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In a recent paper �I. Bâldea and H. Köppel, Phys. Rev. B 78, 115315 �2008��, we showed that a variational
approach �P. Delaney and J. C. Greer, Phys. Rev. Lett. 93, 036805 �2004�� proposed to compute the electron
transport through molecules, which is based on boundary constraints of the Wigner function, is unable to
correctly describe the zero-bias conductance of the simplest uncorrelated and correlated systems. In the present
paper, we extend our previous analysis of the linear response limit of that approach, by considering, instead of
the Wigner function, general constraints. We demonstrate that, if, as usual in transport theories, the quasipar-
ticle distributions in electrodes are constrained, this method yields the completely unphysical result that the
zero-bias conductance vanishes. Therefore, we conclude that the variational approach itself is defective.
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I. INTRODUCTION

In spite of significant advances, the field of molecular
electronics continues to remain confronted with problems
unsatisfactorily clarified both from the experimental and the
theoretical sides. One major issue is the large discrepancy,
often of several orders of magnitude,1–3 between the mea-
sured currents through molecules and values calculated theo-
retically. Open questions in electron transport through nano-
structures, which remain unresolved after many years of
research, appear also in other related areas, e.g., transport
through semiconducting quantum dots4,5

The simplest theoretical calculations of the transport in
nanoscopic/molecular systems rely upon the Landauer
formalism,6,7 which ignores electron correlations. The latter
are accounted for in more elaborated approaches, like those
based on nonequilibrium Green’s functions �NEGFs�,8,9

time-dependent density matrix renormalization group
�DMRG�,10–12 and numerical renormalization group
�NRG�.13 In the most popular ab initio calculations in mo-
lecular electronics, the NEGF method is combined with cal-
culations based on the density functional theory �DFT�.14–16

Other approaches are based on various many-body
schemes.17–19 Although the role of uncontrollable experimen-
tal factors should not be underestimated �compare, for ex-
ample, the contradictory results for one and the same
system20–23�, the ability to predict currents comparable with
measured values continues to represent an important chal-
lenge for theory.

Out of the existing theoretical methods that proposed and
used in Refs. 24–28 seemed to be very appealing, because it
claimed to correctly reproduce currents experimentally mea-
sured through correlated molecules and yielded a few other
plausible results. It represents a variational approach with
constraints imposed on the Wigner function at the device-
electrode interfaces. The latter aspect is original: in usual
transport theories, the electron distributions are constrained
to be the Fermi functions. In a recent paper,29 we inquired
the validity of this method within the realm of theory and
demonstrated that, for the simplest uncorrelated and corre-
lated systems, its results are completely unphysical. How-

ever, because our critique primarily envisaged the imposed
boundary conditions, one might still hope that this approach
can be remedied by imposing other constraints. To investi-
gate whether this is the case or not is the main purpose of our
present work.

The remaining part of the paper is organized in the fol-
lowing manner. The variational approach considered here,
which generalizes the approach proposed in Ref. 24, will be
described in Sec. II. Its linear response limit will be consid-
ered in Sec. III. As an important point of the present work,
which is emphasized in Sec. IV, we argue that, contrary to
what was claimed in Ref. 24, strong electron correlations in
the device do not preclude to impose usual boundary condi-
tions, namely, to constrain the single-electron distributions in
electrodes to be the Fermi distributions. The main result de-
duced in Sec. IV is that, even with these usual boundary
conditions, the variational approach is inappropriate: it un-
physically predicts a zero-bias conductance that vanishes in
situations where this is definitely not the case �e.g., uncorre-
lated systems, Coulomb blockade peaks, Kondo plateau�.
Conclusions are presented in Sec. V.

II. DESCRIPTION OF THE VARIATIONAL APPROACH

Some years ago, Delaney and Greer �DG� proposed a
method to calculate the steady-state electric transport
through correlated molecules connected to two electrodes
�two-terminal transport setup� within a many-body
approach.24 It relies upon many-body calculations for a finite
cluster consisting of the �nano�device �the molecule of inter-
est� and �small� parts of electrodes with and without voltage
bias. Their approach can be summarized as follows. A con-
stant voltage bias, which is described by a term W in the
Hamiltonian, drives the cluster at zero temperature �T=0�
from its ground state �0�H��0�=E0��0�� to a steady state �
characterized by a constant current flow.

�i� The steady-state wave function � is determined by
minimizing the total energy E in the presence of the applied
voltage

E = ���H��� + ���W��� �1�

subject to the following constraints:
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�ii� for the electrons flowing from electrodes into the de-
vice, the Wigner function at the two device-electrode con-
tacts determined from � in the presence of the voltage bias
be equal to that obtained from the many-body ground state
�0 of the cluster in the absence of the bias;

�iii� if not automatically satisfied,24,25 the steady-state
electric current J should be constrained to be position �q�
independent

���jq��� = J , �2�

as required by the equation of continuity ��� /�t+� · j=0�;
�iv� the steady-state wave function is normalized

������ = 1. �3�

In our recent work �Ref. 29�, we showed that this approach is
incorrect, as it fails to reproduce well-established results both
for uncorrelated and correlated systems. The failure for the
uncorrelated case is important for two reasons. First, in this
case very large systems can be treated by this method with-
out any other approximations than the method itself. This
demonstrates that the completely unphysical results it gener-
ates are due to the method itself and cannot be assigned to
the fact that, realistically, only very small parts of electrodes
can be accounted for within accurate many-body calcula-
tions. Second, it challenges the need for and/or the useful-
ness of the Wigner function. Imposing boundary conditions
by means of the Wigner function is only one ingredient of
this method, and one may ask whether employing other
boundary conditions could mender this variational approach.

In the present paper, we shall consider such alternative
choices. For the moment, we do not specify the properties to
be constrained. Rather, instead of the above condition �ii�,
we shall consider general constraints of the form

���Q���� = ��0�Q���0� �4�

for a set of Hermitian operators �Q�	.30 Condition �ii� repre-
sents a particular case of Eq. �4�, where Q� is chosen to be
the Fano operator29

F�x,p� = 

l,�

ax−l,�
† ax+l,�e−2ipl/�, �5�

with ax,� and ax,�
† denoting the annihilation and creation op-

erators for an electron of spin � located at site x.
For the sake of simplicity, we shall consider one-

dimensional discrete systems, with left �L� and right �R�
electrodes containing electrons described within the tight-
binding nearest-neighbor approximation �e=L ,R�. Although
more general cases can also be considered, we shall assume
a total Hamiltonian of the form

H = HL + HR + HD + HD,e

HL = �L 

l�qL,�

al,�
† al,� − 


l�qL,�
tl,��al,�

† al−1,� + al−1,�
† al,�� ,

HR = �R 

r	qR,�

ar,�
† ar,� − 


r	qR,�
tr,��ar,�

† ar+1,� + ar+1,�
† ar,�� ,

HD,e = − 

�

tqL,��aqL,�
† aqL+1,� + aqL+1,�

† aqL,��

− 

�

tqR,��aqR−1,�
† aqR,� + aqR,�

† aqR−1,��

HD = 

�



q=qL+1

qR−1


qaq,�
† aq,� − 


�



q=qL+1

qR−2

tq,��aq,�
† aq+1,�

+ aq+1,�
† aq,�� + Hint�nqL+1,�, . . . ,nqR−1,�� . �6�

Above, al,� ,ar,�, and aq,� �al,�
† ,ar,�

† , and aq,�
† � represent

annihilation �creation� operators of electrons with spin
� at sites l, r, and q belonging to the left �L� and
right �R� electrodes, and to the device �D�, respectively.
�L,R denote electrode chemical potentials, t’s are hopping
integrals, and 
’s are on-site energies in the device. The
above model incorporates a rather general electron-electron
interaction Hint in the device. We need not to specify an
explicit form of Hint, we solely assume that it can be
expressed in terms of the electron numbers nq,��aq,�

† aq,�.
For concreteness, one can consider a particular explicit
form Hint=
�1,�2


qL�q1,q2�qR
Uq1,�1,q2,�2

nq1,�1
nq2,�2

. Impor-

tant particular cases thereof are multisite nanodevices
described by extended Hubbard models �Uq1,�1,q2,�2
=U�q1,q2

��1,−�2
,Uq1,�1,q2,�2

=V�q1,q2�1�, or devices consisting

of a single site �qD�, like point contacts or single-electron
transistors �Anderson impurity model�, which amounts to
choose UqD,�1,qD,�2

=U��1,−�2
, where U=0 or U�0, respec-

tively. One should emphasize that the model specified above
includes both uncorrelated �Uq1,�1,q2,�2

�0� and strongly cor-
related cases. Phenomena such as the Coulomb blockade or
the Kondo effect described by the Anderson impurity model
are typical examples of strong electron correlations, where
the single-particle picture completely breaks down.

Although not explicitly needed for the subsequent consid-
erations, we give for illustration the form of the term W
pertaining to the applied bias V

W =
V

2 

l�qL,�

al,�
† al,� + 


�



q=qL+1

qR−1

Vqaq,�
† aq,� −

V

2 

r	qR,�

ar,�
† ar,�,

�7�

where the concrete way how the potential Vq drops across the
device �−V /2�Vq�V /2� is not needed.

For model �6�, the electric current operator
jq at site q�e=�=1� has the expression31

jq = i

�

tq,��aq,�
† aq+1,� − aq+1,�

† aq,�� . �8�

If the total cluster possesses N sites, there are N−1 values
���jq���. Therefore, the equation of continuity, Eq. �2�,
yields N−2 constraints of the form

���jq − jq0
��� = 0, �9�

where q0 stands for a fixed arbitrary site. For the moment, we
need not to specify the Q�’s in Eqs. �4�.
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To simplify the analysis, we shall assume that �0 is non-
degenerate. The wave function � will be expanded in terms
of the complete set of orthonormalized eigenstates of
H�H��n�=En��n��.

��� = A0��0� + 

n�0

An��n� . �10�

To simplify the discussion, we shall suppose that the model
parameters entering Eq. �6� are real. This enables us to
choose the eigenstates �n as real. However, the expansion
coefficients An can still be complex, and thus the general
boundary conditions �4� and the equation of continuity �2�
can be satisfied. We shall suppose that A0 is real, which
amounts to choose the phase factor appropriately.

Starting with a system in the ground state �0, we shall
look for the solution �, which minimizes the quantity

���H��� + ���W��� − ����� − 

�

������Q����

− ��0�Q���0�� + i 

q�q0

�q���jq − jq0
��� �11�

with the supplementary constraints �3�, �4�, and �9�. This
yields a set of equations, from which the optimum values of
the coefficients A0 and An, and the �real� Lagrange multipli-
ers , �q, and �� can be determined.

III. LINEAR RESPONSE APPROXIMATION

Similar to Ref. 29, we shall work out the linear response
approximation of the method described above, which should
enable us to compute the zero-bias conductivity. Therefore,
we shall only consider changes to the relevant quantities of
the order O�W�.

While in general this minimization represents a difficult
nonlinear problem, it considerably simplifies in the linear
response limit, applicable for a small applied bias. In this
limit, the minimization amounts to solve a linear system of
equations, which possesses a unique solution A0=1+O�W2�,
An=O�W� for n�0, ��=O�W�, =E0+O�W�, and �q
=O�W�.

The quantities entering the minimization problem within
the linear response approximations are

��n�Q���0� � Q�,n � X�,n + iY�,n, �12�

��n�W��0� � Wn, �13�

��n�jq − jq0
��0� � iJq,n. �14�

Above and throughout, the calligraphic symbols denote real
matrix elements. The minimization yields the following re-
sults in the linear response approximation. The expansion
coefficients are expressed by

An =
1

En − E0
�− Wn + 


�

��Qq,n + i 

q�q0

�qJq,n . �15�

The normalization condition �3� leads to =E0, and the con-
straints �9� and �4� yield


n�0
�An

�Q�,n + AnQ�,n
� � = 0, �16�


n�0
�An − An

��Jq,n = 0. �17�

At this point, it is useful to separate the real and imaginary
parts of Eqs. �15�–�17�. This immediately leads to



��

���

n�0

X��,nX�,n + Y��,nY�,n

En − E0
+ 


q

�q 

n�0

Y�,nIq,n

En − E0

= 

n�0

Wn

En − E0
Jq,n, �18�



q�

�q�

n�0

Jq�,nJq,n

En − E0
+ 


��

���

n�0

Y��,nIq�,n

En − E0
= 0. �19�

Let us assume that there are NL and NR constraints of the
form �4� imposed for the left and right electrodes, respec-
tively. Equations �18� and �19� represent a linear set of NL
+NR+N−2 equations. Except for accidental cases where the
determinants vanish,32 these equations determine the NL
+NR values �� and the N−2 values �q�q�q0� of the
Lagrange multipliers uniquely. Once they are known, the ex-
pansion coefficients An can be obtained from Eq. �15�,
which, in turn, allow to determine the q-independent steady-
state current J=Jq as

J = − 2i 

�,n�0

�

�

��Y�,n + 

q�q0

�qJq�,n���n�jq,���0� .

�20�

Because the angular parenthesis in the rhs of the above equa-
tion is purely imaginary �see Eq. �8��, the quantity J is real.
Notice that Wu enters linearly Eqs. �18� and �19�, and there-
fore the current computed from Eq. �20� is proportional to
the applied bias V. This means that the above minimization
procedure yields the solution corresponding to the linear re-
sponse limit.

We end the part devoted to general considerations by ad-
dressing a technical issue. From the perspective of Ref. 24,
the variational approach discussed here would be ultimately
intended to be used in conjunction with ab initio quantum
chemical calculations for a real system, which comprises the
device and parts of electrodes. It would be desirable that the
latter are sufficiently large, such that the bulk electrode prop-
erties are approached. In practice, the size �N� of the system
that can be investigated is inherently finite, and therefore an
N-dependence of the results is unavoidable �cf. Eq. �9��. The
best one can hope in a realistic ab initio calculation is to be
able to increase N until results converge, in a way similar to
the much less demanding time-dependent DMRG
calculations.10–12 In fact, increasing the size is so prohibitive
that the most ambitious ab initio calculations can at most
include a few electrode layers in the cluster used for trans-
port calculations, and the saturation with increasing N cannot
be systematically checked.33 Similarly, the expansion �10�
cannot exhaust the multielectronic Hilbert space of a real
system, which is infinitely dimensional. What one has to do
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there is to increase the number N of multielectronic wave
functions ��n	n=1

N until reaching convergence. Of course, the
latter limitation only applies to a real system. For the discrete
cases described by Eq. �6�, N rapidly grows with N and can
become very large,34 but it remains finite for any finite clus-
ter.

IV. CONSTRAINTS IMPOSED TO THE SINGLE-
ELECTRON DISTRIBUTIONS

So far, we did not specify the boundary conditions �4�. In
Ref. 24, resorting to the Wigner function �in a theoretical
approach of the transport in correlated systems� was moti-
vated by the fact that working with a correlated many-body
wave function � precludes a description in terms of wave
functions and energies �i for independent electrons. This has
been interpreted as the impossibility of using single-electron
Fermi-Dirac distributions f��i� in a transport theory devoted
to correlated systems.24 This assertion might seem true, but it
does not necessarily apply. As is well known, electron Fermi
distribution functions are ubiquitously employed in transport
theories, ranging from the �semi�classical Boltzmann equa-
tion to the Keldysh NEGF formalism. Whether for macro-
scopic, mesoscopic or nanoscopic systems, whether applied
to uncorrelated or strongly correlated systems, these theories
have in common the assumptions that

�a� a separation in device and electrodes is possible, im-
plying sufficiently small device-electrode couplings, which
insignificantly perturb the electrodes. The properties of the
electrodes connected to the device do not differ from those of
the isolated electrodes;

�b� electron correlations in electrodes are negligible,
which implies that, there, the electron distributions are Fermi
functions.

Notice that only the electron distributions in electrodes
are constrained, more precisely, they are constrained to be
the same as in the isolated electrodes, and there they are
Fermi functions irrespective whether the device is correlated
or not. The Fermi distribution is the correct boundary condi-
tion for the uncorrelated case. Because, as it will be shown
below, with these boundary conditions the DG approach
yields unphysical results, this suffices to demonstrate that the
variational approach itself is incorrect. We do not intend to
rigorously prove here that the Fermi distribution is the cor-
rect boundary condition for correlated nanoscopic/molecular
systems. Still, we note that with boundary conditions ex-
pressed by Fermi functions one can successfully describe the
electric transport in macroscopic systems. Moreover, by em-
ploying the same boundary conditions it was possible to ex-
plain delicate aspects of the transport in correlated nanosys-
tems �e.g., the unitary limit for the Kondo plateau in single-
electron transistors� in good agreement with experiment.
Therefore, we argue that the description in terms of Fermi
functions of the electrons in electrodes is plausible even if
the latter are coupled to correlated devices.

Let us now express the boundary conditions �4� just in the
aforementioned manner, i.e., by using the Fermi distribution.
In our case, condition �a� requires sufficiently weak cou-
plings tqL,� and tqR,� between device and electrodes. In the

absence of a voltage bias, the reservoirs are in equilibrium
among themselves ��L=�R=��. An applied bias V does not
affect the fact that each reservoir remains in local equilib-
rium, but it drives them out of equilibrium with respect to
one another because it shifts the chemical potentials, �L=�
+V /2 and �R=�−V /2. It is just the imbalance of the corre-
sponding chemical potentials that is kept constant by an ex-
ternal power supply, which causes a steady-state current
through the device.

Let us assume that for V=0 the single-electron states in
the left electrode, which are specified by the labels �1 ,�2 , . . .,
have the energies 
�1

,
�2
, . . .. �Obviously, the considerations

presented below also apply to the right electrode.� They can
be obtained by diagonalizing the term HL of Eq. �6�

HL = 

j


�j
��j

† ��j
, �21�

although for the present purposes we need not to specify the
explicit transformation �

al� = 

j

��j,l�
��. �22�

In the presence of a bias, the single-electron states remain
specified by the same labels �1 ,�2 , . . .: it is the same linear
orthogonal transformation � that diagonalizes HL both for
�L=� and for �L=�+V /2. The only change brought about
by the bias is that the single-particle energies are simply
shifted by V /2 with respect the former, HL=
 j�
�j
+V /2���j

† ��j
. The occupancies of the single-particle states

f�j
= ���j

† ��j
� at equilibrium �V=0� and in the steady state

�V�0� are the same: f�j

L,R�V�= f0,�j

L,R � f�j

L,R�V=0�. Only their

energy distributions are shifted fL,R�
�j
�= f0

L,R�
�j
�V /2�.

The situation is schematically depicted in Fig. 1. Of course,
the above considerations are not restricted to the linear re-
sponse limit.

By choosing now the electron occupancies to express the
boundary conditions �Q����

†��� and assuming, as usual,
that the electron distributions in the reservoirs are not af-
fected by the coupling to the device, we can re-express Eqs.
�4� as

�����
†����� = ��0���

†����0� , �23�

which apply both to the left and the right electrodes. Most
importantly, the quantities Q�,n=X�,n= ��n���

†����0� enter-
ing the lhs of Eq. �12� are real. With this choice, Y�,n�0,
and Eqs. �18� and �19� become two sets of decoupled equa-
tions for �’s and �’s, respectively,



��

���

n�0

X��,nX�,n

En − E0
= 


n�0

Wn

En − E0
Jq,n, �24�



q�

�q�

n�0

Jq�,nJq,n

En − E0
= 0. �25�
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From the latter equations we get �q=0,32 and then Eq. �20�
yields

J = 0. �26�

This means that the approach considered above predicts a
vanishing zero-bias conductance �G=J /V=0� at least for the
rather general models of the type �6�. One should note that
this prediction also holds if not all �’s, but only some of the
occupancies of the single-electron states are subject to con-
straints of the type �23�. Furthermore, the prediction �26�
also applies to the case where the constraints �9� are not
applied for all the sites q, but, e.g., only at the two contacts
�i.e., the current flowing from the left electrode into the de-
vice is equal to that from the device into the right electrode�.

Needless to say, the prediction �26� of a vanishing current
in the linear response limit �vanishing zero-bias conduc-
tance� is completely unphysical and flagrantly contradicts
numerous well-established results. The existence of a nonva-
nishing zero-bias conductance G=G0�2e2 /h in the textbook
example of conduction through a resonant single level
system,9 or the fact that the same value G0 characterizes the
Kondo plateau in the transport through a single-electron
transistor35,36 are only two particular cases, which are de-
scribed by the general model �6� for which the above con-
siderations apply.

Concerning the linear response limit of the variational ap-
proach discussed here, we still have the following comments.

Without imposing any boundary conditions of the type �4�,
the minimization of E of Eq. �1� yields equations identical to
Eqs. �15� and �19� if we set ���0. Because in this case the
latter group of equations only possess the trivial solution
�q=0, the expansion coefficients obtained from Eq. �15�
have the form An=An�Wn / �E0−En�, i.e., the solution ���
of Eq. �10� is nothing but the ground state �G� of the total
Hamiltonian H+W obtained within the first-order perturba-
tion theory with respect to W. Being the ground state, that is,
an eigenstate of the total Hamiltonian, it obviously obeys the
equation of continuity: the current is site independent, more
precisely J=Jq= �G�jq�G�=0.37 When the supplementary
�boundary� conditions �4� are imposed, the corresponding
Lagrange multipliers become nonvanishing ���0, as seen
from Eq. �18� or even from the more particular Eq. �24�.
Consequently, An�An, that is, the solution of optimization
does differ from the ground state with applied bias, ���
� �G�. The essential point is that, as we have seen above, in
order to sustain a nonvanishing current �J�0�, the matrix
elements of the operators employed to impose the boundary
conditions should have nonvanishing imaginary parts,
Im Q�,n�Y�,n�0. Luckily, this happens to be the case if the
Fano operator �5� is used in Eq. �4�, which amounts to for-
mulate the boundary conditions in terms of the Wigner
function.29 This choice yields nonvanishing currents, which
sometimes, by chance, could be comparable with measured
values24,25 or look plausible.27,28 However, as we have re-
cently unambiguously demonstrated,29 the variational ap-
proach based on the Wigner function fails to recover the
simplest results both for uncorrelated and correlated nano-
systems, where its predictions are completely unphysical.

V. DISCUSSION AND CONCLUSION

In Ref. 29, we demonstrated that the DG approach24–26

fails to reproduce the simplest well-established results for
transport in nanosystems and especially criticized the bound-
ary conditions. In view of the fact that a reliable method to
deal with correlated electron transport is hardly needed, one
might still think to be able to develop a valid approach based
on the DG method but employing other boundary conditions.
Therefore, in the present paper, we have inquired the validity
of the DG-variational approach by considering constraints
other than those imposed to the Wigner function at the
boundaries. We believe that this investigation is important
for specialists in the field thinking to apply such a modified
DG scheme: the implementation for realistic ab initio calcu-
lations is by no means an easy task, and this probably ex-
plains why no other group applied the DG method in spite of
its claimed success.

In the first part we have examined the linear response
approximation by considering general boundary conditions.
Further, we have critically analyzed the claim of DG on the
Fermi-Dirac single-electron distributions. Namely, they
claimed24–26 that electron Fermi distribution functions, which
are ubiquitously employed in transport theories, cannot be
used in correlated systems because the single-particle picture
breaks down, and resorting to the Wigner function was pro-
posed as a way out of this difficulty. In Sec. IV, we have
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FIG. 1. �Color online� Effect of an applied bias V on the single-
electron distributions fL and fR in the left �L� and right �R� elec-
trodes. At V=0, the electrodes are in equilibrium, and their chemi-
cal potentials are equal, 
�L

F =
�R
F =� �black dashed horizontal line�.

The bias V creates an imbalance between the chemical potentials
�L=
�L

F +V /2 and �R=
�R
F −V /2 responsible for the current flow.

The figure visualizes the fact that the bias only shifts the single-
electron energies 
�L,R

in the two electrodes by �V /2 in opposite

directions: 
�L
i �V�=
�L,R

i +V /2 and 
�R
i �V�=
�R

i −V /2. However, the

bias affects neither the labels of the single-electron states ��L,R
i �V�

��L,R
i � nor their occupancies: f

�L,R
i

L,R �V�= fL,R�
�L,R
i �V /2;V�

= fL,R�
�L,R
i ;V=0�= f

�L,R
i

L,R �V=0� �cf. Eq. �23��. The representation in

the figure is schematic: in reality, neither the energies 
 �vertical
axes� nor the quantum indices �L,R �oblique axes� have equidistant
values.
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explained that strong electron correlations in devices do not
preclude the usage of single-electron distributions to express
boundary conditions. The reason is that they should be im-
posed in electrodes, and there electrons are �assumed to be�
uncorrelated. In fact, constraining single-electron distribu-
tions to be of Fermi-Dirac type in electrodes is the common
feature of the most transport theories employed for macro-
scopic, mesoscopic and nanoscopic scale, and of interest
there is just the case of correlated systems.

Obviously, it is possible to impose constraints on the
single-electron distributions in uncorrelated systems. As an
important point of our analysis, we have demonstrated that,
in particular, even for such uncorrelated systems and these
standard boundary conditions �a case beyond of all question�
the variational approach predicts a vanishing zero-bias con-
ductance, which represents a completely unphysical result.
Although this very fact is sufficient to invalidate this varia-
tional approach, the conclusion of the present investigation
applies to more much general situations where strong elec-
tron correlations are present. Such more general examples
include �but are not limited to� the systems described by the
model Hamiltonian �6�.

In principle, any theoretical approach of transport is based
on two main ingredients. �i� First, one has to determine a
certain quantity, which characterizes the transport cluster. �ii�
Second, one has to impose boundary conditions to link the
cluster to electrodes. The first ingredient is e.g., the transmis-
sion coefficient, Green’s function�s�, or transition probabili-
ties in Ladauer, NEGF, or master equation approaches, re-
spectively. While this first ingredient is different from one
transport approach to another, the second is common for vir-
tually all approaches: whether correlated or not, the cluster is
linked to electrodes by employing Fermi distributions. Be-
cause none of these approaches yields results which are
manifestly unphysical, one has to admit that the formulation
of the boundary conditions in terms of Fermi distribution
functions is legitimate, or at least does not lead to manifest
absurdities. If these boundary conditions were wrong, all
these widely employed approaches would also yield unphysi-
cal results, but this is not the case. In fact, it is hard to
imagine a physical situation more typical for using single-
particle Fermi distributions than to describe electrons in met-
als �electrodes�.

The approach of Delaney and Greer also comprises these
two aspects: �i� one minimizes the total energy E of the finite
cluster used for transport calculations in the presence of an
applied voltage. The energy of this open system is computed
as the average value of a Hermitian Hamiltonian, E= �H
+W�. �ii� This is a constrained minimization: specifically,
boundary conditions are applied to the Wigner function.

In Ref. 29, we demonstrated that, in the form proposed in
Ref. 24, this approach yields unphysical results and espe-
cially criticized the boundary conditions adopted by Delaney
and Greer in the context of their approach. In the present
paper, we have lifted these specific constraints and replaced
them with the widely used boundary conditions, expressed in
terms of Fermi functions. The result obtained, a vanishingly
zero-bias conductance, is again quite unphysical. So, even
with these usual boundary conditions, formulated in terms of
Fermi distributions in electrodes, in the way common to the

most widely employed transport theories, the approach based
on the DG-variational method fails to pass the minimal de-
cisive test, which any approach of electric transport at nano-
scale must satisfy; namely, to be at least able to correctly
describe the conductance in the linear response �Kubo� ap-
proximation or even to reproduce well-established results of
the Landauer theory in the absence of correlations �see, for
example, Ref. 38�.

The main result of our study is that the DG-variational
approach does not work even with modified boundary con-
ditions. This implies that the DG-approach is invalid not �or
not only� because of the boundary conditions. If the imposi-
tion of the boundary conditions in terms of Wigner function
were the only wrong point, the variational approach would
produce correct results with correct boundary conditions.
Doubtless, the Fermi functions represent the correct bound-
aries for uncorrelated system, a fact which proves the failure
of the DG approach for that case. If the DG-variational ap-
proach is incorrect even for uncorrelated systems, it is incon-
ceivable that it works for correlated systems. We are then
necessarily led to the conclusion that the other ingredient �i�
of the DG-variational approach, namely the minimization of
the cluster’s total energy, computed as the average of a Her-
mitian Hamiltonian, is inappropriate.

So, the failure of the approach of Delaney and Greer can-
not be solely assigned to the manner in which the boundary
conditions are imposed. Constraining the Wigner function
f�q , p� at the boundaries can also produce valuable physical
results for the steady-state current, provided that f�q , p� is
determined from the Liouville equation for �f /�t=0 and the
values f�qL,R , p� at the boundaries determined by the Fermi
functions in reservoirs.39 However, in that case, the fact that
the investigated systems are open leads to a non-Hermitian
Liouville operator, which yields time irreversibility and cur-
rents that saturate to values characterizing the steady-state
flow. The counterpart of this procedure would be to employ
non-Hermitian Hamilton operators H�H†, amounting to
consider imaginary self-energies resulting from electrode-
device interactions.9 Attempting to develop a variational ap-
proach for a finite open system �device� described by a non-
Hermitian Hamiltonian, e.g., by minimizing ��H+W
−E��H†+W−E�� instead of Eq. �1�, might be an interesting
alternative to the existing approaches to correlated transport,
but to our knowledge such a method is not available at
present. Until then, one is forced to admit that the variational
procedure attempting to obtain the steady-state current
through a finite open system described by a Hermitian
Hamiltonian and a wave function that minimizes the total
energy in the presence of a voltage bias with certain bound-
ary conditions is unable to reproduce well-established re-
sults, on which there is an incontestable agreement between
experiments and other theoretical approaches.
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