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It is well known that there are resonant states with complex energy for the supercritical Coulomb impurity
in graphene. We show that opening of a quasiparticle gap decreases the imaginary part of energy, �Im E�, of
these states and stabilizes the system. For gapless quasiparticles with strong Coulomb interaction in graphene,
we solve the Bethe-Salpeter equation for the electron-hole bound state and show that it has a tachyonic solution
for strong enough coupling �=e2 /��vF leading to instability of the system. In the random-phase approxima-
tion, the critical coupling is estimated to be �c=1.62 and is an analog of the critical charge in the Coulomb
center problem. We argue that the excitonic instability should be resolved through the formation of an excitonic
condensate and gap generation in the quasiparticle spectrum.
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I. INTRODUCTION

Graphene is a one-atom-thick layer of graphite packed in
the honeycomb lattice. Although theoretically considered a
long time ago,1 graphene became an active area of research
only recently after the experimental fabrication2 of this ma-
terial and because of a variety of its unusual electronic prop-
erties.

At low energy the band structure of graphene is formed
by the �-electron orbits of carbon and consists of the valence
and conduction bands and corresponds to cones touching
each other at the so-called Dirac points. Quasiparticle exci-
tations close to these points are described by the massless
Dirac equation and have a relativisticlike dispersion E
=��vF�k�, where vF�106 m /s is the Fermi velocity and k
is the quasiparticle wave vector. This fact brings an exciting
connection between graphene and 3+1-dimensional quan-
tum electrodynamics �QED�.

The vanishing density of states at the Dirac points ensures
that the Coulomb interaction between the electrons in
graphene retains its long-range character in view of vanish-
ing of the static polarization function for q→0.3 The large
value of the coupling constant �=e2 /�vF�1 means that a
strong attraction takes place between electrons and holes in
graphene and this resembles strongly coupled QED, thus
providing an opportunity for studying the strong-coupling
phase experimentally within a condensed-matter laboratory.
Given the strong attraction, one may expect an instability in
the excitonic channel in graphene with subsequent quantum
phase transition to a phase with gapped quasiparticles that
may turn graphene into an insulator. This semimetal-
insulator transition in graphene is widely discussed now in
the literature4,5 since the first study of the problem in Refs. 6
and 7. The gap opening is similar to the chiral symmetry-
breaking phenomenon that occurs in strongly coupled QED
and was studied in the 1970s and 1980s.8–12 In fact, the pre-
dicted strong-coupling phase of QED, like other QED effects
not yet observed in nature �Klein tunneling, Schwinger ef-
fect, etc.�, has a chance to be tested in graphene.

We begin our study with the problem of the supercritical
Coulomb center in Sec. II in graphene. As is well known,13,14

for the Coulomb potential, VC�r�=−Ze2 /�r, the spectrum of

quasiparticles with a gap � contains a continuum spectrum
for �E�	� and a discrete one for 0
E
�. The lowest
bound-state energy equals E0=��1− �2Z��2 and becomes
purely imaginary for Z�	1 /2, the “fall into the center” phe-
nomenon. The unphysical complex energies indicate that the
Hamiltonian of the system is not a self-adjoint operator for
supercritical values Z�	1 /2 and should be extended to be-
come a self-adjoint operator. The way out of this situation is
well known from the study of the Dirac equation in QED:
one should replace the singular 1 /r potential by a regularized
potential which takes into account the finite size of the
nucleus, R.15–17 When the charge Z increases, the energies of
discrete states approach the negative-energy continuum, E
=−�, and then dive into it. Then discrete states turn into
resonances with a finite lifetime, which can be described as
quasistationary states with complex energies, Im E�0. Such
states correspond to a rearrangement process when an
electron-hole pair is created from the vacuum, the positively
charged hole goes to infinity and the electron is coupled to
the Coulomb center, thus shielding the charge of the latter.
The critical charge Zc is determined by the condition of ap-
pearance of nonzero imaginary part of the energy and in-
creases with the increase of �.

Turning to the case of gapless quasiparticles in the regu-
larized Coulomb potential, there are no discrete levels for
Z�
1 /2 due to scale invariance of the massless Dirac equa-
tion, and for Z�	1 /2 quasistationary states emerge.18 The
energy of quasistationary levels for the regularized potential
has a characteristic exponential-type dependence, Re E,
Im E�−R−1 exp�−� /��Z��2−1 /4�, in the nearcritical re-
gime �according to the analysis in Appendix A, the critical
coupling Zc�→1 /2 for R�→0�. We find that switching on a
fermion gap, �� �E�, decreases �Im E�, i.e., increases the sta-
bility of the system. The situation here is analogous to the
problem of a massless electron in the supercritical Coulomb
center in QED first studied in Ref. 19 �for a review, see Ref.
9�.

In Sec. III we show that the instability in the supercritical
Coulomb center problem is closely related to the excitonic
instability in graphene in the supercritical coupling-constant
regime �	�c�1. Solving the Bethe-Salpeter �BS� equation
for an electron-hole bound state in graphene, we demonstrate
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that for strong enough coupling constant there are tachyon
states with imaginary energy �E2
0� in the spectrum which
play here the role of the quasistationary states in the problem
of the supercritical Coulomb center. The presence of tachy-
ons signals that the normal state of freely standing graphene
is unstable. In fact, the tachyon instability can be viewed as
the field theory analog of the fall into the center phenomenon
and the critical coupling �c is an analog of the critical cou-
pling constant Zce

2 /�vF in the problem of the Coulomb cen-
ter. However, in view of the many-body character of the
problem, the way of curing the instability in graphene �like
in QED �Ref. 9�� is quite different from that in the case of the
supercritical Coulomb center. Since the coupling constant in
freely standing graphene ��2.19 is larger than 1/2, the
quasielectron in graphene has the supercritical Coulomb
charge. This leads to the production of an electron-hole pair,
the hole is coupled to the initial quasielectron forming a
bound state but the emitted quasielectron has again a super-
critical charge. Thus the process of creating pairs continues
leading to the formation of exciton �chiral� condensate in the
stable phase, and, as a result, the quasiparticles acquire a gap.
The exciton condensate formation resolves the problem of
instability, hence a gap generation should take place in a
freely standing graphene making it an insulator.

Section IV contains our conclusions. In Appendix A we
consider the behavior of bound states for gapped graphene
quasiparticles in the regularized Coulomb center and find the
critical coupling Zc� as a function of the parameter R� for
the lowest-energy level. In Appendix B we give the exact
solution for the tachyon wave function which satisfies the
fourth-order differential equation.

II. SUPERCRITICAL COULOMB CENTER:
RESONANT STATES

Although the electron-hole problem is a many-body prob-
lem in graphene, it is instructive to consider a rather simple
one-particle problem of the electron in the field of the super-
critical Coulomb center in view of the connection of the
latter problem with the excitonic instability in graphene �for
a similar problem of instability in the case of a massless
fermion in the external field of the supercritical Coulomb
center in QED see Refs. 9 and 19�.

The Coulomb center problem was studied quite in detail
in the literature.13,14,18,20–24 Since we are mainly interested
here in resonant states, we will consider a regularized Cou-
lomb potential

V�r� = −
Ze2

�r
, �r 	 R�, V�r� = −

Ze2

�R
, �r 
 R�

�2.1�

�� is a dielectric constant� because resonant states are con-
nected with diving into the lower continuum that takes place
only in the case of a regularized potential.17,25

The electron quasiparticle states in vicinity of the K point
of graphene in the field of Coulomb impurity are described
by the Dirac Hamiltonian in 2+1 dimensions

H = ��3� + V�r� − i�vF�
1�x − i�vF�

2�y� , �2.2�

where �i are Pauli matrices and vF is the Fermi velocity.
�The Hamiltonian of quasiparticle excitations near the K�
point is given by Eq. �2.2� with matrices �i multiplied by
−1.� Note that we introduced the Dirac gap �. Although it is
absent in the quasiparticle Hamiltonian in graphene in view
of the U�4� symmetry, it may appear due to spontaneous
symmetry breaking. Since Hamiltonian �2.2� commutes with
the total angular momentum operator Jz=Lz+Sz=−i� �

�
+ �

2�3, we seek eigenfunctions in the following form,

� =
1

r
	 ei�j−1/2�a�r�

iei�j+1/2�b�r�

 . �2.3�

Then we obtain a system of two coupled ordinary differential
equations of the first order

a� − �j + 1/2�
a

r
+

E + � − V�r�
�vF

b = 0,

b� + �j − 1/2�
b

r
−

E − � − V�r�
�vF

a = 0. �2.4�

It is convenient to define the variables �=E /�vF, m
=� /�vF, u=�m2−�2, �=2ur, and �=e2 /�vF�. Equations
�2.4� are solved in Appendix A where the discrete spectrum
is found in the weak-coupling regime Z
Zc. According to
the analysis there, the critical coupling Zc�→1 /2 for mR
→0.

Let us analyze Eq. �2.4� in the supercritical case Z�
	1 /2 and show that there are resonant states for ���	m �we
define the gap �	0�. These states describe the instability of
the supercritical charge problem with respect to the creation
of electron-hole pairs from the vacuum. The created electron
is coupled to the Coulomb center, thus shielding the charge
of the latter while positively charged hole goes to
infinity;17,25 the process is repeated until the charge of the
Coulomb center is reduced to a subcritical value.

The Whittaker function W�,���� with �=1 /2+Z�� /u and
�=�j2−Z2�2 describes bound states for ���
 �m� which are
situated on the first physical sheet of the variable u and for
which Re u	0 �see Eq. �A7��. The quasistationary states are
described by the same function W�,���� and are on the sec-
ond unphysical sheet with Re u
0. We shall look for the
solutions corresponding to the quasistationary states which
define outgoing hole waves at r→� with

Re � 
 0, Im � 
 0, Re u 
 0, Im u 
 0. �2.5�

For solutions with Z2�2	 j2 resonance states are determined
by Eq. �A11� for bound states where � is replaced by �= i�.
We will consider the states with j=1 /2 which correspond to
the nS1/2 states, in particular, the lowest-energy state belongs
to them. The corresponding equation then takes the form

� W1/2+Z��/u,i����

	1

2
−

Z�m

u

W−1/2+Z��/u,i�����

r=R

=
k + 1

k − 1
,
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k =
m + �

u
�� + Z�/R − m

� + Z�/R + m

J1��̃�
J0��̃�

,

�̃ = ��Z� + �R�2 − m2R2, �2.6�

where W�,��x� and Ja�x� are the Whittaker and Bessel func-
tions, respectively.

We are interested in the case of ����m, and more impor-
tant, in the case of the massless electron, m=0. The analyti-
cal results can be obtained for the near-critical values of Z
when Z�−1 /2�1. We assume that �2uR��1, then using the
asymptotic of the Whittaker function, we find

�2uR�2i���1 − 2i��
��1 + 2i��

�	1 + i� −
Z��

u



�	1 − i� −
Z��

u



=

1

2
− i� −

Z��m − ��
u

1

2
+ i� −

Z��m − ��
u

1

2
+ i� − Z�

J1�Z��
J0�Z��

1

2
− i� − Z�

J1�Z��
J0�Z��

. �2.7�

Expanding Eq. �2.7� in the near-critical region in powers of
�=�Z2�2−1 /4, we find the following equation,

�− 2i��2 − m2R�2i�

= 1 + 4i�� J0�1/2�
J0�1/2� − J1�1/2�

+ ��1�

−
1

2
�	1 −

i

2

�

��2 − m2
 −
1

1 + i�� − m

� + m
 . �2.8�

Here ��x� is the psi function and we put u=−i��2−m2,
where Im��2−m2
0 on the second sheet. At first we con-
sider the case m=0. Writing �= ���ei� Eq. �2.8� takes the form

ln�2���R� + i	� −
�

2



� 2� J0�1/2�
J0�1/2� − J1�1/2�

+ ��1� −
1

2
�	1 −

i

2

 −

1

1 + i
�

−
�n

�
, n = 1,2, . . . . �2.9�

We find

�n
�0� = aR−1ei� exp�−

�n
�Z2�2 − 1/4�

= − �1.18 + 0.17i�R−1 exp�−
�n

�Z2�2 − 1/4�,

n = 1,2, . . . , �2.10�

where

� =
�

2
	1 + coth

�

2

 � 3.28, �2.11�

a =
1

2
exp� 2J0�1/2�

J0�1/2� − J1�1/2�
+ 2��1� − 1 − Re �	1 −

i

2

�

� 1.19. �2.12�

The energy of quasistationary states, Eq. �2.10�, has a char-
acteristic essential-singularity-type dependence on the cou-
pling constant reflecting the scale invariance of the Coulomb
potential. The infinite number of quasistationary levels is re-
lated to the long-range character of the Coulomb potential.
Note that a similar dependence takes place in the supercriti-
cal Coulomb center problem in QED.19 Our results are also
in agreement with Ref. 18.

Since the “fine-structure constant” e2 /�vF�2.19 in
graphene, an instability appears already for the charge Z=1.
However, in the analysis above we did not take into account
the vacuum polarization effects. Considering these effects
and treating the electron-electron interaction in the Hartree
approximation, it was shown in Ref. 22 that the effective
charge of impurity Zef f is such that the impurity with bare
charge Z=1 remains subcritical, Zef fe

2 / ���vF�
1 /2, for
any coupling e2 / ���vF�, while impurities with higher Z may
become supercritical.

For finite m and in the case ����m, Re �
0, expanding
Eq. �2.8� in m /� we get up to the terms of order m2 /�2,

� −
m2

2�
= �n

�0��1 −
m

�
+

m2

�2 �0.29 − 0.23i��, n = 1,2, . . . .

�2.13�

The resonant states with �n
�0� describe the spontaneous emis-

sion of positively charged holes when electron bound states
dive into the lower continuum in the case m=0. In order to
find corrections to these energy levels due to nonzero m, we
seek solution of Eq. �2.13� as a series �=�k=0

� ��k� with ��k� of
order mk and easily find the first two terms

�n = �n
�0� − m +

m2

��n
�0��

�0.24 + 0.20i� . �2.14�

Since Im �n
�0�
0, the appearance of a gap results in decreas-

ing the width of resonance and, therefore, increases stability
of the system.

We considered above the case ����m and analyzed how a
nonzero mass affects resonant states. It is instructive to con-
sider resonant states also in the vicinity of the level �=−m
when bound states dive into the lower continuum and deter-
mine their real and imaginary parts of energy. First of all,
nonzero m increases the value of the critical charge. Let us
find it. Using Eq. �A20� in Appendix A, we obtain that the
critical value Zc� for j=1 /2 scales with m like �see Fig. 1�

Zc� �
1

2
+

�2

log2�cmR�
,
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c = exp�− 2��1� −
2J0�1/2�

J0�1/2� − J1�1/2�� � 0.21.

�2.15�

Note that the dependence of the critical coupling on mR is
quite similar to that in the strongly coupled QED.8,9 For Z
	Zc, using Eq. �2.8�, we find the following resonant states

� = − m	1 + � + i
3�

8
e−�/�2�
, � =

3�

8

� − �c

��c
,

�2.16�

where �c=��Zc��2−1 /4. Like in QED �Ref. 16� the imagi-
nary part of energy of these resonant states vanishes expo-
nentially as Z→Zc. Such a behavior is connected with tun-
neling through the Coulomb barrier in the problem under
consideration. For the quasielectron in graphene in a central
potential V�r�, expressing the lower component of the Dirac
spinor, Eq. �2.3�, through the upper one and following,16,17

we obtain an effective second-order differential equation in
the form of the Schrödinger equation

���r� + k2�r���r� = 0,

a�r� = exp� 1

2
� 	1

r
−

Ṽ�

� + m − Ṽ

dr���r� . �2.17�

Here

k2�r� = 2�E − U�r��, E =
�2 − m2

2
, Ṽ =

V

�vF
�2.18�

and we represent the effective potential as the sum of two
terms U=U1+U2, where U1 is the effective potential for the
Klein-Gordon equation and U2 takes into account the spin-
dependent effects

U1 = �Ṽ −
Ṽ2

2
+

j�j − 1�
2r2 , �2.19�

U2 =
1

4� Ṽ�

� + m − Ṽ
+

3

2	 Ṽ�

� + m − Ṽ

2

+
2jṼ�

r�� + m − Ṽ�
� .

�2.20�

Note that Eq. �2.17� and the potentials, Eqs. �2.19� and
�2.20�, coincide with the corresponding equations in QED.17

We plot the effective potential U�r� for Z→Zc, j=1 /2, and
�=−m in Fig. 2, where the Coulomb barrier is clearly seen.

Up to now, we considered a one-particle problem in an
external field. In the next section, we will consider electrons
and holes in graphene which interact by means of the Cou-
lomb interaction and show that an instability develops in the
system when the coupling � exceeds some critical value �c.

III. EXCITONIC TACHYON INSTABILITY

A. Bethe-Salpeter equation

The instability of the supercritical charge problem due to
the emission of positively charged holes discussed in the
previous section indicates the possibility of the excitonic in-
stability in graphene in the case of a supercritical coupling
constant. In this section, we will study the BS equation for an
electron-hole state and show that it has a tachyon in the
spectrum in the supercritical regime. Before we do this, let
us discuss some similarities and differences of the supercriti-
cal Coulomb charge problem with the famous Cooper prob-
lem in the theory of superconductivity.

Although the Cooper problem is formulated as a
quantum-mechanical problem for two particles �electrons�, it
can be standardly reduced to a one-particle problem in an
external potential. Therefore, the Coulomb center problem is
similar to the Cooper problem in this respect. However, there
are important differences between the two problems. The
first one is connected with the fact that the Dirac equation
contains the lower continuum with filled negative-energy
states. Therefore, if a bound-state energy enters the lower
continuum, we are essentially dealing with a many-body
problem. This explains why there are resonant states with
imaginary energy in the supercritical Coulomb potential un-
like the Cooper problem where there are only negative-
energy bound states. The second important difference be-
tween these two problems is connected with the critical value
of coupling constant. It is zero for the Cooper problem be-
cause the density of states in this problem is nonzero at the
Fermi surface that plays a crucial role in the bound-states
formation. On the other hand, �c=1 /2 for the Coulomb cen-

FIG. 1. The critical coupling as a function of mR for the 1S1/2
level.

FIG. 2. Effective potential for the Coulomb center in the case
�=−m and Z=Zc.
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ter problem in graphene where the density of states is zero at
the Dirac point.

The appearance of the Cooper bound state in the theory of
superconductivity is directly related to the instability of the
normal state of metal. Indeed, according to,26 the BS equa-
tion for an electron-electron bound state in the normal state
of metal has a solution with imaginary energy, i.e., a
tachyon. This means that normal state is unstable and a phase
transition to the superconducting state takes place. As we
mentioned above, resonant states in the supercritical Cou-
lomb center problem suggest the excitonic instability in
graphene.

For the description of the dynamics in graphene, we will
use the same model as in Refs. 6 and 7 in which while
quasiparticles are confined to a two-dimensional plane, the
electromagnetic �Coulomb� interaction between them is three
dimensional in nature. The low-energy quasiparticles excita-
tions in graphene are conveniently described in terms of a
four-component Dirac spinor �a

T= ��KAa ,�KBa ,�K�Ba ,�K�Aa�
which combines the Bloch states with spin indices a=1,2 on
the two different sublattices �A ,B� of the hexagonal
graphene lattice and with momenta near the two nonequiva-
lent valley points �K ,K�� of the two-dimensional Brillouin
zone. In what follows we treat the spin index as a “flavor”
index with Nf components, a=1,2 , . . . ,Nf, then Nf =2 corre-
sponds to graphene monolayer while Nf =4 is related to the
case of two decoupled graphene layers, interacting solely via
the Coulomb interaction.

The action describing graphene quasiparticles interacting
through the Coulomb potential has the form

S =� dtd2r�̄a�t,r��i�0�t − ivF����a�t,r�

−
1

2
� dtdt�d2rd2r��̄a�t,r��0�a�t,r�U0�t − t�, �r − r���

��̄b�t�,r���0�b�t�,r�� , �3.1�

where �̄=�†�0 and the 4�4 Dirac � matrices ��=�3

� ��3 , i�2 ,−i�1� furnish a reducible representation of the
Dirac algebra in 2+1 dimensions. The Pauli matrices � ,� act
in the subspaces of the valleys �K ,K�� and sublattices �A ,B�,
respectively. The other two � matrices which we use are �3

= i�2 ��0 , �5= i�0�1�2�3=�1 ��0 ��0 is the 2�2 unit ma-
trix�.

The bare Coulomb potential U0�t , �r�� takes the simple
form

U0�t, �r�� =
e2��t�
�

� d2k

2�

eikr

�k�
=

e2��t�
��r�

. �3.2�

However, the polarization effects considerably modify this
bare Coulomb potential and the interaction will be

U�t, �r�� =
e2

�
� d�

2�
� d2k

2�

exp�− i�t + ikr�
�k� + ���,k�

, �3.3�

where � is the dielectric constant due to a substrate and the
polarization function ��� ,k� is proportional �within the fac-
tor 2� /�� to the time component of the photon polarization

function. Correspondingly, the Coulomb propagator has the
form

D��, �q�� =
1

�q� + ���, �q��
. �3.4�

The one-loop polarization function is3

���,k� =
�e2Nf

4�

k2

��2vF
2k2 − �2

, �3.5�

and in an instantaneous approximation it is

��� = 0,k� =
�e2Nf

4��vF
�k� . �3.6�

In general, the static polarization operator must have the
form ��0, �q��= �q�F�� ,Nf� due to dimensional reasons,
however its exact form is not known and in the present paper
we will use the one-loop approximation.

The continuum effective theory described by the action,
Eq. �3.1�, possesses the U�2Nf� symmetry. However, as was
pointed out in Ref. 27 �see also Refs. 28 and 29�, it is not
exact for the Lagrangian on the graphene lattice. In fact,
there are small on-site repulsion interaction terms which
break the U�2Nf� symmetry.

In order to analyze excitonic instability, we consider the
Bethe-Salpeter equation �see, for example, Ref. 12� for an
electron-hole bound state which is represented in Fig. 3. The
kernel K of the BS equation in the simplest approximation
contains two diagrams: the one is due to exchange Coulomb
forces and another one is the annihilation diagram. The an-
nihilation diagram does not contribute for the BS wave func-
tion considered below. Thus the BS equation takes the fol-
lowing form

�S−1	q +
1

2
P
��q,P�S−1	q −

1

2
P
�

��

=
i�

�2��2� d3kD��q − k����0��k,P��0���, �3.7�

where k= �k0 ,k�, � ,� are spinor indices, ��q , P� is the BS
amplitude in momentum space

FIG. 3. The BS equation for a bound-electron-hole state �. The
kernel K contains two diagrams: exchange and annihilation ones.
The wave line corresponds to the Coulomb propagator.
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����q,P� =� d3xeiqx�0�T��	 x

2

�̄�	−

x

2

�P� , �3.8�

q= �q0 ,q�, P= �P0 ,P�, q and P are relative and total mo-
menta, respectively, and

S�p� =
�0p0 − �p + �

p0
2 − p2 − �2 + i0

is the quasiparticle propagator with a gap � �the gap � is
zero in noninteracting graphene, however, may be generated
due to the strong Coulomb interaction�. In what follows we
put �=vF=1.

Taking into account the static vacuum polarization by
massless fermions, i.e., with ���=0,k�, corresponds to the
replacement of the coupling constant � in Eq. �3.7� by

�→
�

1 + ��Nf/4
� 2 .

Further, introducing the function

�̂�q,p� = S−1	q +
1

2
P
��q,P�S−1	q −

1

2
P


with p= P /2, the BS equation can be equivalently rewritten
as follows:

�̂�q,p� =
2i 

�2��2� d3k

�q − k�
�0S�k + p��̂�k,p�S�k − p��0.

�3.9�

In general, �̂ can be expanded in 16 independent matrix
structures. In view of the experience in QED,9 we expect a
gap generation in graphene in the supercritical regime. Then
the spin-valley U�4� symmetry will be broken �see, e.g.,
Refs. 6 and 7� that leads to the appearance of massless
Nambu-Goldstone bosons in the spectrum. Similar to QED,9

these Nambu-Goldstone bosons are transformed into tachy-
ons if considered on the wrong vacuum state without a gap
generation. In the present paper, we will consider only matrix
structures of �̂ connected with the �5 matrix

�̂�q,p� = �5�q,p��5 + �05�q,p�qi�i�0�5, �3.10�

where �5�q , p� and �05�q , p� are scalar coefficient functions.
We will see in the next section that it is enough to consider
only �5 in order to describe a Nambu-Goldstone excitation in
the massive state. However, we retain the function �05 be-
cause it is necessary in the study of tachyon. There are also
tachyons in other channels which describe different ways of
breaking the U�2Nf� symmetry, for example, one can use
matrices I ,�3 ,�3�5 instead of the matrix �5 in Eq. �3.10�. To
study instability it is enough to find at least one channel with
tachyons. The real pattern of a symmetry breaking is defined
by solving gap equations for various kinds of order param-
eters and determining which of them corresponds to the glo-
bal minimum of the system energy. For simplicity we con-
sider only the channel described by the wave function, Eq.
�3.10�, which can be treated analytically.

B. Tachyon states

Let us first show that, for  	 c, there is a tachyon in the
spectrum of the Bethe-Salpeter equation in the massless
theory �=0 and determine the critical value  c. For the study
of tachyon, we can set p=0, however, should keep nonzero
p0. One can check that ansatz, Eq. �3.10�, is consistent for
Eq. �3.9� and leads to a coupled system of equations for
functions �5�q , p0� ,�05�q , p0� �in what follows we omit
p0 for brevity in the arguments of the functions
�5�q , p0� ,�05�q , p0��. Since Eq. �3.9� implies that �̂�q , p�
does not depend on q0, we can integrate then over k0 by
using the integrals

i�
−�

� dk0

�

c1 + c2k0 + c3k0
2

��k0 − p0�2 − k2 + i����k0 + p0�2 − k2 + i��

=
c1 + c3�p0

2 − k2�
2�k��p0

2 − k2�
,

where �→+0. We obtain the following system of integral
equations,

�5�q� =  � d2k

2�

k2��5�k� + p0�05�k��
�q − k��k��k2 − p0

2�
,

�05�q� =  � d2k

2�

qk�k2�05�k� + p0�5�k��
q2�q − k��k��k2 − p0

2�
. �3.11�

We assume that �5�q� and �05�q� depend only on q= �q�, then
we can integrate over the angle using

�
0

2� d
�q2 + k2 − 2qk cos 

=
4

q + k
K	2�qk

q + k

 = 4�!�q − k�

q
K	k

q

 +

!�k − q�
k

K	q

k

� ,

�3.12�

�
0

2� d cos 
�q2 + k2 − 2qk cos 

=
2�q2 + k2�
qk�q + k�

�K	2�qk

q + k

 −

�q + k�2

q2 + k2 E	2�qk

q + k

�

=
4

qk
�q!�q − k��K	 k

q

 − E	 k

q

�

+ k!�k − q��K	q

k

 − E	q

k

�� , �3.13�

where K�x� and E�x� are complete elliptic integrals of the
first and second kind, respectively, !�x� is the Heaviside step
function, and for the last equalities in Eqs. �3.12� and �3.13�
we used the formulas 8.126.3, 8.126.4 in the book.30 Further,
we approximate the elliptic integrals by their asymptotics
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K�x� �
�

2
�1 + O�x2��, E�x� �

�

2
�1 + O�x2��, x � 1.

�3.14�

This approximation allows one to obtain analytical results
for the BS equation. The logarithmic singularity present in
elliptic integrals in Eqs. �3.12� and �3.13� at q=k does not
influence qualitatively the solution obtained though it is im-
portant to take it into account to get correct value of the
critical coupling �see the derivation of Eq. �3.30� below�.
Thus we find

�5�q� =  �
0

q k2dk

q�k2 − p0
2�

��5�k� + p0�05�k��

+  �
q

" kdk

k2 − p0
2 ��5�k� + p0�05�k�� , �3.15�

�05�q� =
 

2
�

0

q k2dk

q3�k2 − p0
2�

�k2�05�k� + p0�5�k��

+
 

2
�

q

" dk

k�k2 − p0
2�

�k2�05�k� + p0�5�k�� .

�3.16�

Here we also introduced a finite ultraviolet cutoff " which
could be taken to be of order � /a, where a is a characteristic
lattice size, a=2.46 Å for graphene. An alternative, equally
good, choice of " is related to the energy band, "= t /vF,
where t=2.4 eV in graphene.

These equations are equivalent to the system of differen-
tial equations

�5� +
2

q
�5� +  

�5 + p0�05

q2 − p0
2 = 0,

�05� +
4

q
�05� +

3 

2

q2�05 + p0�5

q2�q2 − p0
2�

= 0 �3.17�

with the following boundary conditions

q2�5��q=0 = 0, �q�5�q����q=" = 0,

q4�05� �q=0 = 0, �q3�05�q����q=" = 0. �3.18�

The system of differential equations, Eqs. �3.17�, can be re-
duced to one equation of the fourth order whose solutions are
given in terms of generalized hypergeometric functions

4F3�q2 / p0
2� and the Meijer functions with the corresponding

boundary conditions �for this analysis see Appendix B�.
However, since we seek for the solution with p0→0, it is
simpler to straightforwardly analyze the system, Eqs. �3.17�,
itself, in this regime the system decouples

�5� +
2

q
�5� +  

�5

q2 − p0
2 = 0, �05� +

4

q
�05� +

3 

2

�05

q2 − p0
2 = 0,

�3.19�

where we keep p0 in the denominators because it regularizes
singularities for q→0.

Obviously, Eqs. �3.19� are differential equations for the
hypergeometric function F�a ,b ;c ;z�.30 The solutions that
satisfy the infrared boundary conditions are

�5 = C1F	1 + �

4
,
1 − �

4
;
3

2
;
q2

p0
2
 ,

�05 = C2F	3�1 + �̃�
4

,
3�1 − �̃�

4
;
5

2
;
q2

p0
2
 , �3.20�

where �=�1–4 and �̃=�1–2 /3. Using the asymptotic of
the hypergeometric functions, one may easily check that the
ultraviolet boundary conditions for the function �5 can be
satisfied only for  	1 /4, therefore, 1/4 is the critical cou-
pling for the approximation that we use. �Note that if we
neglect the vacuum polarization contribution, then  =� /2
and the critical value 1/4 coincides with the critical coupling
Zc�=1 /2 obtained in Sec. II for the Coulomb center prob-
lem.� The UV boundary condition for the function �05 can be
satisfied for the values of  	3 /2 but not for  
3 /2. There-
fore, for 1 /4
 
3 /2 we take a trivial solution �05=0 and
we are left only with the equation for the function �5. Know-
ing the function �5 we then solve an inhomogeneous equa-
tion, Eqs. �3.17�, for �05, in this way we find that the function
�05� p0. The critical value  c=1 /4 coincides with the criti-
cal coupling constant found in Ref. 7 where the same ap-
proximation for the kernel was made. In the supercritical
regime �= i�, �=�4 −1 and the function �5�q� behaves
asymptotically as

�5�q� � q−1/2 cos�� − 1/4 ln q + const� . �3.21�

Such oscillatory behavior is typical for the phenomenon
known in quantum mechanics as the collapse �fall into the
center� phenomenon: in this case the energy of a system is
unbounded from below and there is no ground state. Nodes
of the wave function of the bound state signify the existence
of the tachyon states with imaginary energy p0, Im p0

2
0.
Indeed, the UV boundary condition for �5 leads to the equa-
tion

�1 + i���	1 +
i�

2

�	1 − i�

4

�	5 − i�

4



�1 − i���	1 −
i�

2

�	1 + i�

4

�	5 + i�

4

	−

"2

p0
2 
i�/2

= 1.

�3.22�

Then we find the following tachyon solution,

p0
2 = − "2 exp�−

4�n

�
+ ����� ,

���� =
4

�
�arctan � + arg��	1 +

i�

2



��	1 − i�

4

�	5 − i�

4

�� . �3.23�

If  tends to 1/4 from the above, i.e., �→0,
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p0
2 = − "2 exp�−

4�n

�
+ ��0�� ,

��0� = 4 + 2��1� − ��1/4� − ��5/4� � 7.3, n = 1,2, . . . .

�3.24�

Thus, we see that the strongest instability, i.e., the smallest
negative value of p0

2 is given by the solution for the function
�5 with n=1. The tachyon states play here the role of the
quasistationary states in the problem of supercritical Cou-
lomb center resulting in the vacuum instability. In fact, the
tachyon instability can be viewed as the field theory analog
of the fall into the center phenomenon and the critical cou-
pling �c is an analog of the critical coupling Zc� in the
problem of the Coulomb center.

The tachyon energy Eq. �3.24� has a characteristic essen-
tial singularity of the kind 1 /� − c in the exponent. It can
be argued that this behavior reflects a scale invariance in the
problem under consideration and keeps its form for any ap-
proximation which does not introduce new scale parameter
except the cutoff.31

There are two possibilities for the system with the super-
critical charge to become stable: to shield spontaneously the
charge or to generate spontaneously the fermion gap. The
first possibility is realized in the problem of the supercritical
Coulomb center which is due to the formulation of the prob-
lem as the one-particle one. The second possibility, dynami-
cal generation of the fermion gap, is realized for quasiparti-
cles in graphene interacting through supercritical Coulomb
interaction. The situation here is completely analogous to the
strongly coupled QED �Refs. 8, 9, and 12� where it is shown
that the vacuum stabilization by generating dynamical fer-
mion gap is a rather universal phenomenon.

The critical value  c determines the critical coupling �c as
a function of the fermion number Nf,

�c =
4 c

2 − �Nf c
�3.25�

�compare with Eq. �28� in Ref. 7�. The critical value  c
=1 /4 in the approximation, Eq. �3.14�, used for kernels. The
more precise value of  c can be found if one notes that  c
corresponds to the limit p0=0. Taking this limit in the sys-
tem, Eq. �3.17�, we get

�5�q� =
2 

�
�

0

�

dk�5�k��!�q − k�
q

K	 k

q

 +

!�k − q�
k

K	q

k

� ,

�3.26�

�05�q� =
2 

�q
�

0

�

dk�05�k��!�q − k��K	 k

q

 − E	 k

q

�

+
k!�k − q�

q
�K	q

k

 − E	q

k

�� . �3.27�

Note that the ultraviolet cutoff, ", has been taken to infinity,
which is appropriate at the critical point. These equations are
scale invariant and are solved by �5�q�=q−� and �05�q�

=q−� on the condition that the exponents � ,� satisfy the
transcendental equations

1 =
2 

�
�

0

1

dx�x−� + x�−1�K�x�, 0 
 �
 1, �3.28�

1 =
2 

�
�

0

1

dx�x−� + x�−3��K�x� − E�x��, 0 
 �
 3.

�3.29�

These equations define roots � ,� for any value of the cou-
pling  . An instability is signalized by oscillatory behavior of
the functions �5�q� and �05�q�. For the function �5�q� this
occurs when two of the roots of Eq. �3.28� in the interval
�0,1� coalesce and then become complex conjugate. We find
that this happens when �=1 /2, for this value the integral in
Eq. �3.28� is exactly evaluated �see, the book32� and we ob-
tain the critical value

 c =
4�2

�4�1/4�
� 0.23. �3.30�

The second equation, Eq. �3.29�, gives higher critical value
 c=0.91 therefore the instability is determined by the value
 c=0.23. The critical value Ncrit�2.8 corresponds to �=�
in Eq. �3.25�. Since for graphene the number of flavors Nf
=2, the critical coupling is estimated to be �c�1.62 in the
considered approximation.33 Because the coupling constant
in freely standing graphene ��2.19���1� the system is in
the unstable phase. On the other hand, for graphene on a
SiO2 substrate the dielectric constant ��2.8, therefore, �
�0.78, i.e., the system is in the stable phase.

Finally, since the U�2Nf� symmetry is spontaneously bro-
ken, there must exist Nambu-Goldstone excitations in the
stable phase where a quasiparticle gap arises. Let us show
that the BS Eq. �3.9� indeed admits such solutions. To see
this, according to Ref. 9 we set p0=p=0. Then, Eq. �3.9� has
a solution of the form ��q ,0�=�5�q ,0��5 for which we ob-
tain the equation

�5�q,0� =
 

2�
� d2k

�q − k�
�5�k,0�

�k2 + �2�k�
, �3.31�

or, after integrating over the angle,

�5�q,0� =  �
0

" dkk�5�k,0�
�k2 + �2�k�

K�q,k� , �3.32�

with the kernel

K�q,k� =
!�q − k�

q
K	 k

q

 +

!�k − q�
k

K	q

k

 . �3.33�

On the other hand, the equation for a gap function obtained
in Ref. 7 has the form

��q� =  �
0

" dkk��k�
�k2 + �2�k�

K�q,k� . �3.34�

One can see that Eq. �3.32� has the solution �5�q ,0�
=C��q� where the gap function ��q� satisfies Eq. �3.34� and
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C is a constant. Thus the wave function �5�q ,0� describes a
gapless Nambu-Goldstone excitation. Solving the BS equa-
tion at nonzero p0 ,p one can obtain a dispersion law p0
��p� for a Nambu-Goldstone excitation.

IV. CONCLUSIONS

In this paper we studied instabilities in graphene which
arise at strong Coulomb coupling. For the supercritical Cou-
lomb center problem, it was known before that the fall into
the center instability arises if Z� exceeds the critical value
1/2 leading to the appearance of quasistationary levels with
complex energies. The energy of quasistationary states in the
case of gapless quasiparticles has a characteristic essential-
singularity-type dependence on the coupling constant reflect-
ing the scale invariance of the Coulomb potential. We
showed that a quasiparticle gap stabilizes the system decreas-
ing the imaginary part �Im E� of quasistationary states, thus
increasing their lifetime.

Considering the many-body problem of strongly interact-
ing gapless quasiparticles in graphene, we showed that the
Bethe-Salpeter equation for an electron-hole bound state
contains a tachyon in its spectrum in the supercritical regime
�	�c and found the critical constant �c=1.62 in the static
random-phase approximation. The tachyon states play the
role of quasistationary states in the problem of the supercriti-
cal Coulomb center and lead to the rearrangement of the
ground state and the formation of exciton condensate. Thus,
there is a close relation between the two instabilities, in fact,
the tachyon instability can be viewed as the field theory ana-
log of the fall into the center phenomenon and the critical
coupling �c is an analog of the critical coupling Zc� in the
problem of the Coulomb center. The physics of two instabili-
ties is related to strong Coulomb interaction.

The calculated critical value �c=1.62 should be compared
with the value �c=1.08 found in Monte Carlo simulations4

for the rearrangement of the ground state of graphene and
appearance of a gap. The obtained value of �c is rather large
that indicates that the ladder approximation is not quantita-
tively good enough for the problem of excitonic instability
and gap generation in freely standing graphene. Certainly,
both higher-order corrections and improving the instanta-
neous approximation can vary the value of critical coupling.
It is essential however that a ground-state rearrangement at
strong coupling is connected with the “fall into the super-
critical Coulomb center” phenomenon. Therefore, such an
rearrangement in graphene with large Coulomb interaction
seems to be very plausible for strong enough coupling even
if one goes beyond the ladder approximation. Finally, the
physical picture of instabilities in graphene is quite similar to
that elaborated earlier in strongly coupled QED �Refs. 8, 9,
and 12� �see, also, Refs. 10 and 11�. In QED, the ladder
approximation is not reliable quantitatively also because the
critical coupling constant for chiral symmetry breaking is of
order 1. However, the main results of the ladder approxima-
tion survive when all diagrams with photons exchanges are
included �the so-called quenched approximation without fer-
mion loops�.31 Further, the existence of the critical point is
exactly proved in the lattice version of QED.34 We note also

that in the presence of an external magnetic field the value of
the critical coupling reduces to zero �magnetic catalysis
phenomenon35� so that the gap generation takes place already
in the weak-coupling regime.
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APPENDIX A: DISCRETE SPECTRUM FOR A
REGULARIZED COULOMB POTENTIAL

The discrete spectrum of Eq. �2.4� exists for ���
m. In
this case it is convenient to define

� = 2ur, u = �m2 − �2, a =
�m + �

2
�g − f� ,

b =
�m − �

2
�g + f� �A1�

and rewrite Eq. �2.4� as follows:

�g� + g	�
2

−
1

2
− Z�

�

u

 + f	 j + Z�

m

u

 = 0,

�f� − f	�
2

+
1

2
− Z�

�

u

 + g	 j − Z�

m

u

 = 0. �A2�

Substituting f from the first equation into the second one, we
obtain the equation for the g component

d2g

d�2 + �−
1

4
+

1

2
+ Z�

�

u

�
+

1

4
− j2 + Z2�2

�2 �g = 0, �A3�

which is the well-known Whittaker equation.30 Its general
solution is

g = C1W�,���� + C2M�,����, � =
1

2
+

Z��

u
, �A4�

where �=�j2−Z2�2. Taking into account the asymptotic of
the Whittaker functions Wk,��z� ,Mk,��z� at infinity,

W�,���� � e−ur�2ur��, r → � , �A5�

M�,���� �
��1 + ��

�	1

2
− � + �
 eur�2ur�−�, r → � , �A6�

we find that the regularity condition at infinity requires C2
=0. Then the first equation in Eq. �A2� gives the following
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solution for the f component in region II �r	R�,

f II = C1	 j − Z�
m

u

W−1/2+Z��/u,���� . �A7�

Solutions in region I �r
R� can be easily obtained from Eq.
�2.4�

bI = A1rJ�j+1/2�	r�	� +
Z�

R

2

− m2
 , �A8�

aI = A1 sgn�j��� + Z�/R + m

� + Z�/R − m
rJ�j−1/2�	r�	� +

Z�

R

2

− m2
 ,

�A9�

where A1 is a constant and we took into account the infrared
boundary condition which selects only regular solution for bI
and aI. Energy levels are determined through the continuity
condition of the wave function at r=R,

�bI

aI
�

r=R
= �bII

aII
�

r=R
, �A10�

that gives the equation

� W1/2+Z��/u,����

	 j −
Z�m

u

W−1/2+Z��/u,�����

r=R

=
k + 1

k − 1
,

k = sgn�j�
m + �

u
�� + Z�/R − m

� + Z�/R + m

J�j+1/2���̃�

J�j−1/2���̃�
,

�̃ = ��Z� + �R�2 − m2R2. �A11�

We analyze this equation in the limit R→0 where we can
use the asymptotical behavior of the Whittaker function at
�→0,

W�,���� �
��2��

�	1

2
− � + �
�

1/2−� +
��− 2��

�	1

2
− � − �
�

1/2+�.

�A12�

In the limit R→0 Eq. �A11� reduces to the following one,

��− 2��
��2��

�	1 + � − Z�
�

u



�	1 − � − Z�
�

u

 �2uR�2�

= −

j + � −
Z��m + ��

u
+ k0� j − � −

Z��m − ��
u

�
j − � −

Z��m + ��
u

+ k0� j + � −
Z��m − ��

u
� + O�R� ,

�A13�

where

k0 = sgn�j�
m + �

u

J�j+1/2��Z��

J�j−1/2��Z��
�

m + �

u
��Z�, j� . �A14�

Using the relationships

j + � −
Z��m − ��

u

j − � −
Z��m + ��

u

= −
Z�

j − �

u

m + �
,

j − � −
Z��m − ��

u

j + � −
Z��m + ��

u

= −
Z�

j + �

u

m + �
, �A15�

Eq. �A13� can be rewritten in more convenient form

��− 2��
��2��

�	1 + � − Z�
�

u



�	1 − � − Z�
�

u

 �2uR�2�

= −

j − � −
Z��m − ��

u

j + � −
Z��m − ��

u

j + � − Z���Z�, j�
j − � − Z���Z�, j�

. �A16�

In the limit R→0 the energy levels are determined by the
poles of the gamma function ��1+�−Z��

u � and by a zero of
the right-hand side of Eq. �A16�, this leads to the familiar
result �analog of the Balmer formula in QED� �Ref. 13� �re-
derived also in Ref. 14�,

�n,j = m�1 +
Z2�2

�� + n�2�−1/2

, �n = 0,1,2,3, . . . , j 	 0,

n = 1,2,3, . . . , j 
 0.
�

�A17�

The bound states for n#1 are doubly degenerate, �n,j =�n,−j.
The lowest-energy level is given by

�0,j=1/2 = m�1 − �2Z��2. �A18�

If Z� exceeds 1/2, then the energy, Eq. �A18�, becomes
imaginary, i.e., the fall into the center phenomenon18,23,24 oc-
curs. According to Refs. 15 and 17, nonzero R resolves this
problem. For Z�	1 /2, � is imaginary for certain j and for
such j we denote �= i� , �=�Z2�2− j2. For finite R discrete
levels exist for Z�	1 /2. Their energy decreases with in-
creasing of Z� until they reach the lower continuum. The
behavior of lowest-energy levels with j=1 /2 as functions of
the coupling Z� is shown in Fig. 4.

The critical charge Zc that corresponds to diving into the
continuum is obtained from Eq. �A16� setting �=−m there
and using the corollary of the Stirling formula: ��x+iy�

��x−iy�
→e2iy log x, x→+�. We come to the equation
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e−2i� log�2Z�mR� =
i� − j + Z���Z�, j�

− i� − j + Z���Z�, j�
��1 − 2i��
��1 + 2i��

,

�A19�

or,

− � log�2Z�mR� = arg�Z���Z�, j� − j + i��

+ arg ��1 − 2i�� + �n , �A20�

where n is integer. It is not difficult to check that for j
=1 /2 and n=1 the critical coupling Zc� approaches the value
1/2 for mR→0. The dependence of the critical coupling Zc�
on mR for j=1 /2 is shown in Fig. 1.

The bound and quasistationary states in gapped graphene
in the case of the supercritical Coulomb impurity were also
numerically calculated in the tight-binding lattice model
which has a natural lattice scale cutoff that provides an im-
portant control of the validity of the Dirac equation
approach.21,36

APPENDIX B: FOURTH-ORDER DIFFERENTIAL
EQUATION

The system of equations, Eq. �3.17�, with boundary con-
ditions, Eq. �3.18�, is reduced to the following fourth-order
differential equation for the function �5�q�,

�5
IV +

2�5q2 − 3p0
2�

q�q2 − p0
2�

�5� +
�44 + 5 �q2 − 8p0

2

2q2�q2 − p0
2�

�5�

+
4p0

2 + �8 + 7 �q2

q3�q2 − p0
2�

�5� +
3 2�5

2q2�q2 − p0
2�

= 0, �B1�

with the corresponding boundary conditions

q2�5��q=0 = 0,

�q4 d

dq
��q2 − p0

2�	�5� +
2

q
�5� +  

�5

q2 − p0
2
��

q=0

= 0,

�B2�

�q�5�q����q=" = 0,

� d

dq
�q3�q2 − p0

2�	�5� +
2

q
�5� +  

�5

q2 − p0
2
��

q="

= 0.

�B3�

In terms of the variable z=q2 / p0
2 these equations are rewrit-

ten as

�z3�z − 1�
d4

dz4 + 2z2�4z − 3�
d3

dz3 +
5

8
z�� + 22�z − 10�

d2

dz2

+
19 + 60

16
z

d

dz
+

3 2

32
��5 = 0, �B4�

and boundary conditions

z3/2�d�5

dz
�

z=0
= 0,

�z5/2 d

dz
��z − 1�	4z

d2�5

dz2 + 6
d�5

dz
+
 �5

z − 1

��

z=0
= 0,

�B5�

�	2z
d�5

dz
+ �5
�

z="2
= 0,

�z1/2 d

dz
�z3/2�z − 1�	4z

d2�5

dz2 + 6
d�5

dz
+
 �5

z − 1

��

z="2
= 0.

�B6�

Equation �B4� is the Pochhammer-type equation,37 its ca-
nonical form is

	�
k=0

3

�! + bk − 1� − z�
k=1

4

�! + ak�
�5 = 0, ! � z
d

dz
,

�B7�

where the parameters

b0 = 1, b1 = 3/2, b2 = 3/2, b3 = 0, �B8�

FIG. 4. �Color online� The lowest-energy levels as functions of
Z�. Red lines correspond to the pure Coulomb potential �they exist
for Z�
1 /2�; black solid lines are numerical solutions for j
=1 /2, mR=0.01; black dashed line is numerical solutions for j=
−1 /2, mR=0.01.
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a1,2 =
1

4
�1 � ��, � = �1 − 4 ,

a3,4 =
3

4
�1 � �̃�, �̃ =�1 −

2 

3
�B9�

describe the behavior of �5�z� at the points z=0 and z=�,
respectively. The general solution of Eq. �B4� at the point
z=0 can be written in terms of four linearly independent
solutions,

�5 =
C1

�z
4F3	a1 −

1

2
,a2 −

1

2
,a3 −

1

2
,a4 −

1

2
;−

1

2
,
1

2
,1;z


+ C2z4F3	a1 + 1,a2 + 1,a3 + 1,a4 + 1;
5

2
,
5

2
,2;z


+ C3G44
24	�z�1 − a1, 1 − a2, 1 − a3, 1 − a4

− 1/2, − 1/2, 0, 1



+ C4G44
34	�− z�1 − a1, 1 − a2, 1 − a3, 1 − a4

− 1/2 0, 1, − 1/2 
 ,

�B10�

where q+1Fq��a�q+1 ; �b�q ;z� is higher hypergeometric func-
tion and

Gpq
mn	�z�a1, . . .an, an+1, . . .ap

b1, . . .bm, bm+1, . . .bq

 �B11�

is the Meijer G function.32 Leading asymptotic of the each
term at z→0 is

�5 =
C1

�z
�1 + O�z�� + zC2�1 + O�z��

+ C3
1
�z

1

2��
i=1

4

��ai − 1/2��log z + D + O�z��

+ C4�−
i�

2�z
�
i=1

4

��ai − 1/2� + O�1�� ,

D = 4� − 2 + 4 log 2 + �
i=1

4

��ai − 1/2� , �B12�

and � is the Euler constant. Hence from the boundary con-
ditions, Eq. �B6�, we find that C3=0 and

C1 = C4
i�

2 �
i=1

4

��ai − 1/2� . �B13�

Asymptotical behavior of the function 4F3 can be found from
Eq. 7.2.3.77 in the book,32 thus we obtain

4F3�a1,a2,a3,a4;b1,b2,b3;z�

�
�
i=1

3

��bi�

�
i=1

4

��ai�
�
k=1

4

�− z�−ak

��ak��
i=1

4

��ai� − ak�

�
i=1

3

��bi − ak�

, �B14�

if no two ak, k=1, . . . ,4, differ by an integer, the prime in the
product �i=1

4 ��ai�−ak� means that the term with i=k is ab-
sent. Thus we obtain

z4F3	a1 + 1,a2 + 1,a3 + 1,a4 + 1;
5

2
,
5

2
,2;z


� −
�2�5/2�

�
i=1

4

��ai + 1�

� ��− z�−a4
��a4 + 1���a1 − a4���a2 − a4���a3 − a4�

�2	3

2
− a4
��1 − a4�

+ �3 cyclic permutations 1 → 2 → 3 → 4 → 1� .

�B15�

Similarly, for the Meijer G function we use Eq. 8.2.1.4 in the
book32 to find the asymptotic at large z,

Gpq
mn	�z�a1, . . .an, an+1, . . .ap

b1, . . .bm, bm+1, . . .bq



� �
k=1

n

zak−1

�
i=1

n

��ak − ai���
i=1

m

��1 + bi − ak�

�
j=m+1

q

��ak − bj� �
j=n+1

p

��1 + aj − ak�

,

�B16�

if no two ak, k=1, . . .n, differ by an integer.
In our case we obtain

GAMAYUN, GORBAR, AND GUSYNIN PHYSICAL REVIEW B 80, 165429 �2009�

165429-12



G44
34	− z�1 − a1, 1 − a2, 1 − a3, 1 − a4

− 1/2 0, 1, − 1/2
�
 � �− z�−a4

��a1 − a4���a2 − a4���a3 − a4���a4���1 + a4���a4 − 1/2�
��3/2 − a4�

+ �3 cyclic permutations 1 → 2 → 3 → 4 → 1� . �B17�

Hence the function �5�z� behaves at z→� as

�5�z� = �
i=1

4

Aiz
−ai�1 + O�1/z�� ,

Ai = �− 1�−ai�− C4�
2 cot��ai� − C2

�2�5/2�

�
i=1

4

��ai + 1�Fi,

�B18�

where

Fi =
��aj − ai���ak − ai���al − ai���1 + ai�

�2�3/2 − ai���1 − ai�
, k � l � j � i .

�B19�

The UV boundary conditions lead to the following equations:

A1�1 − ��z−�/4 + A2�1 + ��z�/4 − A3�1 + 3�̃�z−1/2−3�̃/4

− A4�1 − 3�̃�z−1/2+3�̃/4 = 0, �B20�

A1�1 − ��z−�/4 + A2�1 + ��z�/4 + A3
3

2
�3 + �̃�z1/2−3�̃/4

+ A4
3

2
�3 − �̃�z1/2+3�̃/4 = 0, �B21�

where z="2 / p0
2. This system of equations does not have so-

lutions for  
1 /4. Near the critical value,  $1 /4, we can

neglect the terms with A3, then we get A4=0 and

A1�1 − i��z−i�/4 + A2�1 + i��zi�/4 = 0, � = − i� .

�B22�

This gives

C2
�2�5/2�

�
i=1

4

��ai + 1�

= − C4�
2 cot�a4� , �B23�

and the equation

	−
"2

p0
2 
i�/2

= −
1 − i�

1 + i�

F1

F2

cot��a1� − cot��a4�
cot��a2� − cot��a4�

. �B24�

From this equation we get when ��1,

p0
2 = − "2 exp�−

4�n

�
+ a�, a � 7.14, n = 1,2, . . . .

�B25�

Comparing this result with Eq. �3.24� we see that the ap-
proximation that decouples the system, Eq. �3.17�, works
nicely near the critical coupling  c.
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