicate some universal
features of amorphous systems, independent of the details of
molecular interactions. Unfortunately, experimental results
determine only the product of the density of states and the
light-vibrational coupling constant, cf. Eq. �7�. Under the
assumption that the low-frequency density of state is defined
by the Debye model, for three-dimensional systems we have
g��� /�2=const. In this case, and only in this case, Eq. �7�
implies that the coefficient C��� �Ref. 19� must exhibit the
boson peak. On the other hand if the Debye model does not
apply to the particular material at hand, this conclusion can-
not be reached.

Additional light was shed on this problem using inelastic
scattering of cold neutrons.13 Such experiments indicate that
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in amorphous solids at small frequencies the quantity
g��� /�2 is not constant, showing an excess in the vibrational
density of states.20,21 The vibrational density of states defines
the temperature dependence of the specific heat, Eq. �1�, and
indeed the latter quantity also displays an excess at low-
temperature amorphous solids compared to the prediction of
Debye’s model. This again provides evidence for additional
contributions to the vibrational density of states.22

At present it is clear �see, e.g., Ref. 23� that the Raman
coupling coefficient C��� is a rather complicated monotonic
function of frequency. Therefore, the peak in Eq. �7� is de-
fined by the nonmonotonic behavior of the density of vibra-
tional states at low frequencies �in the sense of Raman scat-
tering�. The term boson peak is transferred from the Raman
intensity to the shape of the vibrational density of states at
low frequencies. In other words, the boson peak describes
the deviation �excess� from the expected constancy of
g��� /�d−1 in the d-dimensional Debye model.

Once we define the problem of the boson peak as equiva-
lent to finding the deviations from the Debye model, the
boson peak is no longer special to amorphous solids. De-
bye’s model takes into account only homogeneous elastic
effect; after all, it is well known that the vibrational spectra
of crystals have maxima at the van Hove singularity points
and these maxima are independent of the temperature. The
spectral properties in these regions are defined only by the
lattice structure and the dimensionality �see, e.g., the well-
known exact solution Eq. �23� below�.

Disorder brings about additional deviations from the De-
bye model and different kinds of disorder have different ef-
fects on the density of states. We will show below that in
one-dimensional systems disorder of the interparticle inter-
actions induces a frequency redistribution with smoothing of
the van Hove singularity. The peak of the spectrum moves to
low frequencies with a shift which depends on the distribu-
tion of interactions. The same results were obtained by direct
solution of Eq. �19� below for three-dimensional cubic lat-
tices with spring constants distributed in accordance with a
Gaussian24 or other distributions25 �in contrast to one-
dimensional chains, three-dimensional cubic lattices are
stable even if some of the spring constants are zero or nega-
tive�. These and other results using the coherent-potential
approximation26 lead to a conclusion that the boson peak in
disordered systems is associated with the lowest van Hove
singularity in the spectrum of the reference crystal.27

It is important to stress that all these results can be taken
only as a general indication for the appearance of the boson
peak in amorphous solids in two or three dimensions. In all
these models only nearest-neighbor harmonic interactions
�spring constants� were considered. For cubic lattices in two
and three dimensions such interaction cannot give rise to a
shear modulus, and only the bulk modulus is nonzero. Next-
nearest-neighbor interaction are necessary for having a non-
zero shear modulus.

III. BEYOND THE DEBYE MODEL: A FAIR WARNING

A more general microscopic model of vibrations in a solid
was proposed by Born and von Kármán.28 In the frame of

this model it is assumed that all the atoms in a crystal inter-
act with springlike forces and that they vibrate near fixed
equilibrium positions. This harmonic approximation can be
used both for crystals and amorphous solids; however, an
analytical solution can be obtained only for very simple
cases of regular crystal structures.

The total potential energy of a particle configuration R
= �r�1 ,r�2 , . . . ,r�N� is expressed in a pairwise approximation as
a sum over pair potentials

UR =
1

2�
i�j

�rij� . �9�

Relative particle positions are given by vectors r�ij =r� j −r�i, the
distance between the ith and jth particles is rij = �r�ij�. Small
displacements of all particles r�i→r�i�=r�i+�r�i lead to a new
configuration R�= �r�1� ,r�2� , . . . ,r�N� � with the total potential en-
ergy

UR� =
1

2�
i�j

��r�ij + �r�ij�� , �10�

where

�r�ij = �r� j − �r�i. �11�

We use the Taylor expansion

��r� + �r��� = �r� + ��r� · ���r� +
1

2
��r� · ��2�r� + ¯

�12�

to obtain

UR� = UR +
1

2�
i�j

��rij�
rij

r�ij · �r�ij +
1

4�
i�j

�r�ij · T̂ij · �r�ij ,

�13�

where

T̂ij = ���rij� −
��rij�

rij
�n� ij � n� ij +

��rij�
rij

I �14�

is a symmetric tensor T̂ij = T̂ ji, n� ij =r�ij /rij, and I is the identity
tensor.

Substitution of Eq. �11� to Eq. �13� yields the dependence
of the energy of a harmonic system on particle displacements

UR� = UR − �
i

F� i · �r�i +
1

2�
i,j

�r� j · D̂ij · �r�i. �15�

Here the force applied to the ith particle is defined by

F� i = �
j�i

��rij�n� ij �16�

and the dynamical matrix is given by

D̂ij = 	�k�i

T̂ik, if i = j

− T̂ij , if i � j 
 . �17�

The equations of motion for a harmonic solid follow from
Eq. �15�,
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mi

d2�ri
�

dt2 = Fi
� − �

j,�
D̂ij

�� · �ri
�, �18�

where mi is the mass of ith particle and 1�� ,��d. In
equilibrium Fi

�=0 and these equations are simplified. Sub-
stitution of a particle displacement of the form �ri

�

=ui
� exp�−i�t� reduces Eqs. �18� to the eigenvalue problem

�2ui
� =

1

mi
�
j,�

D̂ij
�� · uj

�. �19�

This equation can be solved directly by diagonalizing D̂ij
��

for a system of N particles when N is not too large. Binning
the resulting eigenvalues leads to a histogram that approxi-
mates the density of states. The simplest example is the
d-dimensional cubic lattice with unstressed distance a be-
tween adjacent lattice points at zero pressure. In the approxi-
mation of nearest-neighbor interactions with spring constants
��a�=�, the matrix, Eq. �14�, is given by

T̂l�m�
�� = �� , if �l� − m�� = 1

0, otherwise,
� �20�

where a particle position is defined by the d-dimensional
vector l�a with components �l�a�, where l� are integer num-
bers. For this case the density of states can be found
analytically13 in the form of an inverse Laplace transform,

g��� = 2�
1

2	i
�

�−i�

�+i�

e�2sF�s�ds , �21�

where the image function F�s� is

F�s� =
1

d
e−2d�̃sI0

d�2�̃s� . �22�

Here �̃=� /m and I0
d is the modified Bessel function of order

zero.29 The inverse Laplace transform in closed analytical
form is defined for one- and two-dimensional systems, for
example, if d=1 the density of states is given by

g��� = 	 2

	

1

�max
2 − �2

, 0 � � � �max

0, � � �max

 , �23�

where �max=2�̃. This function diverges at �=�max. This is
a general property of the density of the vibrational states; for
periodic structures there are integrable singularities �called
van Hove singularities� of g��� �d=1,2� or its derivatives
�d=3�. The positions and types of van Hove singularities
depend on the spatial dimension and the topological proper-
ties of the crystal.13,30 The low-frequency behavior of this
density of states was computed in Ref. 13 with the final
result

g��� =
2

d2��d/2�
�d−1

�4	�̃�d/2�1 +
1

8�̃
�2 + ¯� . �24�

The comparison of Eq. �24� with the Debye result, Eq. �4�,
shows that the Debye model gives the first term in a more
general expansion. The softer the system is, the larger is the

correction. Substitution of Eq. �24� to Eq. �1� allows to esti-
mate corrections to Debye’s specific heat �see, e.g., Ref. 31�.
We note that even for a perfect cubic crystal the Debye
model is not exact and there can be significant deviations.
Clearly when the crystal is not perfect or when disorder sets
in the changes from the Debye limit can become much
larger. Thus a blind comparison of any given density of states
to the Debye limit may be unwarranted and can lead to spu-
rious conclusions. We will come back to this issue when we
discuss the boson peak below.

IV. ONE-DIMENSIONAL DISORDERED CHAINS

Consider a one-dimensional harmonic chain with lattice
spacing a and with random masses and spring constants as
the simplest model of a disordered solid. In the nearest-
neighbor approximation the interaction potential �rij� is de-
fined by

�ri,i+1� =
1

2
�i,i+1�ri,i+1 − a�2, �25�

where �i,i+1 are random spring constants taken from a pre-
scribed distribution p���. In this case the definition, Eq. �14�,
reads

T̂ij
11 = ��ij , if �i − j� = 1

0, otherwise
� �26�

and Eq. �19� is written as

mi�
2ui = − �i−1,iui−1 + ��i−1,i + �i,i+1�ui − �i,i+1ui+1. �27�

Unfortunately, it is impossible to derive a dispersion rela-
tions from these equations and the analytical solution dis-
cussed above becomes meaningless. Nevertheless, the re-
sponse of the system to an applied static force �P can be
inferred from the equilibrium conditions which follow from
Eq. �25�,

�i,i+1�ri,i+1 − a� = �P . �28�

Summing Eq. �28� yields the elongation of the chain

�L = �
i

N−1

ri,i+1 − �N − 1�a = �P�
i

N−1
1

�i,i+1
. �29�

It is suitable to introduce a quantity 1
�av

= � 1
� �, then the bulk

modulus defined by the condition �29� is given by

K =
�av



. �30�

We reiterate that �av is the harmonic average of �. Substitu-
tion of Eq. �30� to Eq. �6� and to Eq. �5� yields the following
Debye frequency

�D = 	�av

m
. �31�

If �av�0 the Debye frequency has a finite value. Since the
Debye model takes into account only the elastic properties of
the material, it should be exact in the limit �→0 indepen-
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dently of the detailed structure of the material. In this limit
every material is an elastic medium. Thus we expect
lim�→0 g���=d /�D in agreement with the general law Eq.
�4�. We refer to this limit as the Debye point.

In the case �av=0 the low-frequency behavior of the den-
sity of states depends on the properties of the probability
distribution function p��� for spring constants.32 If p����→0
→const in contrast to the Debye model, Eq. �4�, the density
of states exhibits the singular behavior g����→0�−ln �.
The density of states in the whole frequency region was ob-
tained by Dyson in Ref. 33 analytically for a particular dis-
tribution of the ratio of the spring constants to the masses.
Dyson introduced a set of new constants ��̃n� defined by

�̃2n−1 =
�n,n+1

mn
, �̃2n =

�n,n+1

mn+1
, �32�

and derived an analytic solution for the distribution

pn��̃� =
nn

��n�
�̃n−1e−n�̃. �33�

The frequencies are measured in units of �� /m� and ��̃�
=1. For asymptotically large n, pn��̃�→���̃−1� which cor-
responds to the crystal state and the solution coincides with
Eq. �23�.33

The density of states for the special case of the distribu-
tion, Eq. �33�, with n=1 �exponential distribution� is shown
in Fig. 1. It is known that disorder leads to smoothing out
any van Hove singularity.26 The Dyson solution shows that
due to the smoothing out of the peak, states penetrate into the
high-frequency region which is forbidden for the periodic
structure. In the small-frequency regime this function di-
verges logarithmically in accordance with the general result
of Ref. 32. The frequencies are redistributed so that the zero-
frequency singularity is followed by a dip. Such behavior is
completely different from that of the Debye model.

Unfortunately, it is impossible to study the crossover from
Debye to non-Debye behavior analytically. Nevertheless the

density of states of one-dimensional disordered systems can
be estimated with the help of the efficient numerical method
proposed in Ref. 34 �extension for higher dimensions is dis-
cussed in Refs. 35 and 36�. This method allows to calculate
the number of frequencies less than � using properties of a
Sturm sequence.37 In the following we present calculations
pertaining to chains of 107 particles of identical mass m=1;
in order to compare different systems we enforced in all
cases ���=1. The results are summarized as follows.

A. Uniform distribution

The simplest distribution function �used also in Ref. 34
for chains of 103 particles� is the uniform distribution

pu��� = 	 1

2�
, if 1 − � � � � 1 + �

0, otherwise

 . �34�

For this distribution

�av =
2�

ln
1 + �

1 − �

. �35�

If �→0 pu���→���−1� and the system is reduced to the
homogeneous chain. If �→1 the spring constant �av→0 and
one can expect the divergence of g��� at vanishing frequen-
cies.

The density of vibrational states for the uniform distribu-
tion is shown in Fig. 2. Upon increasing the parameter � the
van Hove singularity at �=2 in reduced units is smoothed
out and then splits into two peaks moving in opposite direc-
tions. When � approaches unity the number of low-
frequency modes increases and a minimum at intermediate
frequencies is formed.
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FIG. 1. �Color online� Density of vibrational states for a one-
dimensional crystal �continuous line� and for exponentially distrib-
uted random interaction strength �dashed line�.
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FIG. 2. �Color online� Density of vibrational states for a one-
dimensional chain with interactions distributed by the uniform dis-
tribution, Eq. �34�. Different symbols pertain to different values of
the parameter �, see inset.
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B. Weibull distribution

The Weibull distribution is defined by

pW��� =
�

�
��

�
��−1

e−��/���
. �36�

The mean is given by

��� = ���1 + 1/�� �37�

and in order to obtain ���=1 the parameter � was set to

� =
1

��1 + 1/��
. �38�

The average spring constant is given by

�av =
� sin�	/��

	
. �39�

When the parameter �→�, pW���→���−1� and the
chain becomes uniform. For �=1 the Weibull distribution
degenerates to the exponential distribution and the results
obtained in Ref. 33 are expected. The density of the vibra-
tional states for the Weibull distribution with ��1 is shown
in Fig. 3. In these cases one peak advances toward low fre-
quencies, and in the vicinity of zero frequency another peak
is developed.

C. Inverse distribution

The exponential distribution of the logarithm of the spring
constant was used in Ref. 25 for the investigation of the
vibrations of a three-dimensional disordered cubic lattice.
This distribution is given by

ps��� = 	 1

ln �

1

�
, if a � � � �a

0, otherwise

 . �40�

The mean is a��−1� / ln �, therefore, the parameter a is
defined by

a =
ln �

� − 1
. �41�

The average spring constant is given by:

�av = �� ln �

� − 1
�2

. �42�

�=1 corresponds to the ordered chain. The densities of the
vibrational states for the distribution, Eq. �40�, with different
values of � are shown in Fig. 4. For large � a dip at low
frequencies develops and is followed by a peak, both moving
to smaller frequencies with increasing the parameter �.

Finally, recall that the Debye behavior of a disordered
chain is defined by its elastic properties, Eq. �31�, i.e., by �av.
Therefore it is useful to compare vibrational properties of
different chains with the same bulk modulus, cf. Fig. 5. Note
that this figure is interesting from the point of view of com-
paring with Debye’s model. The Debye point at �=0 is the
same for all three models since we chose �av to be the same;
hence the Debye frequency, Eq. �31�, is identical for these
three models. We could therefore expect identical Debye pre-
dictions for these three models. In contrast, the actual density
of states presents widely different frequency dependence for
the three models. This means that the redistribution of fre-
quencies depends on the nature of randomness and is not
only a function of the elastic properties.

V. TWO-DIMENSIONAL SYSTEMS

In an amorphous solid the distance between two particles,
their relative orientation, and the number of nearest- and
next-nearest neighbors of each particle all possess some ran-

domness and thus all the terms in T̂ij are random and so are
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FIG. 3. �Color online� Density of vibrational states for a one-
dimensional chain with interactions distributed by the Weibull dis-
tribution, Eq. �36�. Different symbols pertain to different values of
the parameter �, see inset.
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FIG. 4. �Color online� Density of vibrational states for a one-
dimensional chain with interactions distributed by the inverse dis-
tribution, Eq. �40�. Different symbols pertain to different values of
the parameter �, see inset.
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the elements of the dynamical matrix D̂ij in Eq. �19�. In
order to study the effect of different types of disorder on the
spectrum of the dynamical matrix we examine several mod-
els of elastic networks. Similar effects in ordered crystals but
with orientational disorder have been studied in Refs. 38–40.

A. Elastic triangular antiferromagnet

Amorphous materials exhibit different types of disorder.
We use models in which the strength of the interaction is
randomized by frustration and nonharmonic terms in the po-
tential and therefore the disorder arises more naturally than
by applying random interaction strength for particles on a
lattice; we do not need any assumptions about the distribu-
tions that govern the interactions as in the one-dimensional
models provided in Sec. IV and their generalizations to three
dimensions �see, for example, Ref. 27�. In this sense the
disorder in our model and its derivatives are similar in nature
to the disorder in glass forming molecular systems. We use a
family of models defined on a triangular elastic network in
which these different types of disorder may easily be isolated
and studied. The basic model consists of antiferromagnetic
Ising spins on a triangular elastic network.41 The pair poten-
tial for Eq. �9� is given by

ij�rij� = − J�i� j�1 − ��rij − a�� +
1

2
��rij − a�2. �43�

Here we assume the spin variables �i= �1 are random. The
magnetic interaction is taken to be antiferromagnetic J�0,
��0 controls the magnetoelastic coupling strength, and �
�0 is the stiffness of the uniform springs connecting each
nearest-neighbor pair. This antiferromagnetic Ising model on
a rigid triangular lattice is geometrically frustrated since the
energy of the three bonds on each triangular plaquette of the
lattice may not be simultaneously minimized.42,43 This leads
to a highly degenerate ground state and thus to unconven-
tional phases of matter.44–47 Allowing the lattice to deform

may relieve this frustration and lift the ground-state
degeneracy.48,49 Recent experimental50 and theoretical51

studies have shown that frustration is only partially relieved
and that such systems exhibit glassy behavior, dramatically
slow down, and fall into metastable disordered configura-
tions.

An important difference with respect to conventional lat-
tice models is the effect of off-lattice positional disorder on
the terms that depend on the relative distance and orientation

between two particles in the matrix T̂ij, which in the present
case reads

T̂ij = �� −
J�i� j� + ��rij − a�

rij
�n� ij � n� ij

+
J�i� j� + ��rij − a�

rij
I . �44�

We calculated the density of states for 20 realizations with
6400 particles each. Each realization of the system was ini-
tiated by positioning the particles on a triangular lattice with
periodic boundary conditions. Each particle was assigned a
random spin value and the energy of the entire network was
minimized, using the conjugate-gradient method.52 The mini-
mization was achieved by changing the coordinates of the
particles, keeping the interaction between the original nearest
neighbors only, and keeping the spin values fixed. A typical
resulting configuration is shown in Fig. 6. The density of
states was then calculated using the eigenvalue Eq. �19�. The
square roots of the eigenvalues were collected in bins and the
histogram recorded. To compute g��� /� the most precise
method turned out to be calculating g��� /��2G��2�, where
G��2� is the histogram of the eigenvalues themselves. In
order to compute g��� /� at �=0 we employed Eq. �5� and
the elastic moduli computed below. The same method was
used for all the models listed below. Throughout, we set �
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FIG. 5. �Color online� Comparison of the vibrational density of
states for a common value �av=0.6838. The symbols are explained
in the inset.

FIG. 6. �Color online� Typical realization of the elastic triangu-
lar antiferromagnet, Eq. �43�. Solid points represent up spins and
empty points represent down spins. Dashed lines connect interact-
ing up spins and solid lines connect interacting down spins. Dotted
lines connect pairs of interacting up and down spins.
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=1, m=1, J=1, a=1 and measure the density of states for
various values of � and of the other parameters defined for
the subsequent models.

Figure 7 shows the effect of disorder on the distribution of
angles � between the interparticle bonds and the x̂ axis. This
angle determine the value of the term n� ij � n� ij. In a perfect
triangular lattice these angles take six discrete values �i
=	 /3i, �0� i�5�. In the disordered system these angles
have a smooth distribution, and due to isotropy it is sufficient
to consider the distribution of the angles of one bond, say
between �−	 /6,	 /6�.

Figure 8 shows the effect of disorder on the density of
states. For the ordered triangular lattice the density of states
exhibits van Hove singularities.53 The most obvious effect of
disorder is the smearing of the singularities and the flattening
of the density of states. This results in filling the gaps be-
tween the singularities but also in some modes leaking to
higher and lower frequencies. In particular, there is a change

in the density of states at low frequencies compared to the
tail that characterizes the ordered lattice. It is important to
note that when � becomes too large, the network begins to
fold upon itself. In a more realistic model, say with next-
nearest-neighbor interactions, where the particles are not
physically linked to each other this folding is relieved by
changing the coordination number �i.e., number of neigh-
bors�. Below we will also study the effect of randomizing the
coordination number.

To emphasize the deviation from Debye’s model we ex-
amine in Fig. 9 the density of states divided by the prediction
of Debye’s model, which for d=2 is linear in frequency. A
peak at low frequencies is observed and its position shifts to
lower frequencies as the disorder increases. However, its
height decreases upon increasing disorder. Thus in this model
there is a negative correlation between the magnitude of dis-
order and the amount of the deviation from the Debye model
�see also Figs. 2 and 3�. Note that in this example it is hard
to notice the deviation from the Debye model at low frequen-
cies without dividing the density of states by �.

Examining Figs. 8 and 9 we note that the density of states
reaches zero at zero frequency in accordance with Eq. �4�.
Dividing by � we observe a finite limit in Fig. 9. This be-
havior follows from Eq. �4� which predicts such a finite limit
at d=2.

B. Nonlinear springs

Here we investigate the effect of random contributions to
the harmonic part of the potential. This will bring us closer to
generic systems. There is more than one way of doing so,
and we therefore consider two different models for the inter-
particle potential. The first has the form

ij�rij� = − J�i� j�1 − ��rij − a�� +
1

2
��rij − a�2 +

1

3
��rij − a�3.

�45�

The harmonic term now reads
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FIG. 7. �Color online� Distribution of angles between nearest
neighbors in the elastic triangular antiferromagnet, Eq. �43�, for
various values of �, see inset.
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FIG. 8. �Color online� Vibrational density of states in the elastic
triangular antiferromagnet, Eq. �43�, for various values of �, see
inset.
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FIG. 9. �Color online� Vibrational density of states normalized
by Debye’s prediction in the elastic triangular antiferromagnet, Eq.
�43�. Symbols are the same as in Fig. 8
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��rij� = � + 2��rij − a� . �46�

Due to the fluctuation in the interparticle distances around a,
this term fluctuates around an average value �.

We repeated the procedure described above for calculat-
ing the density of states for �=0.25, 0.5, and 1, and for
various values of �. We observed the same qualitative behav-
ior for all � values and present in Figs. 10 and 11 the raw
density of states and the result after normalizing by Debye’s
prediction for �=0.25. As with the first model, we see excess
modes at low frequencies.

C. Magnetoelastic coupling

The second way to modify the elastic triangular antiferro-
magnet, Eq. �43�, is by adding a nonlinear separation depen-
dence to the magnetoelastic coupling term

ij�rij� = − J�i� j�1 − ��rij − a� +
1

2
��rij − a�2�

+
1

2
��rij − a�2. �47�

The harmonic term in this case reads

ij� �rij� = � − J�i� j� . �48�

The density of states for this case is shown in Figs. 12 and
13 for a representative value of �=0.3. Qualitatively similar
results were obtained for �=0.45. We recognize in these fig-
ures a smoothing of the van Hove singularities with redistri-
bution toward both lower and higher frequencies. As before,
we see a peak at low frequencies which moves toward lower
frequencies when the disorder parameter � is increased. We
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FIG. 10. �Color online� Density of states for the model with
nonlinear elasticity, Eq. �45�, with �=0.25 and different values of �,
see inset.

0 0.5 1 1.5 2 2.5

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

ω

g
(ω

)/
ω

FIG. 11. �Color online� Density of states for the model with
nonlinear elasticity, Eq. �45�, �Fig. 10� normalized by Debye’s
model. Symbols are the same as in Fig. 10.
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FIG. 12. �Color online� Effect of the nonlinear magnetoelastic
coupling, Eq. �47�, on the density of states for �=0.3 and different
� values, see inset.

0 0.5 1 1.5 2 2.5

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

ω

g
(ω

)/
ω

FIG. 13. �Color online� The density of states with nonlinear
magnetoelastic coupling �Fig. 12� divided by the Debye behavior.
The symbols are the same as in Fig. 12.
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will next examine the effect of topological disorder and see
that this type of disorder has a much more pronounced effect
on the density of the low-frequency states.

D. Randomly diluted elastic triangular antiferromagnet

It has recently been argued that the glass transition in-
volves a change in the number of neighbors that each particle
has.5–11 Moreover, recent work on jammed sphere packings
has indicated the relevance of the coordination number near
isostaticity for determining low-frequency vibrational
modes.54–56 In order to account for these effects we use the
elastic triangular antiferromagnet, Eq. �43�, but include the
possibility of a missing link between two neighbors

ij�rij� = gij�− J�i� j�1 − ��rij − a�� +
1

2
��rij − a�2� ,

�49�

where gij is 0 with probability p and 1 with probability 1
− p. We use p close to 0 to avoid rigidity percolation57,58 and
keep at least three bonds per particle in order to avoid floppy
modes �modes of zero frequencies�. We thus create a sparse
network with a local coordination number varying between 6
and 3. This model is a modification of the model described in
Ref. 59 which studied the effect of disconnecting links of a
harmonic triangular lattice. In contrast to that model, our
model introduces disorder in the equilibrium positions of the
particles as well as in their coordination number. We solved
this model as before, by first finding the lattice deformation
that locally minimizes the mechanical energy. In this model
the effect of disorder on the low-frequency domain of the
density of states is much larger than before, as seen in Figs.
14 and 15.

The slope of the density of states at low frequencies, al-
though linear, as expected by Debye’s theory, is very differ-
ent from the slope of the density of states for the perfect
lattice �see also Fig. 4�. However this modified Debye point

is consistent with the system’s elastic moduli, as will be de-
scried in the following section.

VI. ELASTIC MODULI

To better understand the differences in types of random-
ness and their effect on the frequency redistribution we con-
sider here the elastic moduli of the two-dimensional models
treated above. Contrary to the density of states, the elastic
moduli are global measures of the response of the system to
external mechanical perturbations. Nevertheless there exists
an interesting relation between these global properties and
the frequency redistribution.

Measurements of the shear modulus were done by apply-
ing affine shear transformations, minimizing the energy after
each step using the Lees-Edwards periodic boundary condi-
tions, in order to measure the stress. After each minimization
the stress for each particle was measured directly from its
microscopic definition and the mean stress was computed as
a sum over all particles. Next, the mean stress as a function
of the strain was calculated and the shear modulus was ex-
tracted from the numerical derivative. The bulk modulus was
measured by decreasing the volume and measuring the diag-
onal part of the stress tensor �the pressure�. The elastic
moduli were used to calculate the Debye point at �=0.

We first measured the elastic moduli for the first three
models Eqs. �43�, �45�, and �47� for different values of � �see
Figs. 16 and 17�. The results are somewhat unexpected. In all
three models the shear modulus increases when disorder is
increased while the bulk modulus decreases. Thus in these
three models we cannot say that the system softens or hard-
ens since one elastic modulus decreases while the other in-
creases.

For the diluted network, Eq. �49�, both elastic moduli de-
crease with increasing p, see Figs. 18 and 19. This is very
physical; cutting bonds must result in true softening of the
system. Note that for a fixed value of p the qualitative be-
havior with � is similar to the previous three models.
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FIG. 14. �Color online� Density of states of the diluted elastic
triangular antiferromagnet, Eq. �49�, with �=0.1 and various p val-
ues, as indicated in the inset.
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We see that this last model differs from the previous three
in having clear softening when the parameter p increases.
One way to take into account both moduli in discussing the
softening of the system is by focusing on the Debye point

lim
�→0

g���
�d−1 =

d

��D�d . �50�

We computed the Debye frequency for the four models at
hand, and the results are presented for the first three models
in Fig. 20 and for the fourth model in Fig. 21.

We see from Fig. 20 that the Debye frequency is practi-
cally constant for the first model and slightly increases with
� for the second and third models. For the fourth model �Fig.
21� the Debye frequency softens dramatically when the pa-
rameter p is changed. The disorder governed by the param-

eter � almost does not change the Debye frequency also in
this model.

VII. DISCUSSION AND CONCLUSIONS

The main conclusion from the one-dimensional and two-
dimensional examples treated above are as follows: �1� both
ordered and amorphous solids exhibit peaks in their density
of states. In ordered solids these peaks are understood as Van
Hove singularities. In amorphous solids these singularities
are smoothed out, providing higher amplitudes to both lower
and higher frequencies. �2� Independent of the existence of
peaks, in the low-frequency regime for both the crystalline
and the amorphous examples the comparison with the Debye
model shows complete agreement only at �→0, indepen-
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FIG. 16. �Color online� Shear moduli of the three models Eq.
�43� �circles�, Eq. �45� �squares�, and Eq. �47� �diamonds� for dif-
ferent values of the disorder control parameter �.
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FIG. 17. �Color online� Bulk modulus of the three models Eq.
�43� �circles�, Eq. �45� �squares�, and Eq. �47� �diamonds� for dif-
ferent values of the disorder control parameter �.
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FIG. 18. �Color online� Shear modulus of the diluted model, Eq.
�49�, as a function of p and �. The shear modulus increases when �
increase but it decreases when p increases.
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modulus decreases when � increases but it decreases like the shear
modulus when p increases.
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dently of the dimensionality. Within the Debye model we
expect g��� /�d−1 to be constant. This seems to be never the
case. �3� Dividing the computed density of states by �d−1

reveals the so-called boson peak. Its position and amplitude
depend on many details; in one-dimensional cases we
showed how it depends on the statistical distribution of the
spring constants. In two dimensions we showed how it de-
pends mainly on the spatial disorder and on the coordination
number, with the latter being dominant. In this sense there is
nothing universal about the boson peak. We cannot even tell
a priori whether increasing disorder might increase or de-
crease the amplitude of the boson peak, cf. Fig. 22. �4� We
cannot discern any clear correlation between the boson peak
and the elastic moduli as recently stated explicitly in Ref. 4
and implied in Debye’s work. In one dimension we showed

�Fig. 5� that three models with identical bulk modulus ex-
hibit completely different redistributions of frequencies. In
two dimensions we showed for the first three models that the
bulk modulus decreased with disorder whereas the shear
modulus increased, contrary to expectations. The change in
the Debye frequency is small; nevertheless we have com-
pletely different frequency redistributions. In the fourth two-
dimensional model we considered, both elastic moduli de-
crease simultaneously and we indeed saw a pronounced
redistribution to lower frequencies when the average coordi-
nation number changed. Again we see no systematic corre-
lation with the behavior of the elastic moduli.

Of course, all these conclusions concern the simple mod-
els discussed above. Nevertheless the phenomena discussed
are not special to these models or even to amorphous solids
in general. An experimental connection between shear modu-
lus and the low-frequency behavior of the vibrational spec-
trum was given in Ref. 60 by analyzing the low-temperature
specific heat. In contrast to the common view that excess in
low-temperature specific heat �and, hence, in low-frequency
modes� is special to disordered systems only, it was demon-
strated that crystals and amorphous solids with almost the
same shear modulus have quite different positions of the bo-
son peak. This is in accord with our conclusions that with the
same Debye point we can have different redistributions of
frequencies.

In summary, it is quite possible that in a given family of
amorphous materials, where the randomness is quite similar,
there can be a correspondence between the redistribution of
frequencies and the shear modulus. However this is not a
general correlation, as we saw with the present examples. We
saw that the actual density of states is a complicated function
of many competing influences. It is unlikely that one given
parameter of whatever nature �like the shear modulus� can
capture this full complexity. The understanding of the den-
sity of states and its changes under modified interactions
remains a theoretical calculation of significant difficulty.
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FIG. 20. �Color online� The Debye frequency of the three mod-
els, Eq. �43� �circles�, Eq. �45� �squares�, and Eq. �47� �diamonds�
for different values of the disorder control parameter �.
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FIG. 21. �Color online� The Debye frequency of the diluted
model, Eq. �49�, as a function of p and �, symbols as in Fig. 18.
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