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We examine the validity of the weak-coupling spin-susceptibility “glue” approximation �SSGA� in a two-
dimensional Hubbard model for cuprates. For comparison, we employ the well-established dynamical cluster
approximation �DCA� with a quantum Monte Carlo algorithm as a cluster solver. We compare the leading
eigenvalues and corresponding eigenfunctions of the DCA and SSGA pairing matrices. For realistic model
parameters, we find that the SSGA fails to capture the leading pairing symmetries seen in the DCA. Further-
more, when the SSGA is improved through the addition of a term with d-wave symmetry, the strength of this
additional term is found to be larger than that of the glue approximation.
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I. INTRODUCTION

The pairing mechanism of cuprate superconductors has
been a challenging problem since their discovery. To this
day, among different scenarios, two stand out. First one is the
Anderson’s resonating valence bond scenario1 in which su-
perconductivity is pictured as a Mott liquid of pairs formed
by the superexchange interaction.2 This is a strong-coupling
approach and can predict many features of the cuprate phase
diagram.3 Another is the body of weak-coupling approaches,
including phenomenological models,4 fluctuation
exchange,5,6 and random-phase approximation7 in which the
pairing interaction, i.e., the “glue,” is mediated by the low-
energy spin fluctuations.

Recently, much effort has been devoted, both in experi-
mental and in theoretical fronts, to find more compelling
evidence for the spin-fluctuation-mediated pairing. On the
experimental side, neutron-scattering data show a prominent
peak in the structure factor at the antiferromagnetic wave
vector, relevant to d-wave pairing.8 Using inelastic neutron-
scattering data to parametrize the effective spin-susceptibility
glue interaction, Dahm et al.9 find an excellent agreement
between the numerically calculated features of the spectral
function and the angle-resolved photoemission spectroscopy
data. Moreover, van Heumen et al.10 find a correlation be-
tween the doping trends in the “glue spectra,” derived from
optical conductivity data and the superconducting critical
temperature.

On the theoretical side, the dynamics of this type of pair-
ing has been recently investigated by numerous authors. For
instance, employing an extended Hubbard model, Mark-
iewicz and Bansil11 argue that while magnetic pairing
mechanism is valid in cuprates, both high and low energies
are relevant to pairing. Similar conclusion have been drawn
using numerical calculations of the Hubbard model which
often involve the dynamical mean-field treatments of the
smallest system relevant to d-wave pairing, the cluster of
four sites.12,13 However, using similar techniques, others ar-
gue that only the low-frequency part of the pairing is
important.14,15

In this work, we examine the validity of the spin-
susceptibility glue approximation �SSGA�, expressed in a
form similar to that of random-phase approximation,7,13,16–19

�SSGA�K�K�� =
3

2
Ū2�s�K� − K� �1�

by exploring the momentum dependence of pairing and com-
paring it to the results obtained from a dynamical cluster
approximation �DCA�20–22 simulation. Here, � is the
particle-particle irreducible vertex function and �s is the fully
dressed spin susceptibility. K= �K ,�n� denotes both momen-

tum and frequency and Ū is an effective Coulomb interac-
tion. Unlike most previous calculations, we employ a rela-
tively large cluster, the 16-site cluster, allowing for more
pairing symmetries. Note that in our SSGA, �s is also ob-
tained from the DCA simulation. This emulates the use of
experiment to parametrize the glue approximation.9,23

We find that when a finite next-nearest-neighbor hopping,
t�, appropriate to describe the hole-doped cuprates24–27 is
considered, the SSGA form of the interaction leads to
p-wave pairing28 while for the same parameters the DCA
yields robust d-wave pairing. We show that this is due to the
predominant scattering with the antiferromagnetic wave vec-
tor, resulting from the momentum dependence of the spin
susceptibility and the strong suppression of the density of
states �DOS� at the antinodal points �strong pseudogap�.29 To
re-establish the d-wave pairing symmetry and the agreement
with the DCA, the SSGA can be improved by adding an
additional term with d-wave functionality in the momentum
space. However, we find that the strength of this additional
term should be larger than that of the SSGA.

II. FORMALISM

We consider a two-dimensional Hubbard Hamiltonian

H = − �
ij�

tij�ci�
† cj� + H.c.� + U�

i

ni↑ni↓, �2�

where tij is the hopping matrix, ci�
† �ci�� is the creation �an-

nihilation� operator for electrons on site i with spin �, and
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ni�=ci�
† ci�. We show results for U equal to the bandwidth

which is believed to be a realistic value for modeling
cuprates30–32 and at filling, n=0.95. Calculations at different
hole dopings show that our conclusions are valid in the
under-doped region �n�0.85�, where the antiferromagnetic
correlations are stronger while at larger dopings, the results
are inconclusive since calculations are limited by the sign
problem.

The DCA is a cluster mean-field theory that maps the
original lattice model onto a periodic cluster of size Nc=Lc

2

embedded in a self-consistent host. Correlations up to a
range Lc are treated explicitly using a quantum Monte Carlo
�QMC� solver while those at longer length scales are de-
scribed at the mean-field level. Previous DCA simulations
have shown a robust d-wave superconductivity for the Hub-
bard model with U comparable to the bandwidth. The DCA
has also established pseudogap and antiferromagnetic phases
for this model which are in good qualitative agreement with
experimental phase diagram of cuprates.33,34

To study the pairing, we calculate the eigenfunctions of
the paring matrix, ��0,35

T

Nc
�
K�

��K�K���0�K����K�� = 	��K� , �3�

where T is temperature, �0�=−G�K�G�−K�� is the particle-
particle bubble in the pairing channel and � can be either
�SSGA �Eq. �1�� or calculated in the DCA. For the latter, we
measure the two-particle Green’s function in the pairing
channel ��� in the QMC process. Then, using the Bethe-
Salpeter equation, � is calculated by subtracting the inverse
of � from the inverse of the bare bubble in the same channel
��=�0

−1−�−1�. The eigenfunction ��K� represents the gap
function and provides information about the symmetry and
the frequency dependence of the pairing. The singularities in
the two-particle Green’s function, �=�0 / �1−��0�, which
signal pairing instability, take place when the eigenvalue, 	,
goes to unity. Therefore, one can explore the superconduct-
ing tendencies by studying the temperature dependence of
the leading eigenvalues.

III. RESULTS

Unlike DCA calculations which yield d-wave pairing,
when a finite next-nearest-neighbor hopping, appropriate to
describe hole-doped cuprates, is considered the SSGA pair-
ing vertex alone �Eq. �1�� does not result in pairing with
d-wave symmetry. In Fig. 1, we compare the leading eigen-
values of the SSGA and DCA pairing matrices for zero and
finite t�. When t�=0, the low-temperature DCA results have
a d-wave leading eigenvalue, followed by s-wave and
p-wave eigenvalues. Similar results are found with the
SSGA pairing matrix, except that s-wave is not one of the
leading eigenvalues. However, when t�=−0.3t, p-wave
instead of d-wave becomes the dominant pairing symmetry
for the SSGA while d-wave is still the leading eigenvalue in
the DCA. Thus, the SSGA fails to capture the symmetry of

the pairing obtained from the DCA calculation. Here, Ū,
which is shown for the two different values of t� in the inset
of Fig. 1�b�, is adjusted so that d-wave eigenvalue in SSGA
is the same as its DCA counterpart.

The momentum dependence of �s and the renormalization
of particle-particle bubble due to finite t� are responsible for
the disagreement between the symmetry of the leading
eigenfunctions in the SSGA and the DCA. To better under-
stand why the dominant pairing in the SSGA is not d-wave,
we employ the following approximation: �s�K�−K�
��s�Q ,0�
K�−K,Q
��n�−�n�. This is motivated by the fact
that the spin susceptibility is considerable only at the antifer-
romagnetic wave vector, Q=K�−K= �� ,�� and at small
Matsubara frequency. In this approximation, Eq. �3� can be
written as

3T

2Nc
Ū2�s�Q��0�K + Q,�n���K + Q,�n� � 	��K,�n� . �4�

Considering that

3T

2Nc
Ū2�s�Q��0�K,�n���K,�n� � 	��K + Q,�n� �5�

is also true, one gets

	2 � �s�Q�2�0�K,�n��0�K + Q,�n� . �6�

This suggests that the leading eigenvalue of the SSGA pair-
ing matrix corresponds to a momentum, K, for which the
quantity �0�K ,�n��0�K+Q ,�n� has its largest value. Since
the bubble �0�K ,�n� falls rapidly with frequency, only the
lowest Matsubara frequencies are relevant for determining
the leading eigenvalues. In the following, we will discuss the
behavior of �0�K ,�n��0�K+Q ,�n� at �n= �T.
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FIG. 1. Leading eigenvalues of the ��a� and �c�� DCA and ��b�
and �d�� SSGA particle-particle pairing matrices versus temperature.
Vertex function of Eq. �1� is used to form the SSGA pairing matrix.
Top panels correspond to the Hubbard model with only nearest-
neighbor hopping �t�. In lower panels, a finite next-nearest-neighbor
hopping is also taken into account. The inset of �b� shows the ef-
fective Coulomb interaction used in the SSGA vertex, which is
adjusted so that d-wave eigenvalue in SSGA is the same as its DCA
counterpart.
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When t�=0, �0�K��0�K+Q� is the largest for K= �� ,0�
and K= �� /2,� /2� at low temperature, as can be seen in
Fig. 2�a�. The former situation favors d-wave pairing
whereas the latter favors p-wave pairing. The close values of
�0�K��0�K+Q� at these momenta explain the competition
between d-wave and p-wave symmetries in SSGA. Note that
for a small 2�2 cluster, the resolution in momentum space
is poor �e.g., K= �� /2,� /2� is not represented in the Bril-
louin zone� and the scattering between the nodal points
which favors p-wave pairing is suppressed. Thus, a larger
cluster with good momentum resolution is important in cap-
turing symmetries other than d-wave in the pairing channel.
The 16-site cluster provides four independent values for
�0�K��0�K+Q�. This is illustrate in Fig. 3 where each arrow
represents a Q= �� ,�� scattering between K and K+Q.

A finite t� strongly suppresses �0�K��0�K+Q� at the an-
tinodal points while it has a small effect at other k points �see
Fig. 2�b��. Therefore, according to Eq. �6�, the d-wave eigen-
value will also be suppressed relative to the p-wave eigen-
value. Consequently, the p-wave pairing will be dominant in
the SSGA, which explains the results discussed in Fig. 1.
The renormalization of the bare bubble at the antinodal
points can be understood from the changes in the DOS. At
low temperatures, the low-energy DOS at K= �0,�� is
strongly suppressed �i.e., the pseudogap is enhanced� with t�
for the hole-doped systems while this effect is negligible at
other k points.29 This indicates that in the over-doped region,
where pseudogap is less pronounced, SSGA might be a good
approximation.

We find that the spin-susceptibility representation of the
pairing interaction, which is appreciable only at K�−K
= �� ,��, does not always yield d-wave as the leading pairing
symmetry. This seems to be especially true when realistic
parameters for cuprates such as next-nearest-neighbor hop-
ping are considered. We show that despite the inherent cor-
respondence between the Q= �� ,�� wave vector, at which
the SSGA interaction is large, and the d-wave symmetry,
other pairing symmetries which also associate with the
�� ,�� wave vector can be dominant. On the other hand, the
DCA exhibits a robust d-wave pairing for the same physical
parameters of the Hubbard model.

To investigate the possibility of a missing term, we pro-
pose to add an extra term to �SSGA which enhances the scat-
tering between the antinodal points. Such approximation for
the interaction vertex can be written as

���K�K�� =
3

2
Ū2�s�K� − K� − ��d�K���d�K� . �7�

Here, �d is the d-wave eigenfunction of the DCA pairing

matrix, and Ū and � are temperature-dependent fitting pa-
rameters which are adjusted to reproduce both the d-wave
and the p-wave leading eigenvalues of the DCA pairing ma-
trix. It is worth mentioning that Maier et al.13 proposed a

similar term, −J̄g�K�g�K��, to be added to the SSGA form in
which g�K�� �cos Kx−cos Ky� is the d-wave form factor and

J̄ is an effective exchange interaction. However, their moti-
vation for the necessity of this extra term is quite different
from ours. Since they did not consider a finite t�, the SSGA
gave a d-wave pairing. So, this term was suggested only to
restore the large frequency behavior of the pairing gap found
in the DCA. Our focus, on the other hand, is to examine the
relevance of an additional term based on a momentum space
argument. Note that because our calculations are done using
QMC on the imaginary frequency axis, generally comments
about the frequency dependence of the pairing interaction
cannot be made. However, if relevant, the additional term
may be responsible for the instantaneous part of the interac-
tion, as described in Ref. 13. We also find that using �d�K�
instead of g�K� in our approximation provides a better fit to
the DCA results while imposing the d-wave symmetry.

For a finite t�, the second term in Eq. �7� �� term� has a
prominent role in capturing the correct leading symmetries in
this new form of the interaction. In Fig. 4, we show the
fractional values of � and the d-wave component of the
SSGA term,18,36

Vd
SSGA = − �

K,K�

�d�K��
3

2
Ū2�s�K� − K��d�K� , �8�

for the two values of t�. We define Vd=Vd
SSGA+� as the total

d-wave projected interaction. When t�=0, the contribution of
the � term to the d-wave interaction is insignificant. How-
ever, when t�=−0.3t, this term has a dominant role in the

0 0.5 1
T/t

0

0.01

0.02

0.03

χ 0(K
)

χ 0(K
+

(π
,π

))
∗t

4

0.5 1
T/t

K=(0,−π/2)
K=(π, 0)
K=(π/2,π/2)
K=(0, 0)

a) b)t’=0.0 t’=-0.3tN
c
=16

n=0.95

U=8t

FIG. 2. �Color online� The product �0�K��0�K+Q� with Q
= �� ,�� and �n=�n�=�T at four different K points in the first
Brillouin zone �1BZ� for �a� t�=0 and �b� t�=−0.3t versus tempera-
ture. At low temperatures, the leading pairing symmetries in SSGA
can be determined by the value of the product �0�K��0�K+Q� at
each K point. The one for K= �� ,0� corresponds to the d-wave
symmetry and shows a significant decrease with t� at low
temperatures.

FIG. 3. �Color online� The 1BZ for Nc=16. Arrows show the
four independent �� ,�� scatterings between K and K� on this clus-
ter. The one that connects �� ,0� to �0,�� is associated with the
d-wave symmetry.
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d-wave pairing at low temperatures. So, although the addi-
tional term enhances d-wave pairing, its contribution over-
shadows the contribution of the main part of the interaction,
i.e., the term proportional to the spin susceptibility. This sug-
gests that the SSGA may not be improved by simply adding
terms that enhance d-wave scattering.

IV. CONCLUSIONS

We study the validity of the SSGA representation of the
pairing interaction in the Hubbard model. By comparing the
leading pairing symmetries of this interaction with the pair-
ing symmetries produced by the DCA, we find that this ap-
proximation alone does not capture the correct pairing sym-
metry in the under-doped and optimally doped regions,
particularly when a finite t� is considered. We do not dismiss
the possibility that SSGA can be valid in the over-doped
region, where the pseudogap phenomenon is less relevant.
We show that this form of the interaction, which is large only
at the antiferromagnetic wave vector, requires an additional
term with d-wave symmetry to yield d-wave pairing at low
temperatures. However, in case of finite t�, the additional
term dominates the interaction as the temperature is lowered.
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FIG. 4. �Color online� Fractions of the d-wave pairing interac-
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SSGA+� is
the total d-wave projected interaction of Eq. �7�. For t�=0, the
contribution of the � term to the d-wave interaction is insignificant
while for t�=−0.3t, it becomes more important than the SSGA term
at low temperatures.
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