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Using configuration interaction-singles calculations of realistic models of conjugated polymers and by em-
ploying a mapping onto the single-particle Anderson model, we investigate the role of thermally induced static
disorder on the properties of excitons in conjugated polymers. We use poly�para-phenylene� as a model system,
where the off-diagonal disorder arises from fluctuations in the torsional angles and the diagonal disorder arises
from fluctuations in the local relative permittivity. We make the following observations and conclusions: �1�
disorder localizes excitons. The exciton localization length defines the exciton conjugation length. �2� Excitons
are randomly spatially localized along the chain, with the localization length generally increasing as the
excitation energy increases �up to the band center�. These define localization or conjugation segments. Gener-
ally, the conjugation segments overlap and are not spatially distinct. �3� Triplet excitons are more localized than
singlet excitons, because of their smaller band widths. �4� The standard deviation of the Gaussian random
disorder, �, satisfies ���T, where T is the temperature. �5� Mapping onto the Anderson model indicates that
the conjugation length, ���, scales as �����−2/3 at the edges of the band and �����−3/2 at the center of the
band. �6� The correlation length of the torsion angles in poly�para-phenylene� scales as �−2. Thus, there is no
direct quantitative correlation between exciton conjugation lengths and conformational disorder. �7� The ab-
sorption inhomogeneous line width scales approximately as �T. �8� For realistic values of disorder in
poly�para-phenylene� ����8 repeat units for the lowest excited singlet and increases to �20 repeat units at the
absorption maximum. The absorption line width is �0.5 eV. We use these results to draw further conclusions
about electronic processes in conjugated polymers.
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I. INTRODUCTION

A conjugated polymer is defined as a chain of molecular
repeat units whose � orbitals have nonzero resonance inte-
grals between their nearest neighbors. The nonzero reso-
nance integrals enable the � electrons to delocalize �or con-
jugate� along the chain. However, at a finite temperature a
one-dimensional conjugated polymer is necessarily physi-
cally disordered. As to be explained more fully shortly, this
disorder disrupts the electronic conjugation.

There are various kinds of physical disorder, including
thermally induced large amplitude, low-frequency fluctua-
tions in the torsional �or dihedral� angles between neighbor-
ing monomer units and small amplitude, higher frequency
intramonomeric vibrations. The former may be regarded as
being slow in comparison to electronic time scales, and thus
are responsible for static spatial disorder in the electronic
couplings. In contrast, the latter are not necessarily slow in
comparison to electronic time scales, and thus cause both
dynamical and spatial disorder in the electronic couplings.

In addition to physical disorder, as a consequence of the
synthesis process, conjugated polymers are also subject to
chemical substitution. Also, since a conjugated polymer ex-
ists in a liquid or solid-state environment, its electronic prop-
erties are determined by the spatial and dynamical fluctua-
tions of the environment. Typically, these will be thermally
induced or frozen density fluctuations that change the local
relative permittivity �dielectric constant�.

Disorder has important implications for the electronic
properties of conjugated polymers. As a consequence of a
polymer’s quasione dimensionality, any quasiparticle is ex-
ponentially localized. In a semiconducting polymer a quasi-
particle may simply be a doped charge, or, as is the focus of

this paper, it may be an exciton. In this paper we argue that
the length scale over which a particle remains phase coher-
ent, namely, the Anderson localization length,1 defines the
electronic conjugation length for that particle.

This definition of the conjugation length as a localization
length is different from the usual definition found in the lit-
erature �see, for example, Ref. 2 and 3�. Typically, the con-
jugation length is defined as the length scale between
‘breaks’ in the conjugation. The cause of such breaks are
often not precisely defined, but it is usually assumed that
there is some conformational defect in the polymer that
causes the resonance integrals to become smaller than a cer-
tain threshold. This picture implies that there is a direct as-
sociation between the physical conformation of the polymer
and its conjugated segments. However, since singlet excitons
can delocalize across defects via Coulomb induced resonant
exciton transfer, the validity of a threshold in the electronic
coupling is questionable.

The conjugation length controls many electronic proper-
ties in conjugated polymers. As a number of authors have
shown,4–8 the intermolecular exciton transfer integral is a
function of the ratio of the conjugation length, �, to the in-
termolecular separation, D. For conjugation lengths larger
than the intermolecular separation, the exciton transfer inte-
gral is a decreasing function of the conjugation length. This
property has implications for exciton migration. The ground-
state London dispersion interaction between polymer chains9

is also a function of � /D, scaling as �� /D�6 for ��D and as
�� /D�5 for ��D.

Disorder also controls the distribution of excited-state en-
ergy levels. This, in conjunction with the localization length
of the exciton as a function of energy, controls the photo-
physical properties of conjugated polymers, for example
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causing a temperature dependent inhomogeneous line width.
The observation that the exciton delocalization length is

not associated with spatial segmentation in a polymer was
made by Beenken and Pullerits10 via their quantum chemical
calculation on disordered polymers. Our definition of the
conjugation length as a localization length is consistent with
earlier work by Rissler11 and is equivalent to the definition
employed by Malyshev and Malyshev12 in their theoretical
investigation of exciton localization in aggregates. Other
work on the effects of conformational disorder in conjugated
polymers include that by Yaron et al.,13 who argued that a
stiffening of the torsional potential in the excited states ac-
counts for the asymmetry between the absorption and emis-
sion spectra of poly�para-phenyleneetheylene�, and van Aver-
beke and Beljonne,3 who studied its effects on exciton
transport. The role of dynamical dephasing on exciton local-
ization in aggregates has been investigated by Logan and
Wolynes.14

The goal of this paper is to address the effect of static
conformational and spatial disorder on the photophysical
properties of conjugated polymers. The plan of the paper is
as follows. We first study a realistic model of thermally in-
duced disorder in single chains of poly�para-phenylene�. We
calculate the excited states of the Pariser-Parr-Pople �P-P-P�
model for this polymer using the configuration interaction-
singles �CI-S� technique.15 Then using a mapping between
the CI-S amplitudes and the exciton two-particle wave
function16 we determine the spread of the center-of-mass
wave function. This defines the localization length. We con-
sider two sources of disorder: thermal fluctuations in the tor-
sion angle �i.e., off-diagonal disorder� and thermal fluctua-
tions in the relative permittivity �i.e., diagonal disorder�. We
find that singlet and triplet excitons have different conjuga-
tion lengths: a result that is interpreted via a study of the
Anderson model in Sec. III. We also make a preliminary
investigation of the effect of disorder on higher-lying excited
states.

Next, still using CI-S calculations of the Pariser-Parr-
Pople model, we consider model disorder and study the scal-
ing of the conjugation length with disorder. We also investi-
gate the correlation between conformational disorder �in this
case determined by the decay of the two-dimensional nem-
atic order parameter� and the localization length.

In Sec. III we map the Pariser-Parr-Pople model onto the
single-particle Anderson model. This procedure allows us to
study the electronic properties of much larger systems, in-
cluding the density of excited states and the optical absorp-
tion. In addition, it allows us to exploit the large wealth of
literature on Anderson localization. We also use this general
study to make predictions about the realistic model for
poly�para-phenylene� polymers introduced in Sec. II. Finally,
we summarize and make concluding remarks in Sec. IV.

II. CI-SINGLES STUDY

In the first part of this section the theoretical models and
techniques that are used to characterize exciton localization
are introduced. The second part describes the results for ex-
citon localization in poly�para-phenylene� chains.

A. Theoretical background

1. Pariser-Parr-Pople model

The Pariser-Parr-Pople �or extended Hubbard� model is a
�-electron model of conjugated polymers, defined by

Ĥ = �
i

�iN̂i − �
�ij��

�ij�ĉi�
† ĉj� + ĉj�

† ĉi�� , �1�

+ U�
i

�N̂i↑ − 1/2��N̂i↓ − 1/2� +
1

2�
i�j

Vij�N̂i − 1��N̂j − 1� ,

�2�

where � � represents nearest neighbors, ĉi�
† creates a � elec-

tron on site i, N̂i�= ĉi�
† ĉi�, and N̂i= N̂i↑+ N̂i↓.

��i	 and ��ij	 are the Hückel orbital and resonance one-
electron integrals, respectively. Conformational and environ-
mental disorder causes spatial and temporal fluctuations in
these parameters.

We use the Ohno parameterization for the Coulomb inter-
action, defined by

Vij = U/�1 + �U�rrij/14.397�2, �3�

where rij is the interatomic distance �in Å�, U is the on-site
Coulomb interaction �in eV�, and �r is the relative permittiv-
ity. This interaction is an interpolation between an on-site
Coulomb repulsion, U, and a Coulomb potential, e2 /4���0rij
as rij→	.

Throughout we use the screened parameter set derived by
Chandross and Mazumdar17 to account for solvation effects.
These parameters are U=8 eV and �r=2, with tp=2.4 eV
and ts=2.2 eV.

2. Definition of exciton conjugation lengths

The simplest description of an exciton in a conjugated
polymer is of an electron excited from a set of occupied
molecular orbitals �or a valence band� to a set of unoccupied
molecular orbitals �or a conduction band� being Coulomb-
ically bound to the hole that it leaves behind.18–20 This de-
scription is also the most relevant for light-emitting poly-
mers. In this picture an exciton is a two-particle object,
which �to a good approximation in polymers� is described by
two one-particle objects, namely, the center-of-mass particle
and the relative particle.

As shown in Ref. 16, there exists a direct mapping from
the CI-S amplitudes to the real-space wave function, 
�r ,R�,
defined within an appropriately chosen local basis.21 Here, R
is the center-of-mass coordinate and r is the relative coordi-
nate. 
�r ,R� can be factorized as,


nj�r,R� = �n�r�� j�R� , �4�

where �n�r� is the relative wave function describing the
electron-hole pair, and labeled by the principle quantum
number n. � j�R� is the center-of-mass wave function de-
scribing the delocalization of the bound pair, and labeled by
the pseudomomentum quantum number j.

The exciton wave function serves to define the exciton
probability density function,

WILLIAM BARFORD AND DAVID TREMBATH PHYSICAL REVIEW B 80, 165418 �2009�

165418-2



P�r,R� =

2�r,R�

�r,R
2�r,R�
, �5�

for the electron-hole separation, r, and position, R.
The size of the electron-hole pair is defined by 2rrms


2��r2�− �r�2, where

�rn� = �
r,R

P�r,R�rn. �6�

As shown in Fig. 12 of Ref. 16 for poly�para-phenylene�, the
electron-hole pair is spread over ca. two phenyl repeat units
for the n=1 family of excitons �the lowest member being the
1Bu state�. For the n=2 family of excitons �the lowest mem-
ber being the 2Ag state� the electron-hole pair is spread over
ca. six phenyl repeat units.

Of interest in this paper, however, is the delocalization of
the electron-hole pair, i.e., the center-of-mass particle. This is
described by the spread of the center-of-mass wave function.
Thus, we define the exciton localization length, �, as

� = 2Rrms 
 2��R2� − �R�2, �7�

where

�Rn� = �
r,R

P�r,R�Rn. �8�

Since the localization length is the length scale over which
the exciton retains phase coherence, we argue that the local-
ization length is precisely the exciton conjugation length.
With this definition, therefore, the exciton conjugation length
is not directly related to the local electronic couplings, unlike
the definition used in Ref. 3.

For an ordered polymer � satisfies the particle-in-the-box
behavior, defined by

� = N��2j2 − 6

3�2j2 , �9�

where N is the number of monomers. However, any disorder
in one dimension will localize the exciton. The mean center-
of-mass coordinate, �R�, therefore defines the center of the
conjugated segment, while � defines its size.

3. Wave-function mapping

The real-space exciton wave function can be obtained di-
rectly from a CI-S calculation.16,22 The general CI-singles

state, �
1
3 �SCI�, is defined as

�
1
3 �SCI� = �

i�occupied

j�unoccupied

�i
j�

1
3 �i

j� , �10�

where the spin-adapted configuration function is

�
1
3 �i

j� =
1
�2

�âj↑
† âi↑ 
 âj↓

† âi↓��HF� �11�

and �i
j are the configuration function amplitudes. The

Hartree-Fock ground state, �HF�, is defined by

�HF� = �
i�occupied

âi↑
† âi↓

† �0� , �12�

where âi�
† creates an electron in the Hartree-Fock molecular

spin orbital, �i��r�.
The mapping between the CI-singles amplitudes, �i

j, to
the two-dimensional exciton wave function, 
�r ,R�, is de-
scribed in Ref. 16. To briefly summarize, for a two-band
system consisting of occupied orbitals i�v and unoccupied
orbitals j�c,


�r,R� = �
i�v

�
j�c

�R−r/2,i
v �i

j�R+r/2,j
c , �13�

where �v and �c perform a unitary transformation between
the Hartree-Fock delocalized molecular orbitals and local-
ized Wannier functions.

In this paper we are interested in the low-lying �n=1�
excitons of poly�para-phenylene� �belonging to the A and B1
irreducible representations for ordered chains�. These are
predominately caused by particle-hole excitations between
the highest band of occupied orbitals of a and b1 symmetry
and the lowest band of unoccupied orbitals, also of a and b1
symmetry. �These bands are labeled 3 and 4 in Fig. 9 of Ref.
16.� For these bands the transformation functions are

�R,i
v =� 2

N + 1
sin
��N − i + 1�R

N + 1
� , �14�

and

�R,j
c =� 2

N + 1
sin
 �jR

N + 1
� , �15�

where N is the number of phenyl rings. This transformation
means that the exciton is now predominately described as a
particle-hole excitation from the highest occupied bonding
phenyl-ring molecular orbital to the lowest unoccupied bond-
ing phenyl-ring molecular orbital �labeled 3 and 4 in Fig. 10
of Ref. 16�.

4. Origins of off-diagonal disorder

The resonance integral between �-orbitals on neighboring
rings i and j is approximately given by

�ij = �0 cos �ij , �16�

where �ij is the torsion angle between the neighboring rings.
Thus, for small fluctuations in torsion angle, defined by
��ij = �� j −�i���0,

�ij � �0 cos �0 + ��ij , �17�

where

��ij = − ��ij�0 sin �0. �18�

The torsional potential, V���, for a biphenyl molecule is
shown in Fig. 1. Close to the global minimum we may ex-
pand V��� as

V��� = V0 +
1

2
K�� − �0�2 + ¯ , �19�

where
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K = 
 �2V

��2�
�=�0

. �20�

The probability that the torsion angle lies between � and
�+d� is

P��� =
exp�− V���/kBT�

�0
2�exp�− V���/kBT�d�

. �21�

The height of the potential barrier shown in Fig. 1 is �4kBT,
and therefore it is reasonable to assume that thermal fluctua-
tions only access the harmonic part of the potential close to
�0. Then, using Eq. �19� in Eq. �21�,

P��� � 
 K

2�kBT
�1/2

exp�− K�� − �0�2/2kBT� , �22�

and thus � is a normally distributed random variable with a
standard deviation

�� = 
 kBT

K
�1/2

. �23�

According to Eq. �8�, therefore, the resonance integral �ij
is also a normally distributed random variable whose stan-
dard deviation increases as �0 increases,

�� = �0 sin �0
 kBT

K
�1/2

. �24�

Using the computational results shown in Fig. 1, we find
that �0=420 and K=1.13 eV rad−2, implying that ��

=0.151 rad at 298 K.

5. Origins of diagonal disorder

Fluctuations in the Hückel Coulomb integral, �, is the
origin of diagonal disorder in the Pariser-Parr-Pople model.

To a reasonable approximation we may assume that the va-
lence electrons experience a 1 /r Coulomb potential with a
screened nuclear charge, implying that the Virial theorem is
valid. Thus,

� � −
1

2

 e2

4��r�0�r�� , �25�

where �r is the relative permittivity �dielectric constant� of
the surrounding medium and �r� is the expectation value of
the electron radius.

Now, in the continuum limit,24

�r =
1 + 2��

1 − ��
, �26�

where �� is proportional to the mass density, �, of the dielec-
tric. Thus, thermal fluctuations in the density of the dielectric
cause fluctuations in the relative permittivity. Using Eqs. �25�
and �26� and the relation ��d−3, where d is the mean solvent
molecular separation, we have

��

�
= 2

��r − 1���r + 2�
�r


�d

d
� . �27�

Assuming a harmonic approximation for the intermolecular
interactions, the relative thermal fluctuations in the intermo-
lecular separation are

�d

d
=

�kBT/C
d

, �28�

where C is the elastic constant. For a Lennard-Jones poten-
tial,

V�d� =
A

d12 −
B

d6 , �29�

the elastic constant is

C = 18
B2

A
�
 B

2A
�1/3

. �30�

For benzene at room temperature, �r=2.27 and using the
tabulated Lennard-Jones parameters25 we find �d /d�10%.
Thus, from Eq. �27�, �� /��25% The ionization potential
�i.e., �� of the outer carbon electron is 11.3 eV in vacuo.
Hence, � for a � electron in a benzene solvent is �5 eV,
and therefore ��
���1.2 eV. Similarly, for water at room
temperature with �r=78 and �d /d�5%, we find that ��

�0.6 eV.

6. Characterizing conformational disorder

One of the goals of this work is to establish whether there
exists a direct correlation between the conformational disor-
der of a polymer and its conjugation lengths. There are vari-
ous means to describe conformational disorder in a polymer
�see, for example, Ref. 26�. As fluctuations in the torsional
angles of poly�para-phenylene� cause off-diagonal disorder
in our model system, we determine the degree of conforma-
tional disorder via the correlation of the torsional angles.

Rotations of the phenyl ring by � radians are invariant, so
correlations of the phenyl rings separated by j repeat units

-463.305

-463.304

-463.303

-463.302

-463.301

-463.300

-462.299

0 40 80 120 160

Torsion angle (degrees)

(Hartrees)

FIG. 1. The torsional potential, V���, for biphenyl determined
by the B3LYP DFT functional with the 6–31G�d� basis supplied by
GAUSSIAN �Ref. 23�.
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are characterized by the two-dimensional nematic order pa-
rameter, namely,

P2�j� =
1

N
�

i

N
1

2
�2 cos2 �i,i+j − 1� . �31�

Using our model Gaussian disorder, Fig. 2 shows that the
nematic order decays almost exponentially with the separa-
tion between phenyl rings. Using the nematic correlation
length, �2���, extracted from Fig. 2, the inset of Fig. 2 shows
that �2��� scales with disorder as �2������

−2.0. As shown in
Sec. III, this scaling behavior is different from that of the
localization lengths.

B. Results

1. Realistic disorder

We now turn to discuss the exciton conjugation lengths in
poly�para-phenylene� for realistic estimates of disorder for
polymers in a hydrocarbon solvent. CI-S calculations of the
Pariser-Parr-Pople model are performed using an efficient
Direct-CI method.16,27 We use the parameters derived in
Secs. II A 4 and II A 5, namely, �0=420, K=1.13 eV rad−2,
��=0.151 rad,, and ��=0.5–1.0 eV. We consider the n=1
family of excitons.

Figure 3 shows the localization length, ���, averaged over
40 realizations of the disorder versus the inverse chain length
�where the angular brackets mean an average over disorder
and N is the number of phenyl rings�. These results are for
the lowest excited singlet and triplet excitons. For fixed off-
diagonal disorder, the localization length decreases as the

diagonal disorder increases. The error bars on the ��

=0.5 eV singlet exciton result indicate the large fluctuations
in the localization length for a particular realization of the
disorder. In general, �����O�����.

For a realistic value of ���0.5 eV the converged singlet
localization length is �10 repeat units. The triplet localiza-
tion length is considerably smaller, being �2–3 repeat units.
As explained in Sec. III, this difference can be understood
via the single parameter scaling theory derived from an
analysis of the Anderson model. Generally, the localization
length satisfies �����D /W�−�, where D and W are the energy
scales for the disorder and the exciton band width, respec-
tively, and � is an energy-dependent exponent. When ��=0
the disorder energy scale is the same for both singlet and
triplet excitons. However, the singlet exciton band width is
larger, as singlets delocalize by both charge-transfer mecha-
nisms and Coulomb induced resonant exciton transfer, while
triplets only delocalize via charge-transfer mechanisms. A
theoretical analysis of these mechanisms will be given in
Sec. III. For now, we make a computational estimate of the
exciton band width by assuming that the excitation energy
satisfies the particle-in-the-box expression,

�Ej = E	 − 2�exciton cos
 �j

�N + 1�� , �32�

where Wexciton=4�exciton. Equating ��E2−�E1� with the dif-
ference in excitation energies between the two lowest exci-
tations as a function of N and extrapolating to N→	 implies
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= 0.4

= 0.5

= 0.6

1

10

100

0.1 1(radians)

FIG. 2. The statistical correlation of the torsion angles, showing
that the two-dimensional nematic order parameter, P2�j��exp�
−j /�2����, where j is the separation between rings. The inset shows
that �2������

−2.0.

0

5

10

15

20

25

0.02 0.04 0.06 0.08 0.1

1/N

FIG. 3. The exciton localization length, ���, in units of the re-
peat distance versus the inverse chain length �where N is the num-
ber of phenyl rings� averaged over 40 realizations of the disorder.
Singlets �filled symbols and solid curves� and triplets �empty sym-
bols and dashed curves�. �0=420 and ��=0.151 rad; ��=0
�circles�, ��=0.5 eV �triangles�, and ��=1.0 eV �diamonds�. The
standard deviation of ��� at N=60 when ��=0.5 eV is 4.5 repeat
units, while the standard error of the mean is 0.7 repeat units. For
the ordered chain �crosses and dashed curve� � satisfies the particle-
in-the-box expression, �=N���2−6� /3�2.
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that �exciton=3.72 eV for singlets, while �exciton=0.86 eV
for triplets. These results will be used in Sec. III to map the
Pariser-Parr-Pople model onto the Anderson model.

Figure 4 shows the disorder averaged excitation energy of
the lowest singlet and triplet excitons versus inverse chain
length for ��=1 eV. In comparison to the excitation ener-
gies in an ordered chain, which exhibits 1 /N2 scaling as N
→	, the disordered chains appear to exhibit 1 /N scaling.
This result, however, is an artifact of the particular param-
eters used and the small range of length scales. The correct
scaling behavior is discussed in Sec. III.

We now turn to a preliminary discussion of the effect of
disorder on the higher-lying excited states. Figure 5 shows
the energy spectrum and localization lengths of singlet ex-
cited states for two particular realizations of the disorder for
a 50-ring chain. Figure 5�b� in particular shows a number of
interesting features. First, the localization length generally
increases as the excitation energy increases. Second, al-
though the mean position of the excitons is on different parts
of the chain, the localization lengths generally overlap. We
interpret these regions as localization or conjugation seg-
ments. We therefore see that it is not reasonable to assume
spatially separate conjugated segments �as is the usual as-
sumption�.

Finally, Fig. 5�b� shows the oscillator strengths �normal-
ized relative to the lowest-lying singlet�. The behavior is
quite different to that of an ordered chain, where the oscilla-
tor strength is predominately carried by the lowest-lying ex-
citon. For a disordered chain, in contrast, a number of states
have significant oscillator strength. The center-of-mass wave
functions, � j�R�

n=1,j�r=0,R�, of a number of excitations
are shown in Fig. 6. The four lowest states are spatially quite
separate, with small probability amplitudes in the vicinity of
the nodes of their wave functions. This picture conforms to
the concept of “local ground states” proposed by Malyshev
and Malyshev.12 However, the 9th. excitation violates this

concept, as it also has a large oscillator strength, but its wave
function overlaps those of the lowest four excitations. The
role of disorder on the inhomogeneous line width is de-
scribed in Sec. III.

2. Model disorder

In this section we treat the disorder in the torsion angle as
a model parameter. To represent the average torsion angle in
the solid state, we set �0=27.40. Diagonal disorder is ne-
glected.

Figures 7 and 8 show the average localization length, ���,
for the lowest-lying singlet and triplet exciton, respectively.
These results are obtained by averaging over 40 realizations
of the disorder. As found before, increased disorder increases
the localization and the triplet excitons are more localized
than the singlet excitons.

For ���0.3 rad ��� has converged at 60 rings for the
singlet excitons. These converged results are plotted against
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FIG. 4. Lowest-lying singlet �circles� and triplet �squares� exci-
tation energies for poly�para-phenylene� versus inverse chain length
�where N is the number of phenyl rings�. ��=0.151 rad and ��

=1.0 eV �solid curves�, ordered chain �dashed curves�.
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FIG. 5. Singlet excitation energies, localization lengths and os-
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=0.151 rad and ��=1.0 eV. Lengths are in units of the repeat
distance. The horizontal bars may be interpreted as energy-
dependent conjugated segments.
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�2��� in Fig. 9, showing a qualitative correlation between
conformational disorder and the conjugation length. The
range of length scales is too small in these calculations to
obtain a scaling relation. However, as discussed in Sec. III,
��� is expected to scale as ��

−2/3 for the lowest-lying exciton,
whereas �2��� scales as ��

−2. Thus, any correlation between
conformational disorder and conjugation lengths is only
qualitative.

We conclude this section by noting that excited states pla-
narize the molecule and change the stiffness of the torsional
potential, which in turn alters the off-diagonal disorder.

Competing with that effect is the intrinsic self-trapping of the
exciton. Thus, the affect on exciton localization of electron-
lattice coupling is a subtle one, and under current investiga-
tion.

III. ANDERSON MODEL STUDY

The computational expense of the CI-S method means
that it is only possible to study the effects of disorder in
poly�para-phenylene� chains of up to 100 repeat units. Al-
though this is long enough to make reasonable predictions of
realistic conjugations lengths, it is too short to make any
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FIG. 6. The exciton center-of-mass wave function, � j�R�, for
some of the excitons shown in Fig. 5�b�.
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scaling predictions. Furthermore, it is not possible to perform
many ensemble averages over excited states to determine the
photophysical properties. However, since we are largely con-
cerned with the electronic properties arising from the delo-
calization of the center-of-mass particle, further insight can
be achieved by mapping the Pariser-Parr-Pople model onto
an effective one-particle Hamiltonian. In the context of dis-
order, this model is generally known as the Anderson
model.1

A. Effective exciton Hamiltonian

The goal of this section is to derive an effective low-
energy exciton Hamiltonian starting from the Pariser-Parr-
Pople Hamiltonian. To achieve this goal it is convenient to
partition the Pariser-Parr-Pople Hamiltonian into an
intraphenyl-ring component, Hintra, and an interphenyl-ring
component, Hinter,

H = Hintra + Hinter. �33�

The Hilbert space of particle-hole excitations is spanned
by the basis functions16 ��m ,�m�	, which represent a particle
excited from a localized occupied basis state on the phenyl
ring at �m−�m /2� to a localized vacant basis state on the
phenyl ring at �m+�m /2�. As shown in Fig. 12 of Ref. 16,
the lowest family of excitons �i.e., n=1� consist of particle-
hole excitations whose average particle-hole separation is ap-
proximately one to two phenyl rings. For these family of
excitons, therefore, we may assume to zeroth order that the
Hilbert space is spanned by the basis functions ��m ,0�	. We
will describe this family of excitons as intraring excitations
�or Frenkel excitons�. The basis functions ��m ,�m�	 describe
charge-transfer excitons separated by �m repeat units.

The intraring excitations are described by Hintra, while
Hinter describes interring excitations, as well as the delocal-
ization of excitations along the polymer chain. There are two
components of Hinter that result in different mechanisms for
delocalization of the intraring excitations.

First, the kinetic-energy term of Hinter leads to nearest-
neighbor hopping via a virtual excited state corresponding to
charge transfer between neighboring rings �i.e., to the basis
functions ��m ,1�	�. The energy scale for this is

�exciton
KE =

�̃2

Ũ 
 J̃ − Ṽ
, �34�

where the tilde refers to molecular-orbital parameters derived

from the Pariser-Parr-Pople model parameters. Ũ and Ṽ are
the Coulomb repulsion between a pair of electrons on the

same ring and neighboring ring, respectively, while �̃ is the
highest occupied molecular orbital–lowest unoccupied mo-

lecular orbital phenyl-ring hybridization integral. 2J̃ is the
spin-exchange interaction, where the positive sign refers to
triplets and the negative sign refers to singlets. Thus, as a
consequence of their stronger electron-hole binding, the ef-
fective delocalization energy, �exciton

KE , is smaller for triplets.
The second component of Hinter, namely, the Coulomb

potential, causes long-range exciton delocalization via reso-

nant exciton transfer. For the lowest family of excitons the
transition dipole moments are oriented along the molecular
axis. Thus, within the point-dipole moment approximation,

�exciton
PE =

2�1

Rij
3 , �35�

where �1 is the transition dipole moment for the intramo-
lecular excitation and Rij is the distance between rings i and
j. Since �1 vanishes for triplet excitations, this is a second
reason why the overall exciton delocalization integral,

�exciton = �exciton
KE + �exciton

PE , �36�

is smaller for triplet excitons than for singlet excitons, as
confirmed by the computational result given in Sect. II B 1.
The exciton bandwidth is 4�exciton.

B. Localization in the effective exciton Hamiltonian

The delocalization of the exciton center-of-mass particle
is described by the single-particle Anderson model �or disor-
dered Hückel model�, defined for open systems by

H = �
n=1

N

�n�n��n� − �
n=1

N−1

��n��n��n + 1� + �n + 1��n��	 , �37�

with �n defined by Eq. �36�. Here, the site index n is equiva-
lent to the repeat unit index m of the Pariser-Parr-Pople
model.28 The properties of Eq. �37� have been extensively
studied in one and higher dimensions. It is well established
that in one dimension disorder causes exponential localiza-
tion of the particle wave function �see Ref. 29 for a review�.

In the present work ��n	 and ��n	 are taken to be Gaussian
random variables, with mean values of �=1 and �=4, and
standard deviations of �� and ��. The groundstate of Eq.
�37� corresponds to the lowest-lying exciton, while its exci-
tations correspond to higher-lying excitons.

Since for triplet excitons the bandwidth is determined by
the value of �ij in the P-P-P model, we can make a direct
connection between this model and the realistic parameters
used in Sec. II B 1. There, we took �0=420 and ��

=0.151 rad. Now, according to Eqs. �17� and �8�,


D

W
�

P-P-P model

 ���ij

�0
� = ��ij tan �0 
 �� tan �0.

�38�

However, from the discussion above on effective triplet ex-
citon band widths �see Eq. �34��, we see that


��

�
�

exciton model
= 2
��

�
�

P-P-P model
, �39�

and thus,


��exciton

triplet

�exciton
triplet � = 2�� tan �0 = 0.272. �40�

For the singlet excitons, however,
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��exciton

singlet

�exciton
singlet � = 
�exciton

triplet

�exciton
singlet �
��exciton

triplet

�exciton
triplet � = 0.065, �41�

using the values of �exciton
singlet and �exciton

triplet from Sec. II B 1. Thus,
defining all energy scales in the Anderson model by either
�exciton

singlet or �exciton
triplet �i.e., setting �exciton

singlet =�exciton
triplet =�=1�, the di-

mensionless realistic values of the off-diagonal disorder are
��

triplet=0.272 and ��
singlet=0.065.

1. Lowest excited-state exciton properties

The lowest excited-state exciton corresponds to the
ground state of Eq. �37�. This is computed via sparse-matrix
diagonalization �e.g., the conjugate gradient method30�. As
before, the size of the single-particle wave function, �
=2�R, is taken as a measure of the delocalization length.
Taking ��=0.272 on a 60-site chain �to model the triplet
excitons on a 60-ring poly�para-phenylene� chain� gives ���
=3.4, while taking ��=0.065 �to model the singlet excitons�
gives ���=8.9. These results are remarkably consistent with
the CI-S analysis shown in Fig. 3, confirming the validity of
the mapping onto the Anderson model.

Figure 10 shows ��� versus the inverse number of sites, N,
for various values of the disorder in � averaged over 1000
realizations of the disorder. Evidently, ��� shows a maximum
value as a function of 1 /N. Defining this maximum value as
���max, the inset of Fig. 10 shows that ���max=1.14��

−2/3, in
agreement with Ref. 12. �The same scaling is also obtained if
the value of ��� obtained by extrapolating to N→	 is used.�
A calculation for various values of the disorder in � shows
that ���max=2.28��

−2/3

Figure 11 shows the groundstate energy as a function of
1 /N averaged over 10 000 realizations of the disorder. For
the weakest disorder E�N� appears to show 1 /N2 scaling. For
the strongest disorder, however, there is a clear change in
curvature for large N, while there is �1 /N scaling for inter-
mediate chain lengths. This downward curvature in energy is
because in the asymptotic limit particles can explore regions
of the chain of the size of the localization length where lo-
cally the values of ��n	 are all increased from the average,
thus decreasing their kinetic energy. A single parameter scal-
ing is still relevant, as by an appropriate scaling the data
collapses onto a universal curve. We define a scaled devia-
tion in energy from the ordered chain as,

�Ẽ =
�E��

GS�N� − E��=0
GS �N��

��Erms����max��
, �42�

where ��Erms����max�� is the disorder averaged root-mean-
square deviation in the ground-state energy at N= ���max.

Then, as the inset to Fig. 11 shows, �Ẽ is a universal func-
tion of the scaled inverse length, namely, ���max /N. We note
that exciton emission energies will not necessarily show this
behavior, as the radiative lifetime of the exciton is too short
for it to explore all the energetically favorable conjugation
segments. A full study of the emission spectrum requires a
detailed kinetic simulation that lies outside the scope of this
paper.

2. Excited state exciton properties

Equation �37� is a useful model for investigating the pho-
tophysical properties of conjugated polymers. Excited states
are easily calculated in this one-particle Hamiltonian,31 lead-
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ing to a calculation of �Rj� and � j for the excited state j.
Oscillator strengths are also easily evaluated, as the transi-
tion dipole moment of the jth state for N sites is8,10

� j = �1�
n=1

N

� j�n� , �43�

where �1 is the transition dipole moment for the intramo-
lecular excitation and � j�n� is the single-particle wave func-
tion.

The optical absorption, I�E�, is defined by

I�E� = �
j

f j��E − Ej� �44�

where the oscillator strength is

f j � Ej� j
2 �45�

and normalized such that

�
j=1

N

f j = N . �46�

Figure 12 shows the normalized optical absorption, I�E�,
for N=10 000 averaged over 10 realizations of the disorder.
Here, ��=0.04 and ��=0. This value of �� is chosen be-
cause for long chains it predicts a localization length for the
lowest exciton of eight repeat units, in good qualitative
agreement with Sec. II B 1.

The figure shows that the initial increase in I�E� is asso-
ciated with the increase in the density of states, ��E�. Indeed,
the density of states shows a distribution that qualitatively

justifies the Gaussian random disorder model,32 and is quite
different from that of an ordered chain in which

��E� =
1

��4�2 − Ej
2�1/2 , �47�

where

Ej = � − 2� cos
 �j

�N + 1�� �48�

and ��E� is normalized such that

� ��E�dE = 1. �49�

As shown in Fig. 13, the inhomogeneous line width �de-
fined as twice the standard deviation of the optical absorp-
tion� scales as ����3.2��

0.96 �in units of ��. Since for ther-
mally induced disorder, ���T, we therefore predict that the
inhomogeneous line width should approximately scale as �T.
It is also instructive to use this model to predict the line
width in poly�para-phenylene�. Using ��=0.04 gives ���
=0.14�, and setting �=�exciton

singlet =3.72 eV �as derived in Sec.
II B 1� gives ����0.5 eV at 298 K.

Figure 12 also shows the energy-dependent localization
lengths. At the onset of the absorption ����8, while at the
absorption peak ����20. This increase of localization length
with energy is consistent with the CI-S study shown in Fig.
5�b�. It also suggests that a high-lying exciton �whether pho-
toexcited or formed via electron-hole recombination� relaxes
energetically by migrating to conjugated segments of pro-
gressively shorter lengths. This is in contrast to the received
wisdom that excitons relax by migrating to longer conju-
gated segments.

The full energy dependence of the localization length is
shown in Fig. 14. At the band edges this calculation confirms
our earlier prediction that ������

−2/3, while near the band
center ������

−3/2, in agreement with localization lengths de-
rived from the Lyapunov exponent.29
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FIG. 12. Results for excited states of the Anderson model with
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malized such that �I�E�dE=1 �filled circles�; density of states, ��E�,
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IV. CONCLUSIONS

Using CI-S calculations of realistic models of conjugated
polymers and by employing a mapping onto the single-
particle Anderson model, this paper has described the role of
thermally induced static disorder on excitons in conjugated
polymers. We make the following observations:

�1� disorder localizes excitons. The exciton localization
length defines the exciton conjugation length;

�2� excitons are randomly spatially localized along the
chain, with the localization length generally increasing as the
excitation energy increases �up to the band center�. These
regions define localization or conjugation segments. Gener-
ally, the conjugation segments overlap and are not spatially
distinct. �This trivially explains why intrachain exciton mi-
gration is more efficient in more ordered chains.�

�3� Triplet excitons are more localized than singlet exci-
tons because of their smaller band widths;

�4� within the harmonic approximation, the standard de-
viation of the Gaussian random disorder satisfies ���T,
where T is the temperature;

�5� mapping the Pariser-Parr-Pople model onto the Ander-
son model indicates that the conjugation length, ���, scales as
�����−2/3 at the edges of the band and �����−3/2 at the
center of the band.

�6� the correlation length of the torsion angles in
poly�para-phenylene� scales as �−2. Thus, there is no direct
quantitative correlation between localization lengths and
conformational disorder;

�7� the absorption inhomogeneous line width scales ap-
proximately as �T; and

�8� for realistic values of disorder in poly�para-phenylene�
����8 repeat units for the lowest excited singlet and in-
creases to �20 repeat units at the absorption maximum. The
absorption line width is �0.5 eV.

An important conclusion that can be drawn from this
work is that our assumption that the exciton localization
length defines its conjugation length leads to a quite different
description of exciton dynamics in conjugated polymers. Ac-
cording to the usual assumption that conjugated segments are
spatially distinct, each supporting a local energetic spectrum
of excited states, a high-lying exciton will typically migrate
through the polymer by hopping to different spatial regions
with increasing conjugation lengths. In our picture, on the
other hand, conjugated segments are energetically distinct,
but in general spatially overlapping. In this case a high-lying
exciton will migrate through the polymer by energetically
relaxing to conjugated segments that may spatially overlap
its initial segment. Furthermore, as it relaxes it will get more,
not less localized. These different scenarios can in principle
be distinguished by experimental studies of exciton dynam-
ics or by the temperature dependency of the inhomogeneous
line widths. For example, if we assume that the exciton con-
jugation length, �, is a conformational persistence length,
then is it easy to show that

�E

E
� 
��

�
�1

�
, �50�

for 1���	, and

�E

E
� 
��

�
� 1

�2 , �51�

as �→	. Thus, in the case of two-dimensional nematic or-
der, where ��=�2� and ���−2�T, �E /E�T2 as T→0,
while �E /E�T as T→	.

Finally, we note that this study has only considered static
disorder. Temporal disorder, as well as exciton self-trapping,
is also responsible for exciton localization, and these are un-
der current investigation.
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