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The accuracies of two theoretical expressions for thermal boundary resistance are assessed by comparing
their predictions to independent predictions from molecular dynamics �MD� simulations. In one expression
�RE�, the phonon distributions are assumed to follow the equilibrium, Bose-Einstein distribution, while in the
other expression �RNE�, the phonons are assumed to have nonequilibrium, but bulk-like distributions. The
phonon properties are obtained using lattice dynamics-based methods, which assume that the phonon interface
scattering is specular and elastic. We consider �i� a symmetrically strained Si/Ge interface, and �ii� a series of
interfaces between Si and “heavy-Si,” which differs from Si only in mass. All of the interfaces are perfect,
justifying the assumption of specular scattering. The MD-predicted Si/Ge thermal boundary resistance is
temperature independent and equal to 3.1�10−9 m2-K /W below a temperature of �500 K, indicating that the
phonon scattering is elastic, as required for the validity of the theoretical calculations. At higher-temperatures,
the MD-predicted Si/Ge thermal boundary resistance decreases with increasing temperature, a trend we at-
tribute to inelastic scattering. For the Si/Ge interface and the Si/heavy-Si interfaces with mass ratios greater
than two, RE is in good agreement with the corresponding MD-predicted values at temperatures where the
interface scattering is elastic. When applied to a system containing no interface, RE is erroneously nonzero due
to the assumption of equilibrium phonon distributions on either side of the interface. While RNE is zero for a
system containing no interface, it is 40%–60% less than the corresponding MD-predicted values for the Si/Ge
interface and the Si/heavy-Si interfaces at temperatures where the interface scattering is elastic. This inaccu-
racy is attributed to the assumption of bulk-like phonon distributions on either side of the interface.
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I. INTRODUCTION

A. Background

The scattering of thermal energy carriers �i.e., electrons
and phonons� at an interface between two solids results in a
thermal boundary resistance.1 An ability to accurately predict
thermal boundary resistance �or its inverse, the thermal
boundary conductance� is valuable in the thermal analysis of
devices where the average distance between nonmetal/
nonmetal or metal/nonmetal interfaces is on the same scale
as the carrier mean free paths. For example, the distance
between interfaces in the active region in semiconductor la-
sers and light-emitting diodes is 1–10 nm.2,3 The ability to
predict thermal boundary resistance will also lead to im-
provements in the design of semiconductor superlattices �pe-
riodic nanostructures containing many interfaces� with low-
thermal conductivity for thermoelectric energy conversion
applications.4,5

The most commonly applied theoretical models for pre-
dicting thermal boundary resistance are the acoustic mis-
match model �AMM� and the diffuse mismatch model
�DMM�.1,6 At temperatures less than �30 K, the AMM and
DMM predict similar values for the thermal boundary resis-
tance that are in reasonable agreement with experimental
measurements.1 At typical application temperatures, how-
ever, assumptions in the AMM and DMM make their predic-
tions inaccurate. Both models assume that the thermal trans-
port is dominated by phonons, which is valid for interfaces
between dielectrics or lightly doped semiconductors. There
are differing views, however, on the role of electron-phonon
coupling at metal/dielectric interfaces,7–9 to which all of the

experimental data correspond due to metrological limita-
tions. In the DMM, the phonon interface scattering is as-
sumed to be diffuse �i.e., the incident phonon loses all
memory of its direction and polarization� while the AMM
assumes that there is no probability of diffuse scattering �i.e.,
specular scattering�. The actual degree of specular and dif-
fuse scattering is dependent on the interface quality,1,10,11

which is often known only qualitatively. In addition, both
models neglect the atomic-level detail of the interface and
are usually applied under the Debye approximation of linear
phonon dispersion curves.12–18 These two assumptions lead
to inaccuracy at temperatures where phonons with wave-
lengths on the same scale as the interatomic spacing are
excited.19 Furthermore, both the AMM and DMM assume
that the phonon interface scattering is elastic �i.e., the re-
flected and transmitted phonons have the same frequency as
the incident phonon�. This assumption leads to a prediction
of �i� a constant thermal boundary resistance in the classical
limit, reached when all of the phonon modes are fully ex-
cited, and �ii� a lower bound on the thermal boundary resis-
tance known as the phonon radiation limit.1,7,20,21 Contrary to
these predictions, a thermal boundary resistance that de-
creases with increasing temperature in the classical
limit,9,14,15 and values below the phonon radiation limit,7,9,21

have been experimentally measured. These results have been
attributed to the presence of inelastic phonon scattering at the
interface.

One approach for developing improved models for ther-
mal boundary resistance is to modify the AMM or DMM to
include phenomena neglected in the original models �e.g.,
phonon scattering near the interface,16 interface disorder,12,13
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and electron-phonon coupling8�. While the predictions of the
modified models are generally in better agreement with ex-
periment than the original AMM or DMM, they have only
been applied under the Debye approximation and in some
cases require fitting parameters.16 The enhanced agreement
with experiment may therefore be fortuitous. In our opinion,
the correct way to develop improved models is to use
atomic-level methods to better understand the phonon trans-
port physics. In this way, models can be developed based on
justifiable assumptions.

B. Atomic-level methods

Molecular dynamics �MD� simulation is an atomic-level
method that has been used to model thermal transport across
interfaces22–27 and in superlattices.28–32 In an MD simulation,
the positions and momenta of a set of atoms evolve classi-
cally according to Newtonian equations of motion, restrict-
ing their validity to the classical limit. In this limit, MD
simulation is an ideal method for predicting thermal bound-
ary resistance because no assumptions concerning the nature
of the phonon scattering are required. The only required in-
put to an MD simulation is a method for specifying the
atomic interactions. Because simulation cells containing
104–105 atoms are required to remove the thermal boundary
resistance dependence on cell-size, the use of ab initio �e.g.,
density functional theory �DFT��-based methods is precluded
due to computational expense. The specification of the
atomic interactions is thus typically done using empirical
interatomic potential functions. Beyond obtaining a predic-
tion for the thermal boundary resistance, it is challenging to
extract additional details related to the thermal transport
physics from an MD simulation due to computational
expense.33–35

The details of the thermal transport physics can be studied
using lattice dynamics36–38 �LD� or nonequilibrium Green’s
function39 �NEGF�-based methods. Using the phonon prop-
erties calculated from these methods, the thermal boundary
resistance can be predicted by evaluating a theoretical ex-
pression, such as that derived using theory analogous to the
Landauer theory for electron transport.40 The LD and NEGF-
based methods can be used to obtain phonon properties at
temperatures where quantum effects are important �i.e., be-
low the Debye temperature�.40 The effects of inelastic scat-
tering can be modeled using the NEGF-based approach,
though such calculations have only been performed for one-
dimensional systems due to computational expense.38,40,41 To
reduce the computational expense when modeling interfaces,
the harmonic approximation is typically applied, removing
all crystal anharmonicity and thus limiting the calculation
accuracy to interfaces at which the phonon scattering is
elastic.36–39 As with MD simulation, the LD- and NEGF-
based methods require a method to specify the atomic inter-
actions. Because only the second-order force constants are
required under the harmonic approximation, either empirical
interatomic potential functions or ab initio-based methods
can be used. To our knowledge, only empirical interatomic
potential functions have been used to date.

C. Objectives

Despite over five decades of research, a robust model for
the thermal boundary resistance has remained elusive.1,6 In

our view, the development of such a model has been slowed
by the many sources of uncertainty when comparing theoret-
ical predictions and experimental measurements �e.g., the
roles of electron-phonon coupling, interface quality, and in-
elastic phonon scattering�. The objective of this work is to
assess the theory for thermal transport by phonons across an
interface by eliminating these sources of uncertainty. We
achieve this objective by evaluating theoretical expressions
for the thermal boundary resistance using phonon properties
obtained from LD-based calculations and comparing the re-
sults to independent MD-predicted values in a self-consistent
manner. In both the theoretical and MD predictions, there is
no electronic contribution to the thermal transport and we
study perfect interfaces between two crystals that contain no
defects. The theoretical expressions are evaluated in the clas-
sical limit, as required for the validity of the MD simula-
tions. In addition, the comparison is performed at tempera-
tures where we demonstrate that the phonon interface
scattering is elastic, as required for the validity of the LD-
based calculations.

We consider two types of interface: �i� a symmetrically-
strained Si/Ge interface, and �ii� a series of interfaces be-
tween Si and a species we refer to as “heavy-Si,” which
differs from Si only in mass by a ratio of mR. For the Si/
heavy-Si interfaces, we consider mass ratios between 1 and
6. For comparison, the mass ratio between Ge and Si is 2.6.
Each interface is oriented along the �001� crystallographic
plane �see coordinate system in Fig. 1�. The atomic interac-
tions are modeled using the Stillinger-Weber �SW� inter-
atomic potential, which has been parameterized for both
Si-Si and Ge-Ge interactions.42,43 For the Si-Ge interactions,
we use the mixing rules described by Laradji et al.44 The
details related to the theoretical calculations and MD simu-
lations are described in Secs. II C and III, and the results of
the comparison are provided in Sec. IV.

II. THERMAL TRANSPORT ACROSS AN INTERFACE

A. Overview

We begin by reviewing the theory for thermal transport by
phonons across an interface. To increase the generality of the
discussion, we describe this theory for a system containing a
junction between two semi-infinite solids �i.e., leads�, as
shown in Fig. 1 for our case, where the junction contains the
interface. This theory has been applied to predict the thermal
resistance of a variety of junction types, including dielectric
quantum wires,45 carbon nanotubes,46 grain boundaries,23,24

and interfaces.19,36–38,47,48

Left Lead Right LeadJunction

y z

x
TL TR

Interface

FIG. 1. Schematic diagram of an interface between two semi-
infinite leads. Under the assumption of no inelastic scattering within
the junction, the thermal boundary resistance is equal to the junc-
tion thermal resistance.
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We will develop two expressions for the junction thermal
resistance, R, defined as

R =
TL − TR

q
, �1�

where q is the heat flux across the junction, and TL and TR
are the temperatures at the lead/junction boundaries. When
we evaluate these expressions �discussed in Sec. II C�, we
will assume that there is no inelastic scattering within the
junction. Under this assumption, the thermal boundary resis-
tance, which is defined in terms of the temperature drop
across the interface, is equal to the junction thermal resis-
tance, regardless of the junction width.

Each lead emits phonons to and absorbs phonons from the
junction. At steady-state, the net heat flux across the junction
is

q =
1

�2��3�
L
�

�

+

����,��vz��,���L→R��,��fL��,��d�

+
1

�2��3�
R
�

�

−

����,��vz��,���R→L��,��fR��,��d� ,

�2�

where L and R denote the left and right leads, � is the Planck
constant divided by 2�, � denotes the phonon polarization,
and �, �, and vz are the phonon wave-vector, frequency, and
z component of the group velocity. The first �second� integral
is over the first Brillouin zone of the left �right� lead, and the
first �second� summation is over phonons moving in the posi-
tive �negative� z-direction. The mode-dependent phonon
transmission coefficient, �L→R, is defined as the fraction of
the incident phonon energy that is transmitted from the left
lead to the right lead �similar for �R→L�. The variables fL and
fR are the mode-dependent phonon distributions functions in
the left and right leads at the lead/junction boundaries. We
write these distributions as

fL��,�� = fBE����,��,TL� + fL���,��

fR��,�� = fBE����,��,TR� + fR���,�� , �3�

where fBE is the equilibrium Bose-Einstein distribution func-
tion, and fL� and fR� are the deviations from the equilibrium
distribution. The equilibrium distribution is

fBE��,T� = �exp	 ��

kBT

 − 1�−1

, �4�

where kB is the Boltzmann constant. We define the tempera-
ture of a nonequilibrium system to be that of an equilibrium
system with the same kinetic energy.11,47 The temperatures at
the lead/junction boundaries are therefore equal to TL and TR
if

1

�2��3� �
�

��f�d� = 0 �5�

in each lead.

B. Junction thermal resistance

1. RE

The first expression we derive for the junction thermal
resistance is analogous to the Landauer formula for electron
transport,40 and is based on the assumption that each lead is
an infinite thermal reservoir held in equilibrium at a uniform
temperature. Under this assumption, fL�= fR� =0 for all modes,
and Eq. �2� becomes

q =
1

�2��3�
L
�

�

+

��vz�L→RfBE��,TL�d�

+
1

�2��3�
R
�

�

−

��vz�R→LfBE��,TR�d� . �6�

When TL=TR, the two terms on the right hand side of Eq. �6�
must cancel to give zero heat flux at thermal equilibrium.
This condition allows Eq. �6� to be simplified to involve
integration over just one of the leads. For example, if both
leads are at a temperature of TR,

1

�2��3�
R
�

�

−

��vz�R→LfBE��,TR�d�

= −
1

�2��3�
L
�

�

+

��vz�L→RfBE��,TR�d� , �7�

allowing Eq. �6� to be simplified to

q =
1

�2��3�
L
�

�

+

��vz�L→R�fBE��,TL� − fBE��,TR��d� .

�8�

In writing Eq. �8�, we have assumed that the phonon prop-
erties are temperature independent between temperatures of
TL and TR. After substituting Eq. �8� into Eq. �1�, and ex-
panding fBE�� ,TL�− fBE�� ,TR� using a first-order Taylor se-
ries, the thermal resistance is found to be

RE = � 1

�2��3�
L
�

�

+

��vz�L→R
dfBE

dT
d��−1

, �9�

where the subscript E denotes that the phonons in the leads
follow the equilibrium distribution function, Eq. �4�.

Due to its simplicity, Eq. �9� is the most commonly ap-
plied expression for calculating thermal
resistance.19,23,24,36–38,47,48 It is well known, however, that
this expression is inaccurate when the average phonon trans-
mission coefficient approaches unity.1,49 For example, when
Eq. �9� is applied to a perfect crystal �i.e., a system contain-
ing no interface�, �L→R=1 for all phonon modes, and the
incorrect result of a nonzero thermal resistance is predicted.
The theory underlying Eq. �9� also contains an inconsistency,
as it suggests that at steady state, there is simultaneously zero
heat flux within the leads �where there is no temperature
gradient� and a nonzero heat flux across the junction.6,49 This
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inconsistency and the erroneous prediction for the no-
interface case both result from the assumption that fL� and fR�
are equal to zero.49

2. RNE

Following the approach of Simons,49 we now derive an
expression for the junction thermal resistance that is valid for
nonequilibrium phonon distributions in each lead, which we
denote by RNE. Our expression is more general than that
given by Simons because we do not make the Debye ap-
proximation for the phonon dispersion. The thermal resis-
tance is found by substituting Eq. �2� into Eq. �1� �using the
general forms for fL and fR given in Eq. �3��, and simplifying
using a procedure similar to that described in the develop-
ment of Eq. �9�. The resulting expression is

RNE = 	RE, �10�

where

	 = 1 −
1

�2��3�
L
�

�

+


L�L→Rd� −
1

�2��3�
R
�

�

−


R�R→Ld� ,

�11�

and 
 is the fraction of the total heat flux carried by a spe-
cific phonon mode in the lead, given by


 =
��vzf�

q
. �12�

For the case where no interface is present, �L→R=1 for all
phonon modes and both terms involving integrals in Eq. �11�
are equal to 1/2, leading to the correct result of zero thermal
resistance.

To evaluate RNE for a general system, we need to specify
the mode-dependent deviations from the equilibrium phonon
distributions, f�, that appear in Eq. �12�. This specification
can be done by solving the Boltzmann transport equation
�BTE�, which describes the spatial and temporal variation of
the distribution of a collection of particles subject to an ap-
plied field �e.g., electrons subject to an electric field, phonons
subject to a temperature gradient�.11 Exact solution of the
BTE is challenging for the lead/junction/lead system because
the phonon distributions in the leads are coupled due to en-
ergy transmission across the junction. To simplify the solu-
tion procedure, we follow the approach of Chen50 by assum-
ing that the phonon distribution in each lead near the
junction is bulk-like, allowing the BTE to be solved indepen-
dently for each lead. We will discuss the accuracy of this
assumption in Sec. IV.

For a system of phonons subject to a temperature gradient
in one-dimension, the steady-state BTE for a specific phonon
mode takes the form11

vz
� f

�z
= 	 � f

�t



coll
, �13�

where ��f /�t�coll is the collision term, which describes the
rate of change of the phonon distribution due to phonon scat-
tering. We apply the relaxation time approximation by writ-
ing the collision term as

	 � f

�t



coll
= −

f�

�
, �14�

where � is the phonon relaxation time, and assume f� to be
independent of temperature so that

� f

�z
=

� fBE

�T

�T

�z
. �15�

After substituting Eqs. �14� and �15� into Eq. �13�, f� is
found to be

f� = − vz�
� fBE

�T

�T

�z
. �16�

Using this result and the Fourier law, q=−k �T
�z , we can re-

write Eq. �12� as


 =
��vz

2�

k

� fBE

�T
, �17�

where the thermal conductivity, k, is given by

k =
1

�2��3� �
�

��vz
2�

dfBE

dT
d� . �18�

When f� is specified using the approach described in this
section and the lead species are identical, Eq. �10� can be
reduced to the inverse of the formula provided by Aubry et
al.24 for the thermal conductance of a grain boundary. In
arriving at their expression, Aubry et al. take the temperature
associated with an incident phonon to be the local tempera-
ture at a distance of vz� �i.e., one mean-free path� from the
grain boundary instead of TL or TR. We believe that our de-
velopment, which mirrors that of Simons,49 has two advan-
tages over this approach. First, the assumptions made in ar-
riving at Eq. �16� for f� are easily identified, allowing an
avenue for further investigation into sources of inaccuracy.
Second, this approach can be used to specify f� for phonons
moving away from the junction, allowing for a consistent
definition for TL and TR to be maintained �see discussion
preceding Eq. �5��.

C. Lattice dynamics-based calculations of RE and RNE

1. Phonon properties

We evaluate RE and RNE for the Si/Ge and Si/heavy-Si
interfaces using Monte Carlo integration with 105 random
phonon wave vectors in the first Brillouin zone correspond-
ing to the two-atom diamond unit cell. For comparison to the
classical MD-based predictions �discussed in Sec. III�, these
calculations are performed in the classical limit by setting
fBE=kBT /��. At each wave vector, the frequencies and
group velocities are obtained using LD-calculations applied
under the harmonic approximation. Under this approxima-
tion, the atomic interactions are modeled by expanding the
crystal potential energy about its minimum using a Taylor
series and truncating after the second-order term. For stiff
materials with small thermal expansion coefficients such as
SW Si and Ge, this approximation yields accurate predic-
tions for phonon frequencies and group velocities �e.g., pho-
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non frequencies calculated using harmonic and anharmonic
LD-based methods differ by less than 3% in SW Si below
temperatures of 1000 K51�. The phonon transmission coeffi-
cients are obtained using the harmonic LD-based scattering
boundary method,38,40,52 which assumes that the phonon in-
terface scattering is specular and elastic. We believe that the
assumption of specular scattering is valid for our interfaces
because they contain no defects or roughness that would pro-
mote diffuse scattering.1,11 In Sec. IV A, we demonstrate that
the phonons scatter elastically at our interfaces at tempera-
tures less than or equal to �500 K. Full details related to
our harmonic LD-based calculations can be found
elsewhere.27,53,54

The phonon relaxation times are calculated using an an-
harmonic LD-based method that approximates the crystal an-
harmonicity by treating the third- and fourth-order terms in
the Taylor series expansion of the potential energy as a per-
turbation to the harmonic solution.51 For all phonon modes,
we find that the calculated relaxation time is proportional to
T−1 to within 5% accuracy between temperatures of 300 and
1000 K. In addition, at a fixed temperature, the relaxation
times can be approximated as a function of frequency alone,
as shown in Fig. 2 for SW Si at a temperature of 500 K.
Based on these observations, we generate a linear interpola-
tion function using the GNU Scientific Library64 for each
species based on the calculated relaxation times at a tempera-
ture of 500 K. These interpolation functions are used with
the T−1 proportionality to specify the relaxation time for any
phonon mode and temperature. At low frequencies, we ex-
trapolate the calculated relaxation times by assuming that �
��−2, as predicted by Callaway.55 At high temperatures,
fifth- and higher-order terms in the Taylor series expansion
may not be negligible, leading to a potential source of inac-
curacy in the calculated relaxation times.56 While it is diffi-
cult to quantify this inaccuracy, we expect that its effect on
our RNE calculations will be partially abated due to error
cancellation resulting from the relaxation times appearing in
both the numerator and denominator �through the thermal
conductivity� of Eq. �17�.

2. Interface structure

A schematic diagram of the symmetrically-strained Si/Ge
interface modeled in our LD-based calculations is shown in
Fig. 3. Only a portion of the interface is shown, as the leads
are assumed to be semi-infinite in the calculations. The
atomic positions are set using a lattice constant in the direc-
tions parallel to the interface, a�, equal to the average of the
bulk zero stress, zero-temperature SW Si and Ge lattice con-
stants, aSi and aGe of 5.430 95 Å and 5.653 62 Å. The lead
lattice constants in the direction perpendicular to the inter-
face, a�, are chosen to give zero stress in that direction and
are determined by minimizing the lead potential energy
while keeping the parallel lattice constant fixed at a�. These
lattice constants are 5.318 30 Å and 5.735 27 Å for SW Si
and Ge. The distances between the monolayers within the
junction are determined by relaxing the structure using a
steepest decent approach. In our calculations, the junction
contains the two monolayers on either side of the interface.
We find that increasing the size of the junction in the z di-
rection has no effect on the calculated value of the thermal
boundary resistance. For the Si/heavy-Si supercells, there is
no lattice mismatch between the species and the atomic po-
sitions are set using aSi.

III. MOLECULAR DYNAMICS SIMULATIONS

A. Direct method

To assess the accuracy of the theoretical expressions for
the thermal boundary resistance, we compare their predic-
tions to independent predictions obtained from MD simula-
tions, which as described in Sec. I B, require no assumptions
about the nature of the phonon scattering. In our MD simu-
lations, the Newtonian equations of motion are integrated
numerically using the velocity Verlet algorithm with a time
step of 0.55 fs. We predict the thermal boundary resistance
using the direct method, in which a known heat flux is ap-
plied across the sample and the resulting steady-state tem-
perature drop at the interface is specified. The thermal
boundary resistance is then determined from Eq. �1�. A sche-
matic diagram of the direct method simulation cell is shown
in Fig. 4. The system consists of a sample region containing
two materials of lengths LL and LR in contact, forming a
single interface. The sample region is bordered by hot and
cold reservoirs of length Lres and fixed boundaries in the z
direction. The fixed boundary regions each contain four

ω (rad/ps)
0

τ
(p
s)

100 20 40 60 80 100 120

101

102

103

104

Extrapolation
Assuming τ ∝ ω−2

Interpolation Function

Si, T = 500 K

FIG. 2. �Color online� Classical phonon relaxation times in the
first Brillouin zone for SW Si predicted using anharmonic LD-based
calculations at a temperature of 500 K.

Ge LeadJunction

a

Si Lead

a ,Si

y z

x a ,Ge

FIG. 3. �Color online� Schematic diagram of the symmetrically
strained Si/Ge interface.

THERMAL BOUNDARY RESISTANCE PREDICTIONS FROM… PHYSICAL REVIEW B 80, 165304 �2009�

165304-5



monolayers of fixed atoms in order to prevent reservoir at-
oms from sublimating. The cross-section of the simulation
cell is square and has area Ac. Periodic boundary conditions
are imposed in the x and y directions.

B. Structure

The initial atomic positions are chosen to obtain relaxed
structures in a manner similar to that used for the LD-based
calculations �described in Sec. II C 2�. In our MD simula-
tions, however, we also account for the temperature depen-
dence of the bulk lattice constants, though we find that it has
negligible effect on the predicted thermal boundary resis-
tance. From separate MD simulations run at constant tem-
perature and zero pressure using a Nose-Hoover thermostat
and a Berendsen barostat, we find that the bulk lattice con-
stants of SW Si and Ge are approximated to within 0.02%
between temperatures of 300 and 1000 K by

aSi�T� = 5.430 + 1.975 � 10−5T �Å� �19�

aGe�T� = 5.654 + 3.205 � 10−5T �Å� , �20�

where T is in Kelvin. When assigning the initial atomic po-
sitions for the direct method simulations, we evaluate the
bulk lattice constants using the average temperature in the

simulation cell, T̄. The z components of the initial atomic
positions are set using species-dependent perpendicular lat-
tice constants that lead to zero stress in the z direction. These
perpendicular lattice constants are calculated from elasticity
theory to be57

a� = a�1 −
2C12

C11
	a�

a
− 1
� , �21�

where C11 and C12 are the elastic constants. Using the ana-
lytical method described by Cowley,58 we calculate C11 and
C12 to be 151.6 and 76.5 GPa for SW Si, and 138.3 and
50.9 GPa for SW Ge.

C. Data collection and analysis

In the direct method simulations, the sample and reser-
voirs are initially set to a uniform temperature by scaling the
atomic velocities for 0.55 ns �one million time steps�, a pe-
riod in which the structure also experiences a slight relax-
ation. The heat flux is then applied by adding a constant
amount of kinetic energy to the hot reservoir and removing
the same amount of kinetic energy from the cold reservoir at
every time step using the method described by Ikeshoji and
Hafskjold.59 From this point, a period of 3.3 ns is allowed for
the sample to reach steady-state conditions. Data are col-
lected for an additional 2.75 ns after this period for the ther-
mal boundary resistance prediction.

The steady-state temperature profile is obtained by aver-
aging the temperature of each monolayer over the data col-
lection period. An example temperature profile is shown in
Fig. 4�b� for the symmetrically strained Si/Ge interface at a
temperature of 500 K. To minimize the uncertainty in speci-
fying the temperature drop at the interface, we apply a least-
squares linear regression analysis to the temperature profile
in each material and evaluate the linear fits at the interface.
The nonlinear regions in the temperature profile found in the
100 monolayers closest to the reservoir/sample boundary are
neglected when performing the regression analysis, as shown
in Fig. 4�b�. We estimate the uncertainty in specifying the
temperature drop at the interface to be 5% based on the
sensitivity of the linear fits to the number of monolayers used
in the regression analysis.

D. Effect of the simulation parameters on the thermal
boundary resistance

The primary challenge associated with the direct method
is to obtain thermal boundary resistance predictions that are
independent of the simulation parameters, q, LL, LR, Lres, and
Ac, and the sample orientation �i.e., the sample can be ori-
ented with either species on the hot side of the simulation
cell�. For example, when LL or LR is not much greater than
the bulk phonon mean free path, phonons can travel ballisti-
cally from the reservoirs to the interface. In addition, if the
value of the heat flux is too large, nonlinear temperature
profiles may develop throughout the sample due to the tem-
perature dependence of the thermal conductivity. Both of
these effects lead to unrealistic incident phonon distributions
and may influence the predicted value of the thermal bound-
ary resistance.

In Table I, the effects of the simulation parameters on the
predicted thermal boundary resistance of the Si/Ge interface
at a temperature of 500 K are shown. The thermal boundary
resistance provided for case A is the 95% confidence interval
based on the results of five independent simulations while for
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FIG. 4. �Color online� �a� Direct method simulation cell. �b�
Temperature profile for the symmetrically strained Si/Ge interface
at a temperature of 500 K using the simulation parameters provided
for case A in Table I.
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the other cases, the provided value is the result of one simu-
lation. The thermal boundary resistance is independent of the
imposed heat flux �compare cases A, C, and D�, reservoir
length �cases A, I, and J�, and cross-sectional area �cases A,
K, and L� over the range of values considered. The thermal
boundary resistance is found to decrease with increasing LL
and LR until size-independent results are obtained when LL
and LR are greater than or equal to 400 monolayers �cases A
and E-H�. The thermal boundary resistance is also indepen-
dent of the sample orientation, see cases A and B.

Based on the results presented in Table I, we believe that
the thermal boundary resistance predicted for the Si/Ge in-
terface at a temperature of 500 K is independent of the simu-
lation parameters when using the parameters provided for
case A. We use these parameters for all of our direct method
simulations at temperatures greater than or equal to 500 K.
At temperatures lower than 500 K, however, these param-
eters may not be sufficient to remove the simulation cell size
effects. To ensure that these effects are negligible, we use
simulation cells with LL=LR=700 monolayers and LL=LR
=500 monolayers at temperatures of 300 K and 400 K. These
values of LL and LR are roughly a factor of 500 /T greater
than the values provided for case A. This factor is chosen
based on the fact that thermal conductivity of a crystal is
approximately proportional to T−1 in the classical limit
�reached in the MD system�, and on the kinetic theory pre-
diction that the average phonon mean free path is propor-
tional to the thermal conductivity.60

IV. RESULTS

A. Molecular dynamics predictions

The MD predictions of the thermal boundary resistance
for the symmetrically strained Si/Ge interface between tem-
peratures of 300 K and 1000 K are shown in Fig. 5. Error

bars representing the 95% confidence interval based on five
independent simulations are provided for each data point. We
observe a low-temperature regime, in which the thermal
boundary resistance is temperature independent and equal to
�3.1�10−9 m2-K /W, and a high-temperature regime in
which the thermal boundary resistance decreases with in-
creasing temperature. The boundary between these regimes
exists at a temperature between 400 and 500 K.

TABLE I. Effect of the direct method simulation parameters �q, LL, LR, Lres, Ac, and sample orientation�
on the MD-predicted thermal boundary resistance of the Si/Ge interface at a temperature of 500 K. For the
sample orientation, Si/Ge �Ge/Si� indicates that Si �Ge� is on the hot side and Ge �Si� is on the cold side of
the simulation cell. The thermal boundary resistance provided for case A is the 95% confidence interval based
on the results of five independent simulations.

q
�GW /m2�

LL=LR

�monolayers�
Lres

�monolayers� Ac /a�
2 Orientation

R
�10−9 m2 K /W�

A 7.23 400 50 16 Si/Ge 2.930.29 �95%�
B 7.23 400 50 16 Ge/Si 2.94

C 3.10 400 50 16 Si/Ge 3.02

D 13.4 400 50 16 Si/Ge 2.97

E 7.23 200 50 16 Si/Ge 4.01

F 7.23 300 50 16 Si/Ge 3.22

G 7.23 500 50 16 Si/Ge 2.72

H 7.23 600 50 16 Si/Ge 2.83

I 7.23 400 20 16 Si/Ge 3.17

J 7.23 400 100 16 Si/Ge 2.95

K 7.23 400 50 25 Si/Ge 3.13

L 7.23 400 50 36 Si/Ge 2.81

T (K)
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R
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FIG. 5. �Color online� Temperature dependence of the thermal
boundary resistance of a symmetrically strained Si/Ge interface.
The error bars provided for the MD-predicted values represent the
95% confidence interval based on five independent simulations. The
lines labeled RE and RNE correspond to the results of theoretical
calculations assuming that the phonons scatter elastically and
specularly at the interface and have either equilibrium or bulk-like
nonequilibrium distributions �see Sec. II B�. The line labeled DMM
corresponds to the theoretical calculation of the diffuse mismatch
model, which assumes that the phonons scatter elastically and dif-
fusely at the interface and have equilibrium distributions.
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As mentioned in Sec. I, experimental measurements of the
thermal boundary resistance of an isolated interface have
only been made for metal/dielectric interfaces. To provide a
comparison to our MD predictions, we estimate the experi-
mental Si/Ge thermal boundary resistance based on the ther-
mal conductivity measurements of Borca-Tasciuc et al. for
undoped, symmetrically strained Si/Ge superlattices.61 For a
Si/Ge superlattice with interfaces separated by 7 nm, they
measured the thermal conductivity in the direction perpen-
dicular to the interfaces to be 2.9 W/m-K at a temperature of
300 K.61 By assuming that the dominant source of thermal
resistance in these superlattices is due to the interfaces, we
estimate the experimental Si/Ge thermal boundary resistance
to be of order 10−9 m2-K /W,62 in agreement with our MD-
predicted values.

We attribute the MD-predicted temperature dependence of
the Si/Ge thermal boundary resistance at high temperatures
to inelastic phonon interface scattering, which �i� increases
with increasing temperature due to increasing anharmonicity
of the atomic interactions, and �ii� tends to increase the pho-
non transmission coefficients.1 We believe that this mecha-
nism dominates over other potential mechanisms, which we
identify from the theoretical expressions for thermal bound-
ary resistance �see Sec. II B�. First, the temperature depen-
dence of the phonon frequencies and group velocities is neg-
ligible for SW Si and Ge, and �fBE /�T is a constant in the
classical limit �see Sec. II C 1�. Second, the temperature-
dependence of the lead thermal conductivities is canceled by
the temperature dependence of the phonon relaxation times
in Eq. �17�. We therefore take the temperature independence
of the thermal boundary resistance in the low-temperature
regime as an indication that the phonon interface scattering
there is elastic.

An intuitive explanation for why increasing inelastic pho-
non interface scattering tends to increase the phonon trans-
mission coefficients and decrease the thermal boundary re-
sistance was provided by Swartz and Pohl.1 Here, we adapt
their explanation for our discussion of the Si/Ge interface. If
a phonon incident on the Si/Ge interface from the Si side has
a frequency greater than the maximum Ge frequency, none of
its energy can transmit across the interface if the phonon can
only scatter elastically. On the other hand, there is a possi-
bility for energy transmission if the phonon can scatter in-
elastically into two phonons of lower frequency. Inelastic
phonon scattering thus increases the available channels for
thermal conductance across the interface and decreases the
thermal boundary resistance. We note that similar trends of
decreasing thermal boundary resistance with increasing tem-
perature have been predicted from MD22 and observed
experimentally,9,14,15 and attributed to inelastic phonon inter-
face scattering.

In Fig. 6, we show the MD predictions of the thermal
boundary resistance for the Si/heavy-Si interfaces as a func-
tion of mass ratio at a temperature of 500 K. The 95% con-
fidence interval is provided for two of the data points. The
thermal boundary resistance decreases monotonically with
decreasing mass ratio and approaches zero for mR=1, the
case where no interface is present in the system. We expect
that the phonons scatter elastically at all the Si/heavy-Si in-
terfaces at this temperature. This expectation is based on �i�

the fact that a heavy-Si atom samples a more harmonic po-
tential well than a Si atom because of its smaller mean-
square atomic displacement,54 and �ii� the observation that
the anharmonicity in Si does not lead to significant inelastic
scattering at the Si/Ge interface at this temperature �see
Fig. 5�.

B. Comparison with theoretical predictions

We assess the accuracy of the theoretical expressions for
the thermal boundary resistance by comparing their predic-
tions to the MD-predicted values. For the Si/Ge interface, we
calculate RE �Eq. �9�� to be 3.0�10−9 m2-K /W in the clas-
sical limit. As shown in Fig. 5, this value is in good agree-
ment with the MD predictions at and below a temperature of
500 K, where the phonon scattering is predominantly elastic.
Our value of RE is also within 5% of the value of 2.85
�10−9 m2-K /W calculated by Zhao and Freund for the SW
Si/Ge interface using a similar LD-based method, and ex-
trapolated by us to the classical limit.37 The small difference
between the calculations is due to lattice mismatch strain,
which was neglected by Zhao and Freund. For the Si/
heavy-Si interfaces at a temperature of 500 K �Fig. 6�, RE is
in agreement with the MD-predicted values to within 12%
for mR�2. As expected, RE is erroneously nonzero when no
interface is present in the system �i.e., mR=1�.

Our calculations for RNE �Eq. �10��, which are also pro-
vided in Figs. 5 and 6, are in poor agreement with the MD-
predicted thermal boundary resistances. For the Si/Ge inter-
face in the classical limit, we find that RNE is 1.3
�10−9 m2-K /W, approximately 60% less than the MD-
predicted values in the low temperature, elastic scattering
regime. For the Si/heavy-Si interfaces at a temperature of
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FIG. 6. �Color online� Thermal boundary resistance of the Si/
heavy-Si interface plotted as a function of mass ratio �mR� at a
temperature of 500 K. The lines labeled RE and RNE correspond to
the results of theoretical calculations assuming that the phonons
scatter elastically and specularly at the interface and have either
equilibrium or bulk-like nonequilibrium distributions �see Sec.
II B�. The line labeled DMM corresponds to the theoretical calcu-
lations of the diffuse mismatch model, which assumes that the
phonons scatter elastically and diffusely at the interface and have
equilibrium distributions.
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500 K, RNE decreases with decreasing mass ratio and is equal
to zero when no interface is present in the system, consistent
with the MD-predicted trend. Over the entire mass ratio
range, however, RNE is 40%–60% less than the MD-
predicted values.

Our observations are consistent with the findings of Aubry
et al.24 and Kimmer et al.,23 who compared MD-predicted
thermal resistances to theoretically calculated values for two
SW Si grain boundaries at a temperature of 500 K. They
used input from MD wave-packet simulations and assumed
that either � or the product �vz was constant for all modes in
their theoretical calculations. They predict the thermal resis-
tance of the �3�111� grain boundary from MD to be 0.1
�10−9 m2-K /W, a value within 20%–60% of RNE and a
factor of 8 less than RE. Based on the MD-predicted thermal
resistance, we believe that the level of phonon scattering at
this grain boundary is similar to that at a Si/heavy-Si inter-
face with mR=1.1. For this interface, we would expect to
obtain a similar relationship between RE, RNE and the MD-
predicted thermal boundary resistance based on the trends
shown in Fig. 6. For the �29�001� grain boundary, their MD-
predicted thermal resistance is 1.3�10−9 m2-K /W, a value
within 10% of RE but 50% greater than RNE. Based on the
MD-predicted thermal resistance, we believe that the level of
phonon scattering at this grain boundary is comparable to
that for a Si/heavy-Si interface with mR=1.6, for which RE is
also in closer agreement with the MD-predicted thermal
boundary resistance than RNE.

As mentioned in Sec. II C, we evaluate RE and RNE by
assuming that the phonon interface scattering is specular and
elastic. Both assumptions must be valid in the MD simula-
tions to provide an accurate assessment of the theoretical
expressions for the thermal boundary resistance. We have
already demonstrated for our interfaces that the assumption
of elastic scattering is valid at temperatures less than or equal
to �500 K �see Sec. IV A�. Because our interfaces contain
no defects or roughness that would promote diffuse scatter-
ing, we also expect that the assumption of specular scattering
is valid. For additional evidence of this claim we compare
the MD-predicted thermal boundary resistances to values
calculated using Eq. �9� with the phonon transmission coef-
ficients determined by the DMM,1,19 where all phonons are
assumed to scatter diffusely at the interface. In these calcu-
lations, all of the phonon properties required to evaluate the
DMM-phonon transmission coefficients are obtained from
harmonic LD-based calculations. As shown in Fig. 5, we find
that the DMM-predicted thermal boundary resistance for the
Si/Ge interface is 20% less than the MD-predicted values in
the low temperature, elastic scattering regime. This agree-
ment is believed to be fortuitous, however, because for the
Si/heavy-Si interfaces �see Fig. 6�, the DMM- and MD-
predicted thermal boundary resistances are in poor agree-
ment at all mass ratios except near mR2, which is close to
the atomic mass ratio between Ge and Si of 2.6. Because RE
is in better agreement with the MD-predicted thermal bound-
ary resistances than the DMM-predicted values, we believe
that the assumption of specular phonon scattering is valid for
our interfaces.

Even when the phonon interface scattering is specular and
elastic, neither RE nor RNE is in good agreement with the

MD-predicted thermal boundary resistances for all of the in-
terfaces examined here. For RE, the inaccuracy observed for
the Si/heavy-Si interfaces with mR�2 is due to the assump-
tion of equilibrium phonon distributions in each lead, as
mentioned in Sec. II B 1. For RNE, we attribute the observed
inaccuracy to our assumption of bulk-like nonequilibrium
phonon distributions near the interface. According to the
BTE, the steady-state phonon distribution for a given mode
at position r is such that the rate of phonon creation and
annihilation is balanced by the rate that phonons leave the
neighborhood of r due to diffusion.10,11 In a bulk crystal with
no defects, the phonon creation and annihilation rates are
determined by inelastic multi-phonon scattering processes,
which are accounted for in the anharmonic LD-based calcu-
lations described in Sec. II C 1. Near an interface, however,
the phonon creation and annihilation rates will be affected by
phonon scattering at the interface, leading to phonon distri-
butions that are different from those in the bulk. Because RE
is in good agreement with the MD predictions for the Si/Ge
interface and the Si/heavy-Si interfaces with mR�2, we hy-
pothesize that for these interfaces these additional scattering
processes lead to phonon distributions that are well approxi-
mated by the equilibrium distribution at TL or TR. To test this
hypothesis, we believe that a more accurate prediction for the
phonon distributions near the interface can be obtained by
solving the BTE while incorporating the interface scattering
processes into the collision term. We suspect that such a
solution procedure may be complicated by the potential in-
accuracy of the relaxation time approximation near the inter-
face. Under this approximation, only the phonon mode of
interest is assumed to be out of equilibrium,10 which is rea-
sonable for systems that are not far from equilibrium51 but
questionable near the interface due to the abrupt temperature
drop. If such inaccuracy exists, a variational approach will be
required to solve the BTE.10

V. SUMMARY AND CONCLUSIONS

We assessed the accuracy of two theoretical expressions
for thermal boundary resistance by comparing their predic-
tions to independent predictions from MD simulations,
which require no assumptions concerning the nature of the
phonon scattering. The theoretical expressions differ in their
assumed form of the phonon distribution functions in the
leads on either side of the interface �see Fig. 1�. In one ex-
pression �RE�, the phonon distributions are assumed to fol-
low the equilibrium, Bose-Einstein distribution, while in the
other expression �RNE�, the phonons are assumed to have
nonequilibrium distributions. We obtained the nonequilib-
rium phonon distributions by solving the BTE under the re-
laxation time approximation and under the assumption that
the phonon distributions in each lead near the interface are
bulk like. The phonon properties required to evaluate the
theoretical expressions were obtained using LD-based meth-
ods. For the calculation of the phonon transmission coeffi-
cients, we used the LD-based scattering boundary method,
which assumes that the phonon interface scattering is elastic
and specular. To allow a proper comparison to the predic-
tions from the classical MD simulations, the theoretical ex-
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pressions were evaluated in the classical limit.
The theoretically calculated and MD-predicted thermal

boundary resistances were compared for �i� a symmetrically-
strained Si/Ge interface between temperatures of 300 and
1000 K, and �ii� a series of Si/heavy-Si interfaces at a tem-
perature of 500 K. All of the interfaces are perfect and con-
tain no defects or roughness that would promote diffuse in-
terface scattering, justifying the assumption of specular
interface scattering made in our calculations of the phonon
transmission coefficients.

As shown in Fig. 5, the Si/Ge thermal boundary resistance
was predicted from MD to decrease with increasing tempera-
ture for temperatures above �500 K, a trend indicative of
phonon interface scattering that is inelastic. At temperatures
less than or equal to �500 K, the Si/Ge MD-predicted ther-
mal boundary resistance was found to be temperature inde-
pendent, indicating that the phonon interface scattering is
predominately elastic. For the Si/heavy-Si interfaces at a
temperature of 500 K �see Fig. 6�, the MD-predicted thermal
boundary resistance decreases with decreasing mass ratio
and approaches a value of zero for mR=1 �i.e., an imaginary
Si/Si interface�. We argued that the phonon interface scatter-
ing is elastic at the Si/heavy-Si interfaces at a temperature of
500 K. This argument was based on the MD-predicted tem-
perature dependence for the Si/Ge thermal boundary resis-
tance and the mass dependence of the mean-square atomic
displacement.

With the exception of the Si/heavy-Si interfaces with mR
�2, the theoretical calculations of RE were found to be in

good agreement with the MD-predicted thermal boundary
resistances at temperatures where the phonon scattering is
elastic. The inaccuracy of RE observed for the Si/heavy-Si
interfaces with mR�2 is most extreme at mR=1 where RE is
erroneously nonzero. This inaccuracy has been attributed to
the assumption of equilibrium phonon distributions in each
lead.6,49 The theoretical expression for RNE gives the correct
result of zero thermal boundary resistance for the Si/
heavy-Si interface with mR=1. For the Si/Ge interface and
for the Si/heavy-Si interfaces with mR�1, however, RNE was
found to be 40%–60% less than the corresponding MD-
predicted thermal boundary resistances at temperatures
where the phonon interface scattering is elastic. We attrib-
uted this inaccuracy to our assumption of bulk-like phonon
distributions in each lead. The phonon distributions near the
interface will deviate from their bulk values due to the addi-
tional phonon creation and annihilation processes that are
associated with the phonon interface scattering. We suggest
that the accuracy of the RNE calculations can be improved if
the phonon distributions in each lead near the interface are
obtained by solving the BTE while incorporating these addi-
tional processes into the collision term.
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