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A class of local SU�2�-invariant spin-1
2 Hamiltonians is studied that has ground states within the space of

nearest-neighbor valence-bond states on the kagome lattice. Cases include “generalized Klein” models without
obvious non-valence-bond ground states, as well as a “resonating valence-bond” Hamiltonian whose unique
ground states within the nearest-neighbor valence-bond space are four topologically degenerate “Sutherland-
Rokhsar-Kivelson” �SRK� -type wave functions, which are expected to describe a gapped Z2 spin liquid. The
proof of this uniqueness is intimately related to the linear independence of the nearest-neighbor valence-bond
states on quite general and arbitrarily large kagome lattices, which is also established in this work. It is argued
that the SRK ground states are also unique within the entire Hilbert space depending on properties of the
generalized Klein models. Applications of the strategies developed in this work to other lattice types are also
discussed.
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I. INTRODUCTION

A. General Motivation

For over 70 years, the study of magnetism has played a
pivotal role in defining paradigms in condensed-matter phys-
ics. Heisenberg’s original notion of a local exchange interac-
tion and its generalizations have given rise to a rich and
interesting class of Hamiltonians, whose exploration has lead
to great success both in understanding known magnetic phe-
nomena, as well as anticipating new ones. This approach has
been successful to such a degree that sometimes even models
studied out of purely academic interest have shed light on
later observed experimental phenomena. Prominent ex-
amples include the one-dimensional �1D� Heisenberg chain
with antiferromagnetic exchange constant, which was found
to be exactly solvable by Bethe in the 30s.1 This work did
not only initiate the still thriving field of integrable model
systems but founded the theory of 1D quantum antiferromag-
nets long before their experimental discovery in systems
such as Sr2CuO3.2 Another example is the Shastry-
Sutherland model,3 whose study predated the discovery of a
closely related valence-bond solid ground state in the com-
pound SrCu2�BO3�2.4,5 Despite these successes, the study of
generic Hamiltonians describing locally interacting spins on
a lattice remains a highly challenging task. The low-energy
properties of a given model are often difficult to extract with
great confidence. However, the common scenario in dimen-
sions greater than one is that the ground state of a system of
lattice spins governed by a local Hamiltonian will display
some form of long-range order, by either breaking
SU�2�-spin rotational symmetry or lattice translational sym-
metry, or both �see, e.g., Ref. 6�. This phenomenon is well
understood through the general framework that has been de-
veloped around Landau’s notion of spontaneous symmetry
breaking.7 In recent decades, however, workers in the field
have increasingly been interested in conditions that allow the
ground state of a spin system to remain quantum disordered.

Anderson has argued that a quantum magnet may refrain
from symmetry breaking even at T=0 as a result of quantum
fluctuations and/or frustration.8 He later proposed that the
resulting “resonating valence-bond �RVB� spin-liquid” state
may be thought of as the ideal parent state for the cuprate
superconductors.9 This proposal has lead to considerable ef-
forts in searching for such a state. Both on the theoretical and
on the experimental side this search turned out to be a for-
midable challenge. Experimentally, there has been much re-
cent excitement about compounds featuring two-dimensional
�2D� layers of spin-1

2 degrees of freedom forming a
triangular10,11 or kagome12–15 lattice, with no apparent sign of
order at low temperatures. On the theoretical side, a standard
way to establish the existence of a phase is to identify a
low-energy effective-field theory describing the universal
properties of the phase, together with special solvable points
in the phase diagram of some microscopic Hamiltonian that
can be demonstrated to display some of these universal fea-
tures. This strategy has been very successful in a variety of
contexts, such as interacting 1D quantum systems or the
fractional quantum-Hall effect. While a thorough understand-
ing of the phase is usually possible only through the field-
theoretic description, its existence in a certain microscopic
setting may be questionable until a microscopic realization is
found, either in theory or in experiment. This is due to the
fact that mappings between microscopic and field-theoretic
descriptions, while extremely powerful, are necessarily non-
rigorous. On the other hand, the construction of exactly solv-
able higher dimensional spin Hamiltonians is generally dif-
ficult. Recent successes along these lines with regard to the
spin-liquid problem will be reviewed in Sec. I B. Currently,
however, there is �to the best of my knowledge� no concrete
example for an SU�2�-invariant spin-1

2 Hamiltonian on a
simple lattice, whose ground-state properties are analytically
accessible and agree with those of a gapped �topological�
spin liquid. The main purpose of this paper is to propose
such a Hamiltonian.
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B. Klein models and quantum dimer models

The difficulty of constructing solvable models of spin liq-
uids motivated Kivelson and Rokhsar to consider the prob-
lem in a simplified Hilbert space.16 Their model features
“dimer” degrees of freedom on the links of a lattice, which
represent singlet bonds between nearest-neighbor sites.
These singlets are the “valence bonds” of Anderson’s origi-
nal proposal.8 Endowed with simple dynamics, the quantum
dimer models display phase diagrams that may be interpreted
in terms of singlet spin states with short-range spin-spin cor-
relations. �For recent reviews, see Refs. 17 and 18�. While
the original quantum dimer model on the square lattice �as
well as other bipartite lattices� does have an exactly solvable
point with a liquid ground state, this turned out to be a
critical-point separating “valence-bond solid” phases with
broken translational symmetry.19–22 However, over a decade
later, Moessner and Sondhi23 found that a similar model on
the triangular lattice has a solvable point corresponding to a
stable quantum liquid phase. Subsequently, similar findings
were also made for the kagome lattice.24 While these find-
ings are realizations of topologically ordered25 quantum liq-
uids in lattice models, their implications for quantum spin
systems are not immediate. This is not only due to the trun-
cation of the Hilbert space to nearest-neighbor valence-bond
�NNVB� states but perhaps even more so due to the assumed
orthogonality of different dimer coverings in quantum dimer
models. In contrast, the associated valence-bond states are
not orthogonal. In fact, even their linear independence is far
from obvious. Though the linear independence of NNVB
states has so far been proven only for the square and honey-
comb lattice by Chayes et al.,26 it is assumed to hold more
generally, e.g., based on numerical studies.27,28 This matter is
of fundamental interest in any attempt to formulate effective
theories for frustrated spin-1

2 magnets within the NNVB sub-
space, except perhaps when a large-N point of view29 is
adopted. Furthermore, arguments assuming linear-
independence properties of NNVB states have been em-
ployed in entropic considerations for frustrated spin-1

2 sys-
tems, e.g., on the kagome lattice,30 as well as others.31 For
the kagome case, the linear independence of the nearest-
neighbor valence-bond states will be established in this
work.

Although exact mappings between the dynamics of quan-
tum dimer models and that of SU�2�-invariant spin-1

2 quan-
tum magnets on the same lattice do not exist, more general
mappings have been applied successfully. In Ref. 32, a dimer
model on the triangular lattice has been mapped onto a
model of spin degrees of freedom in a highly anisotropic
kagome antiferromagnet. A mapping that preserves SU�2�
invariance has been performed in Ref. 33, where highly
decorated lattices are considered. It is interesting to note that
for some higher spin systems, the problem of writing down
SU�2�-invariant Hamiltonians with unique spin-liquid
ground states has been solved over 20 years ago through the
well-known AKLT construction.34 These states have been
shown to be gapped in 1D,35 and are believed to be gapped
in higher dimensions as well. In contrast, through
generalizations36,37 of the Lieb-Schultz-Mattis theorem,38 it
is nowadays well understood that spin-1

2 liquids must be ei-

ther gapless or have a nontrivial topological ground-state de-
generacy on lattices with an odd number of sites per unit cell
�cf. also Refs. 39–42�. The latter implies that they are topo-
logically ordered.25 There is much interest in such topologi-
cally ordered phases recently motivated in part by their pro-
posed use in quantum computation.43 A significant number of
solvable lattice models with topologically ordered ground
states are known.43–47 Some of these models can be naturally
cast in terms of spin-1

2 degrees of freedom but will lack
SU�2� invariance in this language. On the other hand, a par-
ent Hamiltonian for a topologically ordered SU�2�-invariant
chiral spin-liquid state has recently been discussed,48,49

where time-reversal symmetry is explicitly broken.
An alternative route to the construction of SU�2�-invariant

models with spin-liquid ground states is based on a class of
models introduced by Klein.50 The Klein models have an
extensive ground-state entropy with all NNVB states being
ground states. When perturbed, one expects the ground
state�s� to be a coherent superposition of NNVB states, to
good approximation. This is particularly so if all ground
states at the Klein point are of valence-bond type.26 It is,
however, nontrivial to determine the nature of such perturbed
Klein models.

C. Outline

In this work, a local SU�2�-invariant spin-1
2 Hamiltonian

will be constructed on the kagome lattice, which has ground
states that are spin-1

2 realizations of the dimer liquid at the
solvable “Rokhsar-Kivelson” �RK� point of the quantum
dimer model on the same lattice.24 Some rigorous statements
about the uniqueness of these ground states are deeply re-
lated to the linear independence of the NNVB states on gen-
eral kagome-type lattices. As a byproduct, the linear inde-
pendence of these states will be proven in the beginning of
this paper. In Sec. II, this linear-independence property will
be stated precisely and various definitions are introduced that
will be useful in the remainder of the paper. The linear-
independence property is then proven in Sec. III A. The
proof is based on the observation that the linear-
independence property for quite general and arbitrarily large
kagome-type lattices can be reduced to a property of finite
clusters. This property can be verified numerically, or alter-
natively, by analytic means. Both methods have been carried
out, although the details of the analytic method �for which
there is no real need except from a purist viewpoint� are not
presented here to keep the length of the paper within certain
bounds. Possible generalizations of the linear-independence
theorem and application of the present method to different
lattice types are then discussed in Sec. III B. Section IV is
devoted to the construction of local SU�2�-invariant Hamil-
tonians with valence-bond-type ground states. In Sec. IV A,
Hamiltonians are constructed such that any NNVB state on
the kagome lattice is a ground state, and, unlike for the Klein
model on the same lattice, there are no obvious other ground
states. In Secs. IV B 1–IV B 3, this construction is further
generalized to allow no obvious ground states other than the
Sutherland-Rokhsar-Kivelson �SRK� wave functions which
are akin to similar states at the exactly solvable point of the
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kagome lattice quantum dimer model.24 In Sec. IV B 4 it is
then proven that these are in fact the only ground states
within the manifold of NNVB states. In Sec. IV B 5, a strat-
egy will be discussed to prove that the SRK wave functions
are the only ground states even within the full Hilbert space.
This question will be related to properties of the generalized
Klein models of Sec. IV A, which are not proven here. In
Sec. V it will be argued that the model constructed in Sec.
IV B likely describes a Z2 topological liquid. Section VI con-
cludes the paper. A technical detail regarding the uniqueness
of the SRK ground states is presented in the Appendix.

I finally remark upon the relation of the present work to
that of Ref. 51, where spin Hamiltonians whose ground
states are valence-bond realizations of RK dimer states have
also been constructed. In Ref. 51, the corresponding dimer
states describe critical points in the phase diagram of their
dimer Hamiltonians. In contrast, the dimer wave function
that inspired the ground states of the model constructed here
corresponds to a stable Z2 topological liquid. In Sec. V, it
will be argued that the properties of the dimer liquid will
largely carry over to the spin-wave function. Similar argu-
ments have been made for the critical cases in Ref. 51 and
have been put forth early on by Sutherland52 for the square-
lattice case. The strategy developed here is applicable to RK
points on different lattices as well, including the square and
honeycomb cases of Ref. 51, although the present construc-
tion would not in any obvious way give rise to the same
Hamiltonians discussed there. Application of the present
construction to other lattices will be further discussed in Sec.
IV B 5.

II. DEFINITIONS AND STATEMENT OF THE LINEAR-
INDEPENDENCE PROPERTY

I will start by defining some terms that will be useful in
the following. In general, I will use the term lattice to refer
to any collection of discrete points or lattice sites, L, which
have a topology imposed through the notion of nearest
neighbors. The set of nearest neighbors of a lattice site i is
called its neighborhood and is denoted by N�i�. If j is a
nearest neighbor �NN� of i, then i is a NN of j, and the
�unordered� pair �i , j� is called a link of the lattice. I will say
that i and j are the sites “touched” by the link �i , j�. While
many aspects of this work are expected to generalize to other
lattices of interest, I will mainly focus on kagome-type lat-
tices �Fig. 1�. For now, the lattice L may be any finite subset
of the infinite 2D kagome lattice, or, more generally, of an
arbitrarily large but finite kagome lattice with toroidal peri-
odicity. More general global topologies are also possible as
long as the local structure is that of a kagome lattice, as will
become clear in the following. For greater simplicity, how-
ever, I will defer the discussion of such cases to Sec. III B.

A cell may be any subset C of a given lattice L, but will
usually refer to reasonably small and well-connected units
such as shown in Fig. 2, with nonvanishing interior �to be
defined next�. For kagome-type lattices, I define the interior
C� of the cell C as the set of all points in C that have four
nearest neighbors also contained in C. Likewise, the bound-
ary �C of C consists of those points in C that are not interior.

A dimer covering D of the cell C is a set of disjoint �!� links
between sites in C such that each interior site of C is touched
by one link in D. I will also refer to the links of D as the
dimers of the covering. The support of the dimer covering D,
denoted supp�D�, is the set of all sites belonging to a dimer
in D. Note that C��supp�D� by definition, but the opposite
inclusion need not hold, since supp�D� will in general con-
tain some boundary points of C as well, cf. Fig. 2. Likewise,
I introduce the set of free sites free�D ,C�=C \ supp�D� of the
dimer covering D, which contains all �boundary� sites in C
that are not touched upon by the covering. The dependence
on C may be suppressed when it is clear what cell is referred
to, and I then denote the free sites of the covering simply by
free�D�. By D�C� I denote the set of all dimer coverings of C,
and by D�D�L� the set of all dimer coverings of the lattice.
For every subset S of L, H�S� denotes the Hilbert space

FIG. 1. �Color online� A kagome lattice. Some 19-site cells with
the topology of Fig. 2�b� are indicated. The lattice is “regular” as
defined in the text. It is also fully dimerizable, as indicated by the
shown dimer covering.

a) b)

c) d)

FIG. 2. �Color online� ��a� and �b�� Some cells of the kagome
lattice. The cell shown in �b� is the smallest cell for which the
linear-independence property stated in the text holds. It is thus the
smallest regular kagome lattice as defined in the text. �c� A dimer
covering D of the cell shown in �b�. Note that according to the
definition used here, boundary sites need not participate. �d� A state
compatible with the dimer covering D shown in �c�, i.e., an element
of H��D��. Dimers correspond to singlets formed by spin-1

2 degrees
of freedom on neighboring sites, whereas boundary sites not
touched by dimers are allowed to be in an arbitrary state.
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obtained by associating a spin-1
2 degree of freedom with ev-

ery site in S, and H�H�L� the Hilbert space associated with
the entire lattice. Since H�S��C2n

, in general, where n is the
number of sites in S, it is natural to take H�S��C should S
by some chance be empty. With this convention, we can
always write

H�C� = H�supp�D�� � H�free�D�� �1�

when D is a dimer covering of C. More generally, consider a
cell C that is the disjoint union of two subcells C� and C�,
such that H�C�=H�C�� � H�C��. Given a �pure� state �s��
�H�C��, we can define a subspace H��s�� ,C� of H�C� con-
sisting of all states that are compatible with the state �s��,

H��s��,C� = span��s��� � H�C�� = 	�s�� � �s��:�s�� � H�C��
 ,

�2�

where span� · � denotes the linear span of the vector�s� en-
closed by the brackets. Again, if it is clear what cell is re-
ferred to, we may write H��s�� instead of H��s� ,C�. See Fig.
2 for an example.

Let us fix a cell C for the moment. For a given dimer
covering D of C we denote by �D� a state in H�supp�D�� in
which any two spins belonging to the same link in D form a
singlet or valence bond �VB�. The state �D� is just a realiza-
tion of the dimer covering D through valence bonds. Then
H��D��, as defined in Eq. �2�, consists of all states that are
compatible with the dimer covering D. A general state be-
longing to H��D�� for some dimer covering D will have ev-
ery internal site participating in a nearest-neighbor singlet,
while boundary sites left “free” by the covering D may be in
any arbitrary state �cf. Fig. 2�d�, but note that the free sites
could in general be entangled�. The space spanned by all
states of this kind will be called the space of valence-bond
states of the cell C, denoted by VB�C�,

VB�C� = �
D�D�C�

H��D�� , �3�

where the sum denotes the linear span of the spaces summed
over. Note that the space VB�C� is SU�2� invariant. This is so
since for �s��= �D�, both factors in the first line of Eq. �2� are
SU�2� invariant and hence H��D�� is SU�2� invariant for
each D.

It is clear from the definition how to write down a set of
states that linearly generate the space VB�C�. For each dimer
covering D, we denote by ��D,j� a basis of the space
H�free�D�� of spins not touched by the covering. Here, j
runs from 1 to nD�2∧�free�D��. By definition, then, the fol-
lowing set of states,

B�C� = 	�D� � ��D,j�:D � D�C�, j = 1, . . . ,nD
 , �4�

linearly generates the space VB�C� of valence-bond states on
the cell C. We will be interested in the question for what cells
C all states in B�C� are linearly independent. Note that if C is
the entire lattice L, and L has no boundary, then there are no
free sites for any D, and the valence-bond states B�L� consist
of all NN valence-bond “dimerizations” of the lattice in the
usual sense. In the presence of a nontrivial boundary, how-
ever, states are also admitted where some boundary sites do

not participate in the NN singlet bonding. Since more states
are being included, the statement of their linear indepen-
dence is a stronger one than if only “true” dimerizations were
considered. Indeed, the great advantage of including these
states is that the linear independence of the set B�C� for
certain small cells C is now so strong a statement that it
immediately carries over to entire lattice, as will be demon-
strated shortly below. This fact, and the observation that
some fairly small cells already have this linear-independence
property, constitute the main ingredients of the proof con-
structed in the following section. For simplicity, I will now
focus on lattices L that are subsets of some finite 2D kagome
lattice with doubly periodic �toroidal� boundary conditions.
Any such lattice will be called a regular kagome lattice, if
and only if any link �i , j� of L belongs to a 19-site cell C
contained in L that has the topology shown in Fig. 2�b�. In
general, the cell C will of course depend on the link �i , j� and
need not be unique. Examples for regular kagome lattices
include such interesting cases as the lattice depicted in Fig.
1, those in Figs. 3�a� and 3�b�, as well as any sufficiently
large kagome lattice with toroidal periodic boundary condi-
tions. The following theorem is the main result on linear
independence of valence-bond states, and will be proven in
Sec. III:

Theorem I. For any regular kagome lattice L, the set of
valence-bond states B�L� is linearly independent. Further-
more, one is sometimes interested only in full dimerizations
of the lattice, where every site is touched by a dimer, includ-
ing all boundary sites. I will call the lattice fully dimerizable
if and only if there is a way to group all sites into disjoint
pairs of nearest neighbors. Any such way will be called a full
dimerization. Full dimerizations of regular lattices are spe-
cial cases of dimer coverings as defined above. The corre-
sponding valence-bond states are thus a subset of the set
B�L�, and one obtains the following theorem as simple cor-
ollary of Theorem I.

c) d)

b)a)

FIG. 3. Regular and nonregular kagome lattices. ��a� and �b��
Regular kagome lattices. �b� is fully dimerizable, �a� is not, due to
an odd number of sites. ��c� and �d�� Nonregular kagome lattices.
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Theorem II. For any fully dimerizable regular kagome lat-
tice, the valence-bond states associated with full dimeriza-
tions are linearly independent.

III. PROOF OF THE LINEAR-INDEPENDENCE
PROPERTY

A. Regular kagome lattices

One immediate consequence of Theorem I is that the 19-
site cell shown in Fig. 2�b� does by itself already have the
stated linear-independence property. In this section, C will
always refer to a cell of this topology. Indeed, this seems to
be the smallest cell of the kagome lattices for which the set
B�C�, Eq. �4�, is linearly independent �see the appendix for
“spoilers” when C is chosen to be the cell in Fig. 2�a��. Con-
versely, it will be shown in the following that once this prop-
erty is established for the 19-site cell, it immediately gener-
alizes to any kagome lattice that is regular in the sense
defined above. Although I will focus on the kagome case, the
argument for this is very general and should allow for rather
direct generalizations to other cases of interest: Once the
linear independence of B�C� is established for suitable
“building blocks” C of the lattice, it will generalize to the
lattice as a whole. I will call these building blocks the
“bricks of linear independence” of the lattice L. These bricks
may quite generally be reasonably small, as is at least sug-
gested by the present example: The set B�C� for the 19-site
cell in Fig. 2�b� consists of 13 120 states, whose linear inde-
pendence can be verified numerically or using computer al-
gebra in a straightforward manner. This task amounts to
checking that a suitably defined integer overlap matrix has
full rank. I have used the LINBOX package53 for this purpose.
However, an analytic proof of the linear independence of
B�C� is also possible54 using the results stated in the appen-
dix for the 12-site cell of Fig. 2�a�. The latter can be derived
using Rumer-Pauling valence-bond diagrams.55–58 It is of
little importance, however, whether the linear-independence
property of the set B�C� is obtained by analytic or numerical
means. Once this property is established, the same property
follows for arbitrarily large regular lattices, as will be shown
in the following.

According to the above, the set B�C� defines a basis for
the space of valence-bond states VB�C�, Eq. �3�. If we label
these basis states by an index b and write �b� for the elements
of B�C�, we can therefore define a set of linear projection
operators Pb with the following properties,

Pb�b�� = �b,b��b�, PbPb� = �b,b�Pb. �5�

The action of the operators Pb within the space VB�C� is
fully defined by Eq. �5�.59 The existence of such operators is
guaranteed by the linear independence of the set B�C�. Note
that the Pb are not Hermitian since the states �b� are not
orthogonal.

As a next step, I define projection operators that leave all
valence-bond states corresponding to a given dimer covering
D invariant and annihilate all valence-bond states corre-
sponding to dimer coverings D��D. This is easily accom-
plished in terms of the operators defined by Eq. �5�. Recall

that each of the states �b��B�C� is of the form �b�= �D�
� ��D,j�, where ��D,j� denotes the state of the sites not
touched by the dimer covering. We can thus write Pb� PD,j.
The operators

PD = �
j

PD,j �6�

then satisfy

PD�D�� � ��D�,j� = �D,D��D�� � ��D�,j�, for any j ,

PDPD� = �D,D�PD. �7�

The idea is now to observe that the successive action of
operators of this kind defined on various 19-site bricks of
some larger regular lattice L can “single out” any given
dimer covering of this lattice. Detailed arguments are given
in the following.

Consider now a regular kagome lattice L. By definition,
every link of the regular lattice belongs to at least one 19-site
brick of the topology shown in Fig. 2�b�. For definiteness,
one may consider the brick shown in the upper left-hand
corner of the lattice in Fig. 1. Let now DC, DC��D�C� be
dimer coverings of the brick C. Further consider any state on
L that is compatible with the dimer covering DC in the sense
that it factorizes into the valence-bond state �DC� on
supp�DC� and any other state �S� on L \ supp�DC�, i.e., a state
of the form �DC� � �S�. The properties �7� of the operators
PDC�

, which act on the brick C, immediately imply

PDC�
�DC� � �S� = �DC,DC�

�DC� � �S� . �8�

To see this, all we need to do is to expand the state �S� in a
basis of the form ��DC,j� � �Sj�

� �, where the first factor is a
basis state of H�free�DC ,C�� as it appears in Eq. �7�, and the
second factor is an element of some basis of H�L \C�. Equa-
tion �8� then immediately follows from Eq. �7�.

Next consider a particular dimer covering D of L, and a
valence-bond state compatible with D, �D� � ��D,j�. Again,
��D,j� is a state of H�free�D ,L��, chosen from some arbitrary
basis. The dimer covering D induces a dimer covering of C,
the restriction DC of D on C, consisting of all dimers of D
that are fully contained in C �cf., e.g., Fig. 1�. Then, the
valence-bond state �D� � ��D,j� is of the form �DC� � �S� dis-
played in Eq. �8�. To make this explicit, one may introduce
the complement of the dimer covering DC in D, which con-
sists of those dimers in D that are not contained in DC, and
denote it by DC. Then by definition

�D� = �DC� � �DC� . �9�

Hence, the state �D� � ��D,j� is of the stated form with �S�
= �DC� � ��D,j�, and from Eq. �8� we have

PDC�
�D� � ��D,j� = �DC,DC�

�D� � ��D,j� �10�

for any dimer covering DC� of the brick C, where again the
operator PDC�

acts on this particular brick. In the following,
the case of interest will be that DC� is also obtained as the
restriction on C of some dimer covering D� of L. In words,
Eq. �10� then says that the valence-bond state �D� � ��D,j�

LINEAR INDEPENDENCE OF NEAREST-NEIGHBOR… PHYSICAL REVIEW B 80, 165131 �2009�

165131-5



will survive the action of PDC�
unaltered if the dimer cover-

ings D and D� locally look the same within the brick C and
will be annihilated if not. Here, “looking the same locally”
means that all dimers fully contained in C are identical.

The proof of the linear independence of the set B�L� is
now trivial. Suppose we have a linear combination of states
in B�L� that vanishes identically

�
D�D�L�

�
j=1

nD

�D,j�D� � ��D,j� = 0. �11�

We need to show that this implies that all �D,j are zero. First
we successively act on Eq. �11� with all operators of the form
PDC�

for a fixed dimer covering D�, and for all bricks C of the
lattice, i.e., we act on Eq. �11� with

�
C

PDC�
. �12�

This will eliminate all D with D�D� from Eq. �11�. For, if
D�D�, there must be a link of the lattice which, say, belongs
to D but not to D�. Since the lattice is regular, there is a brick
C containing this link. The operator PDC�

corresponding to this
brick will then annihilate all states of the form �D� � ��D,j�.
Note that the operators PDC�

commute within VB�L�, since by
Eq. �10�, VB�L� is the span of a common set of eigenstates.
It follows, then, that the action of Eq. �12� on Eq. �11� anni-
hilates all states with D�D�, whereas all states of the form
�D�� � ��D�,j� are invariant under this action. We are thus left
with an equation of the form

�
j=1

nD�

�D�,j�D�� � ��D�,j� = 0. �13�

But since the states appearing in here only differ
through the states ��D�,j� on free�D��, and the states ��D�,j�
are linearly independent by definition, it follows that �D�,j
=0 for any j. Since D� was arbitrary, all coefficients in Eq.
�11� must vanish identically. This completes the proof of
Theorem I.

B. Further generalizations

For reasons of simplicity, Theorems I and II have not been
stated in the most general form one could imagine. For one,
the restriction to sublattices of finite periodic kagome lat-
tices, which have toroidal topology, is not strictly necessary.
This was done because such lattices do not require a very
technical definition and are certainly general enough for
most purposes. Quite similarly, when talking about two-
dimensional manifolds one will think of these as being em-
bedded into three-dimensional Euclidean space in simple
enough cases, though this is not possible in general. Like-
wise, if one wants to apply the present results to a kagome-
type lattice, say, of Möbius-strip topology, one would desire
a more “local” definition of a regular kagome lattice. There
is, in fact, no real obstacle in applying the present results to
such a lattice since the operators PDC

are entirely local. The
only real requirement that must be made is thus that the
lattice is “built up” from the 19-site bricks defined above.

One must define carefully, however, what built up means
with regard to the neighborhood structure. For example, it is
clear that one cannot apply the present results to three-
dimensional stackings of planar kagome lattices without fur-
ther ado, if there are links along the third direction. A suffi-
ciently strong requirement would be that the lattice can be
covered by bricks, such that for each lattice site, there is a
brick containing the entire neighborhood of this site. More
generally, it is only necessary that the restrictions of any
dimer covering to all the bricks of the lattice uniquely deter-
mine the covering. For kagome-type lattices, using the arrow
representation60 �see Sec. IV B 4� one can show that this is
already the case when each site of the lattice, rather than
each link, is contained in a brick. This will be of some im-
portance in Sec. IV B 4. �Cf. Fig. 9 and caption.� However,
instead of trying to state Theorems I and II for the most
general class of lattices, it may be more efficient to consider
“nonregular” lattices on a case by case basis, and determine
if the construction of the preceding section can be used to
derive a linear-independence property. For example, the lat-
tice in Fig. 3�d� is certainly not regular but Theorem II still
applies. That is so because every full dimerization of this
lattice necessarily has dimers on any of the links between
two boundary sites. These dimers are thus mere spectators
and have no bearing on the question of linear independence.
The remaining lattice is, however, regular, and so the linear
independence of the valence-bond states corresponding to
full dimerizations still holds.

As stated, the present strategy to prove the linear indepen-
dence can be readily applied to other lattices,61 provided that
elementary “bricks” of the lattice can be identified which
cover the lattice in the sense discussed above, and for which
the linear independence of the set B holds. It is in general
possible to have more than one type of brick, which may be
an advantage if the lattice is somewhat irregular. Obvious
candidates to apply this method to include the triangular and
the “pentagonal”33 lattice, and also the square and the hon-
eycomb lattice in the presence of periodic boundary condi-
tions, which have so far been studied for open boundary
conditions only.26 One may be hopeful that the present strat-
egy works at least for lattices with comparable or lower co-
ordination number compared to the present case. While the
coordination number of the triangular lattice is notoriously
high, there is no a priori reason to exclude such cases from
consideration. The same is true for some higher-dimensional
lattices. A detailed case by case analysis is left for future
studies.

IV. A HAMILTONIAN WITH SUTHERLAND-ROKHSAR-
KIVELSON-RVB GROUND STATES

A. Generalized Klein Models

The final goal of this section is to construct a Hamiltonian
whose ground states are special superpositions of NN
valence-bond states. One natural starting point for this en-
deavor is the construction of a Hamiltonian whose ground-
state sector contains the entire manifold of NN valence-bond
states, but—if possible—no other states.
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In a very influential work,50 Klein discussed a strategy to
construct models of this kind on general lattices. For each
site i of the lattice, a projection operator Pi is considered
which acts on a cell consisting of the site i and all its nearest
neighbors, and projects onto the subspace of this cell that has
maximum total spin. The Klein Hamiltonian,

HKlein = �
i

Pi, �14�

then has a ground-state sector which includes all NN
valence-bond states of the lattice. In some cases of interest,
including the square lattice and the honeycomb lattice, it is
believed that these valence-bond states are a complete set of
ground states of Eq. �14�, and a rigorous proof exists for the
honeycomb case.26 In other cases, however, there are obvi-
ous ground states outside the valence-bond subspace. The
kagome lattice is an example of the latter kind, as demon-
strated by the state shown in Fig. 4. One may ask whether it
is possible to construct a local Hamiltonian for the kagome
lattice such that the NNVB states span the entire ground-
state sector. Since the Klein Hamiltonian �14� does not have
this property, one will need to consider projection operators
acting on cells larger than the five-site “bow ties” formed by
a site i and its nearest neighbors. Possible examples include
the cells shown in Fig. 5 and those in Figs. 2�a� and 2�b�. For
larger cells, with more than one internal site, it is not suffi-
cient to project onto the maximum spin sector. One solution
might be to project onto the sector with total spin �Ns /2
−Nb, where Ns is the number of sites of the cell and Nb the
minimum number of valence bonds that must be entirely
contained inside the cell in an arbitrary valence-bond states.
Similar constructions, with different motivations in mind,
have been explored in Refs. 31, 33, 62, and 63. However,
since internal sites may or may not bond with each other, the

number of valence bonds entirely contained within a cell
may be larger for some valence-bond states than for others.
In the present context, there is thus a more natural, and far
more restrictive �for larger cells� way to construct local pro-
jection operators for which valence-bond states are �say�
maximum eigenvalue eigenstates. For any cell C consider the
orthogonal projection operator PC onto the subspace VB�C�,
Eq. �3�, and the Hamiltonian

H = − �
C

PC. �15�

Here, the sum goes over all cells of a kagome lattice L that
have a certain topology, e.g., Fig. 2�a� and 5. Since VB�C� is
SU�2� invariant so is each projection operator PC and thus
Hamiltonian �15�. Furthermore, for any fixed cell C, any
valence-bond state will be a ground state of the operator −PC.
This is so since any state in B�L� is of the form �DC� � �S�,
with DC a dimer covering of C and �S� a state on L \ supp�DC�,
as explained above Eq. �9�. It thus satisfies

PC�DC� � �S� = �DC� � �S� , �16�

for reasons entirely analogous to those stated below Eq. �8�.
Valence-bond states are thus ground states of Eq. �15�. If the
cells on which the operators PC are defined are just the five-
site bow ties, Eq. �15� differs from the original Klein Hamil-
tonian only by a constant. For a sufficiently large choice of
cell, however, there will be no obvious non-valence-bond-
type ground states. This motivates the consideration of Eq.
�15� for more general cells. These cells should have the prop-
erty that they cover the considered lattice L entirely. More-
over, it is possible to extend the sum in Eq. �15� over more
than one type of cell. Furthermore, recall that the definition
of valence-bond states in Sec. II admits states with dangling
spins at the boundary �L of L, as long as �L is not empty.
However, a modification of the boundary terms in Eq. �15�
may restrict the ground-state sector of Eq. �15� to valence-
bond states corresponding to full dimerizations of the lattice.
Specifically, for cells C overlapping the lattice boundary �L,
one may restrict the dimer coverings D of C defining the
space VB�C�, Eq. �3�, to those where every boundary site of
L is touched by a dimer. With this modification, only
valence-bond states corresponding to full dimerizations will
be obvious ground states of Eq. �15�, even if the boundary is
not empty. For a sufficiently large size of the cell C, it seems
likely that the valence-bond states and their linear combina-
tions will be the unique grounds states of Eq. �15�. Note that
the linear independence, or lack thereof, of the set B�C� is

FIG. 4. �Color online� A ground state of the Klein model, Eq.
�14�, on the kagome lattice. The state has only one valence bond per
unit cell and each bow tie of the lattice fully contains one such
bond. The state obviously lies outside the space of valence-bond
states since there are many sites not participating in valence bonds.

FIG. 5. A seven-site sell. The generalized Klein Hamiltonian
�15� for this cell no longer has the ground state depicted in Fig. 4.
Some non-valence-bond ground states do however remain.
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irrelevant for Hamiltonian �15� to be meaningful, and is not
in any obvious way related to the question of the uniqueness
of the valence-bond ground states. For this reason we need
not limit our attention to cells that contain the 19-site bricks
studied in the preceding sections but smaller cells may suf-
fice. For example, when the seven-site cell depicted in Fig. 5
is used to define Hamiltonian �15�, some non-valence-bond
grounds states of the original Klein model will cease to be
ground states of Eq. �15� �e.g., the state in Fig. 4�, though not
all. The smallest candidate for the cell C on which to base
Hamiltonian �15� such that there are no non-valence-bond
ground states is the 12-site star-shaped cell depicted in Fig.
2�a�. A detailed study of the uniqueness of the valence-bond
ground states for this choice of cell is left for future work. In
the following, the ideas discussed in this section will be fur-
ther generalized to allow the construction of a Hamiltonian
whose only ground states, at least within the NN valence-
bond basis, are the SRK-type RVB wave functions.

B. The RVB Hamiltonian

While the generalized Klein models constructed in the
preceding subsection will have a lower ground-state degen-
eracy than the original Klein model �14�, this degeneracy is
still extensive. At the very least, every valence-bond state
corresponding to an arbitrary dimer covering D of the lattice
will be a ground state of any generalized Klein model. In this
section, a local Hamiltonian is constructed with RVB-type
ground states, which are certain superpositions of valence-
bond states. One desires these RVB ground states to be
unique and to describe quantum spin liquids with no sponta-
neously broken symmetry. A proof of the uniqueness within
the restricted subspace of valence-bond states will be given
in the following, whereas the generalization of the proof to
the full Hilbert space will rely on properties of the general-
ized Klein models. In order to have a fair amount of confi-
dence that the ground states describe spin liquids, the Hamil-
tonian will be designed such that its ground-state wave
functions are spin-1

2 realizations of the Rokhsar-Kivelson
point of the quantum dimer model of the on the kagome
lattice.24 These wave functions are in some sense the “proto-
typical” RVB-spin-liquid states, and at least for the quantum
dimer model describe a Z2 quantum liquid.24 Whether or not
this is still the case when dimers are replaced by singlet
valence bonds is a nontrivial question. It seems, however,
likely that the answer is affirmative. The main technical dif-
ficulty in answering this question is the mismatch of the
scalar product for corresponding states in the quantum dimer
and the spin-1

2 Hilbert space. Further discussion of this issue
will be given in Sec. V.

1. The quantum dimer model on the kagome lattice

In a seminal paper, Moessner and Sondhi23 showed that
the Rokhsar-Kivelson point of the quantum dimer model
�QDM� on the triangular lattice has ground states describing
a Z2 topological quantum liquid. A subsequent work by Mis-
guich et al.24 generalized these findings to the kagome lat-
tice, which was found to have several additional attractive
features. In the present context, the most important distinc-

tive feature of the QDM on the kagome lattice is the fact that
its RK point lies in the interior of the Z2-liquid phase. This is
in contrast to the triangular case, where the RK point of the
QDM lies at a �apparently first-order� phase boundary. This
will guarantee the uniqueness of the four “liquid” ground
states of the model constructed here within the valence-bond
subspace, and probably beyond, as argued in Sec. IV B 5.

The Hamiltonian of the QDM on the kagome lattice is a
sum of operators acting on star-shaped 12-site cells as de-
picted in Fig. 2�a�. In the following, the term “12-site cell”
will always refer to cells of this topology. Any dimer cover-
ing of this cell, as defined in Sec. II, defines a loop64 around
the central hexagon, given by the �shortest� line connecting
all points touched by a dimer, see Fig. 6. Each loop, on the
other hand, is associated with two possible dimer coverings
of the 12-site cell. These two dimer coverings are related by
a shift of all dimers along the loop, exchanging links with
and without a dimer. Such a shift will be referred to as a
“resonance move” along the loop formed by the dimers. For
definiteness, unless otherwise noted I will now assume a
translationally invariant kagome lattice with toroidal topol-
ogy. Every dimer covering D of the lattice gives rise to a
covering DC of every 12-site cell C and a corresponding
loop. The Hamiltonian of the QDM of this lattice is a sum of
operators acting on any 12-site cell of the lattice, where each
operator performs a resonance move on the loop of dimers
present on the cell it acts on. �See Ref. 24 for details.� The
ground states of this Hamiltonian consist of equal65 ampli-
tude superpositions of all dimer states within a topological
sector. Here, the term topological sector is used in a re-
stricted sense, where two dimer states belong to the same
sector if they can be transformed into one another via reso-
nance moves. On the kagome lattice, however, there seems24

to be no distinction between topological sectors in this ki-
netic sense and the four topological sectors on the torus de-
fined in terms of transition graphs or winding numbers �for
recent reviews, the reader is again referred to Refs. 17 and

a) b)

c) d)

FIG. 6. �Color online� Eight different types of dimer loops
around a central hexagon �Ref. 64�. Loops may be formed by �a�
three, �b� four, �c� five, or �d� six dimers. Each loop can be realized
by two different dimer configurations related by a resonance move.
Dashed lines indicate dimer configurations after a resonance move.
The loops should be regarded as the transition graphs between the
original and the resonated configuration, i.e., the set of all links
carrying either a dimer or a dashed line. Using rotational symmetry,
there are 32 different loops corresponding to 64 dimer
configurations.
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18�. The QDM on the kagome lattice thus has exactly four
degenerate ground states at the RK point. These were
shown24,66 to be quantum liquids and argued to be in the Z2
universality class.

2. Correspondence between dimer and valence-bond states:
Sign convention

It is easy to elevate the dimer liquid states just described
to states of superpositions of the spin-1

2 valence-bond states
associated with each dimer basis state. As opposed to the
preceding sections, the overall phases of valence-bond states
now matter. A convention for the overall phase of a valence-
bond state can be given by choosing an orientation for each
link of the lattice. This then fixes the sign of each valence-
bond singlet �ij�=−�ji� on the link �i , j�, and thus of the
valence-bond state, which is a product of singlets. A suitable
way to orient links is to do so counterclockwise around each
hexagon, Fig. 7. A resonance move can now be viewed as a
cyclic permutation of spins long a loop of dimers. With the
chosen orientation of links, the sign associated with the state
is preserved by such moves. To see this, note that for any
given 12-site cell of the lattice, flipping the orientation of the
links touching boundary sites does not change the sign of
any valence-bond state. This is so since any of the possible
dimer coverings of the 12-site cell shown in Fig. 6 covers an
even number of such links. But with this new orientation,
Fig. 8, all links of the 12-site cell are oriented counterclock-
wise around the central hexagon. It is then clear that a cyclic
permutation of spins around a dimer loop preserves the over-
all sign associated with the state. These observations moti-
vate that the orientation chosen in Fig. 7 is natural in the
following sense: If the basis of valence-bond states is defined
using the sign convention derived from this link orientation,
resonance moves on dimer states will translate into cyclic
permutations of spins in the associated valence-bond states.
One might now be tempted to write down an operator that
performs such resonance moves when acting on valence-
bond states. This is possible because of the linear indepen-
dence of the valence-bond states. Furthermore, due to the
general results of Sec. III, it is even possible to write such an
operator as a sum of local terms �acting, say, on 19-site
cells�. Such an operator cannot serve as a physical spin-1

2

Hamiltonian, however, since it would not be Hermitian with
respect to the standard scalar product of the spin-1

2 Hilbert
space. On the other hand, these observations do not rule out
the possibility that one can construct a local �Hermitian�
Hamiltonian whose exact ground states are just the equal
amplitude superpositions of valence-bond states, within each
topological sector and with the sign convention given here.
This question will be addressed in the following.

3. Construction of the Hamiltonian

I now consider a Hamiltonian of the following form

HRVB = − �
C

RC, �17�

where the sum goes over all 12-site cells �as defined above,
Fig. 2�a�� of the lattice and the RC are certain Hermitian
projection operators that enforce a “resonance” condition.
For the time being, I will consider again a finite translation-
ally invariant kagome lattice L of toroidal topology. Hence
the lattice L has no boundary sites. The definition of the
operators RC is as follows: for a given 12-site cell C, we first
choose a sign convention for the valence-bond states �D� in
accordance with the link orientation in Fig. 8. As explained
the preceding section, this convention is consistent with the
global sign convention chosen for valence-bond states on the
lattice L, Fig. 7. As discussed, every dimer pattern D on C
corresponds to one of two realizations of a certain loop
around the central hexagon, Fig. 6. By D� I now denote the
other realization related to D by a resonance move. In anal-
ogy with the definition of the set B�C�, Eq. �4�, we can now
define a set of “resonant states” R�C� via

R�C� = 	��D� + �D��� � ��D,j�:D � D�C�, j = 1, . . . ,nD
 .

�18�

Form the elements of R�C�, we can linearly generate any
state consisting of a resonant dimer loop with the free sites
not touched by the loop in an arbitrary state. Note that
free�D�=free�D�� and we may without loss of generality as-
sume that �D,j =�D�,j. This will avoid some unnecessary re-

FIG. 7. Orientation of links on the kagome lattice used to fix the
sign of valence-bond states. All links are oriented counterclockwise
around the hexagon they belong to. FIG. 8. Preferred link orientation for the 12-site cell. All links

are oriented counterclockwise around the central hexagon. This ori-
entation is consistent with the one shown in Fig. 7 for the entire
lattice, as explained in the text.
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dundancy under the exchange of D and D� in Eq. �18�.67 In
complete analogy with the space VB�C� of valence-bond
states on C, one may now define the space RL�C� of “reso-
nance loop” states on C, via

RL�C� = �
D�D�C�

H��D� + �D��� . �19�

The set R�C� linearly generates the space RL�C�, and in fact
turns out to be a basis of RL�C�, although this will not be
used in the following. It is natural to define the operator RC to
be the orthogonal projection onto the subspace RL�C�. Note
that Hamiltonian �17� then has all the symmetries of the
underlying lattice. In addition, it is invariant under SU�2�
rotations, since the space RL�C� is SU�2� invariant for each
C, for the same reasons stated below Eq. �3�.

Let us now consider Rokhsar-Kivelson-type spin-1
2 wave

functions defined as follows:

���� = �
D��

�D� , �20�

where ��D�C� contains all dimer coverings in a topological
sector as described above. A similar type of state on the
square lattice has been studied early on by Sutherland.52 In
view of this, I will refer to the spin-1

2 wave function, Eq.
�20�, as the “SRK” state, to distinguish it from the RK state
of hardcore dimers.

It is quite easy to see that Eq. �20� is indeed a ground state
of Eq. �17� and, in fact, of every operator −RC. To see this,
note that every state of the form

��DC� + �DC
��� � �S� , �21�

is invariant under the action of RC, where again DC is a dimer
covering of the cell C, and �S� is any state on L \ supp�DC�.
The reason for this is entirely analogous to that given below
below Eq. �8�. Equation �21� can be thought of as having a
resonance loop on the cell C. Since the eigenvalues of RC are
0 and 1 by definition, Eq. �21� is thus a ground state of −RC.
We now write Eq. �20� as a double sum

���� = �
DC

�
DC

�DC� � �DC� . �22�

In here, the outer sum goes over all dimer coverings of C,
whereas the inner sum goes over all possible complements
DC of DC such that DC�DC¬D is a dimer covering of L in
the topological sector �. Note that for DC

� instead of DC, the
possible choices for DC are exactly the same, since DC

� and
DC have the same support, and the dimer coverings DC�DC
and DC

� �DC are in the same topological sector by definition,
since they differ by a resonance move. We can thus also
rewrite Eq. �22� as

���� = �
�DC,DC

��
�
DC

��DC� + �DC
��� � �DC� , �23�

where the first sum now goes over �unordered� pairs
�DC ,DC

��. Since Eq. �23� is a sum over states of the form Eq.
�21�, it is manifestly invariant under the action of RC. This
proves that ���� is a ground state of −RC for each C. Hence
���� is a ground state of Hamiltonian �17�.

4. Proof of uniqueness within the valence-bond basis

So far we have succeeded in constructing a Hamiltonian
that has translational as well as SU�2� invariance and has
ground states of the SRK form, Eq. �20�. At the same time,
one may hope that this Hamiltonian lacks the extensive
ground-state degeneracy of the generalized Klein models dis-
cussed in Sec. IV A. On the other hand, it is not yet clear
how many ground states, Eq. �20�, has, both within as well as
outside the valence-bond subspace. In particular, since the
construction of HRVB closely follows that of the generalized
Klein models, one may worry that some of the large degen-
eracy of the latter remains in the present case. In this section,
it will be shown that this is not so, in the sense that at least
within the valence-bond state space VB�L� there is only one
ground state of the form �20� within each topological sector
�, on a finite kagome lattice L. In Sec. V, it will be argued
that either this already is the full degeneracy within the entire
Hilbert space or one could find a perturbation such that this
becomes the case. For simplicity, I will still assume periodic
boundary conditions and comment on more general lattices
in Sec. IV B 5.

Let us now consider a general state within the valence-
bond subspace

��� = �
D

aD�D� . �24�

Suppose ��� is a ground state of HRVB. I will now show that
the assumption that ��� is not a linear combination of the
states displayed in Eq. �20� then leads to a contradiction.

The fact that Eq. �24� is a ground state of HRVB implies
that it is a ground state of each individual operator −RC. For,
the SRK states Eq. �20� have this property and would hence
otherwise be lower in energy. This then implies that ��� is
invariant under the action of each RC,

RC��� = ��� . �25�

On the other hand, if ��� is not a linear combination of states
of the form �20�, there must be a pair of dimer coverings D
and D� related by a single resonance move, such that aD
�aD�. For otherwise, it is easy to see that ��� would just be
a superposition of SRK states, contrary to the assumption. So
there is a 12-site cell C such that the dimer loops contained in
C are DC and DC

� for D and D�, respectively, whereas the
remaining dimers are denoted by DC and are the same for D
and D�. We thus have

�D� = �DC� � �DC� ,

�D�� = �DC
�� � �DC� . �26�

Suppose, now, that we can find a projection operator P which
commutes with RC and has the property that

P��� = aD�D� + aD��D�� . �27�

Then, Eq. �25� implies

RC�aD�D� + aD��D��� = aD�D� + aD��D�� . �28�

By definition of RC, we have
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RC��D� + �D��� = RC��DC� + �DC
��� � �DC� = �D� + �D�� ,

�29�

where again the fact was used that RC leaves states of the
form �21� invariant. Multiplying the last equation by �aD
+aD�� /2, subtracting from Eq. �28�, and dividing by �aD
−aD�� /2 �which is nonzero by assumption� gives

RC��D� − �D��� = �D� − �D�� . �30�

By Eq. �26�, the state on the right-hand side of the last equa-
tion is clearly of the general form

��DC� − �DC
��� � �S� , �31�

with �S� some state on L \ supp�DC� �here, �S�= �DC��. Equa-
tion �31� is the counterpart of Eq. �21� with the resonance
loop replaced by an “antiresonance loop.” The latter are re-
lated to “vison excitations” in the QDM on the kagome
lattice.24 Two things now remain to be shown: �1� that an
operator P with the desired properties can be found and �2�
that no state of the form Eq. �31� can be invariant under the
action of RC, such that Eq. �30� leads to a contradiction. The
second statement would easily follow if the set B�C� were
linearly independent already for the 12-site cell. This is not
so, and to avoid technicalities of this nature here, the proof is
deferred to the Appendix. Here I will focus on the construc-
tion of the operator P, Eq. �27�. Consider

P ª �
C�

PDC�
, �32�

where the product goes over all 19-site bricks C� that have no
sites in common with the fixed 12-site cell C within which D
differs from D�. The projection operators PDC�

are those de-

fined in Eq. �6� and DC� is the restriction of D onto C� as
always. It is then clear that RC commutes with P since RC
only acts on C whereas P acts only on the complement C of
C in L. Furthermore, it is clear that the action of P leaves the
state �D� invariant by construction �cf. Eq. �10��, and the
same is true for the state �D��, since D and D� do not differ
on C. It remains to show that P annihilates every valence-
bond state other than �D� and �D��. To this end, it is best to
introduce the arrow representation for dimer coverings,60 as
shown in Fig. 9. Here, one assigns an arrow to each lattice
site, which points to the center of either of the adjacent tri-
angles. These arrows are further subject to the constraint that
each triangle must have either two inward pointing arrows or
none. We associate a dimer with any link between two in-
ward pointing arrows on any given triangle. It is easy to see
that the allowed arrow states are in one-to-one correspon-
dence with the dimer coverings of L. Furthermore, the
knowledge that a valence-bond state �D�� survives the action
of the operator PDC�

already determines the arrows associated

with D� for all sites in C�: all dimers of D� that are fully
contained in C� must be identical to dimers in D, i.e., DC�

�

=DC�. Hence the arrows on sites touched by such dimers are
determined while those of the remaining boundary sites of C�
must point outward, i.e., away from C�. Note that the latter
sites just make up the set free�DC� ,C��. Thus if �D�� survives

the action of P, the arrows corresponding to D� are deter-
mined for all sites in C. This follows since any such site
belongs to a 19-site brick C� that has no overlap with C �cf.
Fig. 9�, provided that the lattice is sufficiently large �in both
directions�, which will be assumed in the following. Further-
more, as is apparent from Fig. 9, this also determines the
arrows of D� on boundary sites of C, since when two arrows
of a triangle are determined, then so is the third. Hence, the
fact that �D�� survives the action of P determines all the
arrows associated with D� except those on the interior sites
of C. The arrows thus determined must be identical to those
of D and D� since the corresponding valence-bond states �D�
and �D�� likewise survive the action of P. However, as men-
tioned above, the arrows on the boundary sites of C deter-
mine the set free �DC� ,C� and thus determine the loop type
associated with DC�. The remaining choices for the arrows on
the internal sites of C then correspond to the two possible
realizations of this loop, which then precisely lead to the
dimer coverings D and D�. Hence, D� must be equal to either
D or D�. This concludes the proof of the two properties
required of P, namely, �RC , P�=0 and Eq. �27�. Note that the
construction of the operator P is essentially possible due to
the linear independence of the valence-bond states on C̄,
even though C̄ is not regular. �All sites of C̄ belong to a
19-site brick but not all links of C̄. Cf. Fig. 9 and the discus-
sion in Sec. III B.� I state the results of this section as

Theorem III. Let L be a sufficiently large finite periodic
kagome lattice. Then the SRK states, Eq. �20�, and their lin-
ear combinations are the only ground states of the Hamil-
tonian HRVB, Eq. �17�, within the valence-bond subspace
VB�L�.

5. Possible generalizations of Theorem III

The most important generalization of Theorem III one can
consider relates to the obvious question whether or not the

FIG. 9. �Color online� Arrow representation for the dimer cov-
ering shown in Fig. 1, except for the internal hexagon of the central
12-site cell C. The arrows shown are those that are uniquely deter-
mined by the condition that the associated valence-bond state sur-
vives the action of the operator P, Eq. �32�. The dashed triangles
indicate links that belong neither to the cell C nor to any 19-site
brick C� that has no overlap with C. The arrows at the corners of the
dashed triangles are nonetheless all determined �see text� and this
determines the loop formed by the dimer configuration on C �fat
line�.
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uniqueness of the SRK ground states holds within the entire
Hilbert space. Here I will briefly show that this question is
naturally analyzed in two steps, the first of which is just the
uniqueness within the valence-bond subspace, as stated in
Theorem III. The second step, which is the extension of this
statement to the full Hilbert space, may likely be analyzed in
terms of the �arguably simpler� generalized Klein model, Eq.
�15�, for the 12-site cells, now denoted HGK,12. More pre-
cisely, the following implication holds: if it can be shown
that the generalized Klein model HGK,12 has no ground states
outside the NNVB subspace, then this is also true for HRVB.
This follows from the fact that every ground state of HRVB is
necessarily also a ground state of HGK,12. To see this, it is
best to focus on the local-density matrix �C of a 12-site cell C
for a ground state ��� of HRVB. As discussed above, ��� is, in
particular, a ground state of −RC. The ensemble described by
�C can thus have no weight outside the space RL�C�, Eq.
�19�. But since RL�C��VB�C�, such a state is also a ground
state of PC, defined above Eq. �15�. Since C was arbitrary, ���
is thus a ground state of HGK,12. Needless to say, the reverse
implication need not hold. Hence even if the generalized
Klein model HGK,12 has non-valence-bond ground states, this
need not be true for HRVB. Moreover, if both HRVB and
HGK,12 had non-valence-bond ground states, it may be pos-
sible to find a generalized Klein model based on a larger cell
C� �e.g., the 19-site bricks� which does not have such ground
states. In this case, one can render the SRK ground states
unique by adding this generalized Klein Hamiltonian �multi-
plied by an arbitrary positive constant� to HRVB. However, it
seems likely that HGK,12 already has the desired properties in
which case no such perturbation is needed. I note that for the
usual Klein models, it seems that in all well-studied cases,
the NNVB ground states are either unique,26 or there are
obvious �i.e., simple product state� exceptions, such as the
one shown in Fig. 4. The latter does not seem to be the case
for HGK,12. One may thus be hopeful that the uniqueness of
the NN valence-bond ground states can be explicitly demon-
strated in this case, just as it has been possible for certain
Klein models26 �cf. also Ref. 68�. A systematic study of this
problem is reserved for future work.

Another natural generalization to consider is the applica-
tion of the present construction to different lattices. For the
square and honeycomb lattice, a different method is already
available.51 However, the method discussed here is also ap-
plicable in these cases, see below. The solvable points of the
underlying quantum dimer models on these bipartite lattices
correspond to critical states. This may also be true of the
corresponding spin-1

2 Hamiltonians. More akin to the
kagome case discussed here is the triangular lattice, at least
from the point of view of quantum dimer models.23 In the
triangular case, the RK point also describes a Z2 liquid phase,
albeit at a first-order phase boundary. Furthermore, the RK
points of quantum dimer models on bipartite lattices in three
dimensions have been argued to describe stable critical
phases.69–71 It seems desirable to generalize the methods de-
veloped here to all these cases.

On any lattice, the following generalization of the present
construction suggests itself �cf. again Ref. 61�. We consider a
cell C which is sufficiently large. This implies that all types
of resonance moves of the quantum dimer model on the

same lattice may take place within cells of this kind and also
that the cell has nonvanishing interior. We consider SRK-
type wave functions, and ask whether for these states, the
resulting density matrix �C of that cell is restricted to a cer-
tain subspace of H�C�. The answer will in general be affir-
mative for large enough C. In fact, �C will be restricted to
�i.e., have no weight outside of� a certain subspace
RL�C��VB�C�. Here, VB�C� is constructed just as before
from all possible restrictions of dimer coverings to the cell C
with free sites in an arbitrary state. VB�C� may be used to
define generalized Klein models, as discussed in Sec. III B.
To construct RL�C�, we introduce equivalence classes on the
set D�C� of dimer coverings of C, where two coverings be-
long to the same class if they are related by a series of reso-
nance moves taking place within the cell C. In analogy with
Eq. �18�, the set R�C� of resonating states on C is then de-
fined as equal amplitude superposition of valence-bond states
within one equivalence class. Again, the state of the free sites
is chosen from an arbitrary basis �but is fixed for any such
superposition�. It is then found that the space RL�C� spanned
by all states in R�C� contains all the nonzero weight of the
local-density matrix �C in an SRK-type state. These states are
thus ground states of a Hamiltonian constructed in analogy
with Eq. �17�. It is clear that these observations are com-
pletely analogous to those made for the kagome lattice
above, except that a language free of density matrices has
been given preference there. Likewise, a discussion of the
uniqueness of the SRK ground states on general lattices
should in most cases be feasible along lines similar to those
for the kagome case discussed above.

Finally, it is expected that the findings of the preceding
sections are not limited to periodic lattices but can be carried
over to reasonably benign lattices with an edge. On any such
lattice, one would want to add a prescription for boundary
terms of Hamiltonian �17�. For, in the absence of transla-
tional symmetry, there is no reason why these should be
identical to the bulk terms already defined. In fact, for 12-site
cells C that lie at the boundary of the lattice, one would again
want to alter the definition of the set R�C�, Eq. �18�, by
discarding all dimer coverings D�D�C� where some bound-
ary sites of L are not touched by a dimer. Otherwise, there
would be gapless edge excitations, where spins at boundary
sites are put into an arbitrary state and do not participate in
valence bonds. Such gapless edge modes are not generically
present in a Z2 topological state. However, the fact that the
above modification easily gets rid of these modes indicates
that a generic edge perturbation would do the same. A merely
technical subtlety arises in the construction of the operator P,
Eq. �32�, in the proof of Theorem III. When a 12-site cell C
is near the edge, it may not be possible to cover its comple-
ment C by 19-site bricks. One may, however, find other
“linear-independence bricks” near the edge, which may be
smaller than the 19-site bricks, since for edge cells C� the set
B�C�� would be subject to the same truncation discussed
above for the set R�C�.

V. DISCUSSION OF THE PHYSICAL IMPLICATIONS
OF THE SOLVABLE POINT

In the above, a point in the phase diagram of local
SU�2�-invariant spin-1

2 Hamiltonians on the kagome lattice
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has been identified for which exact ground states can be
found. A proof of the uniqueness of these ground states
within a restricted Hilbert space has been given. It has been
argued that this uniqueness likely holds within the full Hil-
bert space, possibly involving slight modifications of the
Hamiltonian, and strategies have been outlined to prove this.
Some interesting questions remain to be resolved by future
work, which will be addressed only at a qualitative level
here. These questions are: “is there a gap between the
ground-state sector and the excited states?” “How do corre-
lations behave at long distances?” “Do the ground states
break any symmetry ?” These questions are intimately re-
lated, both to each other and to the question of how much of
the properties of the kagome lattice QDM survives in the
present realization of the RK point through spin-1

2 degrees of
freedom. One may certainly hope that correlations largely
carry over from the quantum dimer case, where it has been
shown that any correlations between local operators are short
ranged.66 The main difficulty in generalizing this proof to the
present case is the nonorthogonality of the valence-bond
states. It seems that this may not change the physics much,
since the overlap between two random valence-bond states
tends to be very small, and is only appreciable for similar
valence-bond configurations. �See, however, Ref. 72 for a
discussion of the impact of the choice of scalar product in a
related but different problem.� The expected behavior is thus
that the ultrashort-ranged correlations of the QDM become
exponentially decaying for the SRK states, Eq. �20�. If so,
this would preclude the existence of broken symmetry and
would be a strong argument in favor of a gap. One may
caution that special Hamiltonians are known which are gap-
less despite short-ranged correlations.73 However, this is not
generically expected, and the knowledge that on any finite
torus the ground state precisely has a fourfold topological
degeneracy, combined with the absence of symmetry break-
ing, would be quite compelling evidence that the low-
temperature phase of Eq. �17� is the same as that of the
kagome lattice QDM. The latter is known to be a gapped Z2
liquid.24 Establishing the existence of an energy gap directly
will likely require numerical efforts. On the other hand, it
seems possible that the particularly benign properties of the
kagome lattice, which have given rise to strong exact state-
ments about dimer correlation functions for its RK states,66

may allow insights into correlations in the present case as
well. This would require one to tackle the issue of nonor-
thogonality, as discussed above, and will be left for future
work.

I note that one attractive feature of the kagome lattice
quantum dimer model is the exact knowledge of all
eigenstates,24 including spinons74 and Ising vortex41,75 exci-
tations, called “visons” in the recent literature.76 This does
not carry over to the present case, as the associated spin-1

2
wave functions would not be eigenstates of Hamiltonian �17�
for any obvious reasons. They would, however, be natural
variational candidates. Note that on the other hand, these
excitations do not disperse for the solvable quantum dimer
model, but should do so in the present case, which is cer-
tainly the generic behavior �cf., e.g., Ref. 77�.

The solvable Hamiltonian constructed here seems some-
what unrealistic due to the presence of operators that act on

12 spins at a time. It is not immediately clear how dominant
such terms are when the local operator RC is expanded in
two-spin and higher-order exchange terms. While explicitly
carrying out such an expansion would be worthwhile, there
is no reason to assume that nearest-neighbor two-body pro-
cesses will dominate. Even so, there is much to be said in
favor of the usefulness of an exactly solvable “reference
point.” First, if the solvable point turns out to be gapped, as
is expected in the present case, it must lie within the interior
of a phase. This phase will survive at least small perturba-
tions in the direction of more realistic Hamiltonians and
there is a distinct possibility that one may make these pertur-
bations large enough to reach a realistic regime without en-
countering a phase boundary. Second, while establishing the
existence of a liquid phase numerically is exceedingly diffi-
cult due to size limitations, it may be somewhat less so to
establish that two points belong to the same phase, especially
if this phase has a robust gap along a line connecting these
points. Hence, to establish the properties of a single refer-
ence point may be of considerable benefit, even if the refer-
ence point itself is unphysical. Third, one may expect that
higher-order exchange terms, as certainly present in Eq. �17�,
can be of considerable importance on the insulating side near
a metal-insulator transition, where a Hubbard-type expansion
parameter t /U is not small. Arguments of this type have been
made,78 at least for four-spin ring exchange terms, in the
concrete example of the triangular antiferromagnet
�-�ET�2Cu2�CN�3.10

It is worth noting that the recently studied “herbertsmith-
ite” kagome antiferromagnet13–15 may fit into a picture based
on a gapless “Dirac” spin-liquid state.79–81 The gapless na-
ture of this system is indicated by various experimental
probes, such as low-temperature susceptibility and specific
heat. Magnetic impurities may however play an important
role in these low-temperature properties �see, e.g., Ref. 82
for a brief summary of results�. The presence of gapless ex-
citations is also supported by some recent numerical
studies,83 though only for the singlet sector. A physical pic-
ture for gapless singlet excitations has been offered in Ref.
84.

If the nature of the low-lying excitations of the her-
bertsmithite compound is gapless, the low-temperature phase
of this system does not seem to be directly related to the
solvable point described in this work. Nonetheless, the exis-
tence of a solvable point of this kind may open up the pos-
sibility that a topological spin-liquid state can, in principle,
be realized in SU�2�-invariant kagome antiferromagnets, if
there is some mechanism that generates sufficiently high-
order spin couplings. I note that a very similar conclusion
has been reached before in Ref. 85 based on a projective
symmetry group86 analysis of Schwinger boson states.

VI. CONCLUSION

In this work, the linear independence of nearest-neighbor
valence-bond states on the kagome lattice has been proven
using a method that may allow generalization to other lat-
tices as well. Furthermore, capitalizing on techniques used in
the proof, a class of spin-1

2 model Hamiltonians has been
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constructed whose ground states simultaneously minimize
the energy of noncommuting local projection operators. One
variant of these projection operators leads to the notion of
“generalized Klein models.” Another variant of these opera-
tors, with a more restricted image, leads to an
SU�2�-invariant local Hamiltonian whose ground states
within the nearest-neighbor valence-bond manifold are
uniquely given by the four topologically degenerate
“Sutherland-Kivelson-Rokhsar” states on toroidal kagome
lattices. It is argued that these ground states describe a Z2
topological quantum liquid with unbroken translational and
SU�2�-rotational invariance. This is based on the close anal-
ogy to similar ground states of a quantum dimer model on
the same lattice, where a notion of rotational invariance is
lacking. Questions pertaining to the uniqueness of the SRK
ground states within the full Hilbert space have been reduced
to properties of the generalized Klein Hamiltonians, whose
detailed study is left to future work. I am hopeful that follow
up work on the remaining questions raised in this paper will
establish the existence of the Z2 topological phase within the
phase diagram of SU�2�-invariant spin-1

2 Hamiltonians on
the kagome lattice, and possibly other lattices, beyond rea-
sonable doubt.
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APPENDIX: EXCLUSION OF VISON CONFIGURATIONS
FROM THE GROUND-STATE MANIFOLD

In this appendix, a technical lemma is derived which com-
pletes the proof of the uniqueness of the SRK ground states
within the NNVB subspace, Theorem III. The proof of this
theorem was based in part on the following observation:
Consider a 12-site cell C of the topology shown in Fig. 2�a�.
On this cell we consider a state of the general form �31�,
which I restate here as

��D� − �D��� � �S� . �A1�

Here, D is a dimer covering of the 12-site cell, D� is its
counterpart related to D by a resonance move. �S� is some
state on the remaining sites of the lattice, L \ supp�D�. Then,
the statement to be shown is that no state of the form �A1�
may be invariant under the action of the operator RC con-
structed in Sec. IV B 3. The first step is to recast this state-
ment as a property of the 12-site cell alone, disentangled
from the remaining lattice. To this end, one may observe that
it is sufficient to show that no state of the following form,

��D� − �D��� � ��� , �A2�

may be a ground state of the operator −RC, where ��� is a
state on free�D ,C�. Equation �A2� is thus a state on C. One
way to see this is to observe that in the state Eq. �A1�, the
local-density matrix �C for the 12-site cell can be written as a

sum of orthogonal projection operators onto states of the
form �A2�. It then follows that if no state of the form �A2�
can be a ground state of −RC, then neither can any state of the
form �A1�. The latter is equivalent to the fact that no state of
the form �A1� may be invariant under the action of RC.

All that remains to be shown is thus that no state of the
form �A2� exists in the linear span of R�C�, Eq. �18�. Again,
this would be trivial if the set B�C� consisted of linearly
independent states but this is not the case for the 12-site cell
considered here. Luckily, one finds that there are only six
linear relations among the 730 states of the set B�C�. These
involve only the singlet sector and only five- and six-dimer
loops. The two 6-dimer loop states are automatically singlets,
whereas singlet five-dimer loop states have two free sites that
form a singlet bond. Figure 10 graphically depicts one such
linear relation, whereas the remaining five relations are ob-
tained by rotating the diagrams in Fig. 10. In this figure, each
bond denotes a singlet with orientations indicated by arrows.
The validity of the identity shown in the figure follows easily
from the following graphical identity for any pair of singlet
bonds between four spins

�A3�

We may also write the six linear dependences in a more
compact form as follows:

6L − �1,2� + �1,3� − �1,4� + �1,5� − �1,6� − 6L� = 0,

6L − �2,3� + �2,4� − �2,5� + �2,6� − �2,1� − 6L� = 0,

6L − �3,4� + �3,5� − �3,6� + �3,1� − �3,2� − 6L� = 0,

6L − �4,5� + �4,6� − �4,1� + �4,2� − �4,3� − 6L� = 0,

6L − �5,6� + �5,1� − �5,2� + �5,3� − �5,4� − 6L� = 0,

6L − �6,1� + �6,2� − �6,3� + �6,4� − �6,5� − 6L� = 0.

�A4�

Here, 6L denotes the first six-dimer loop state in Fig. 10, 6L�

the last. A term �a ,b� denotes a five-dimer loops state with
free sites a and b joined by a singlet bond from a to b, where
the boundary sites of C are labeled as in the first graph of the
figure. Here, b denotes the free site with a dimer on the same
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3

4

2

+ 0

1

FIG. 10. �Color online� One of six linear dependences of the
states in B�C� for the 12-site cell. The remaining five are related to
the one shown here by rotation. See text and Eq. �A4�.
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triangle and a denotes the free site without a dimer on the
same triangle. This determines all the remaining dimers, and
nearest-neighbor valence bonds are by definition oriented
counterclockwise around the central hexagon. The first line
in Eq. �A4� is thus exactly the relation depicted in Fig. 10.
Note that each �a ,b� appears in one and only one line of Eq.
�A4�. We may further note

�a,b� = − �b,a��. �A5�

Here, �a ,b�� denotes the state obtained from �a ,b� by shift-
ing all nearest-neighbor valence bonds along the loop they
form but leaving the singlet between sites a and b untouched
�hence the overall minus sign since the singlet bond between
a and b has opposite orientations in �a ,b� and �b ,a��. The
fact that the relations in Eq. �A4� are the only linear relations
between the states of B�C� can be shown analytically54 by
using Rumer-Pauling valence-bond diagrams.55–58 In addi-
tion, it is easy to verify this fact numerically, which I have
carried out using Ref. 53. Let us now assume that a state of
the form �A2� is contained in RL�C�, i.e., in the linear span of
R�C�. That is, we assume that there is a relation of the form

��D� − �D��� � ��� = �
D�,j

��D�,j��D�� + �D���� � ��D�,j�

�A6�

and want to show that this leads to a contradiction. Here, the
prime restricts the sum to one of the two dimer coverings per
loop. One may first observe that the dimer covering D on the
left-hand side must correspond to a five- or six-dimer loop.
Otherwise, there would be a nontrivial linear relation involv-
ing a three- or four-dimer loop valence-bond state, and such
a relation does not exist, since Eq. �A4� is a complete set of
linear relations. Furthermore, the state in Eq. �A6� cannot
survive a projection onto the subspace of nonzero total spin

�which affects only the ��� factors�. For otherwise, there
would be a nontrivial linear relation involving nonsinglets,
which again does not exist. Hence, Eq. �A6� must be of one
of the following two forms,

6L − 6L� = �6�6L + 6L�� + �
a�	b�

�a�,b���a�,b�� − �b�,a��� ,

�A7a�

�a,b� + �b,a� = �6�6L + 6L�� + �
a�	b�

�a�,b���a�,b�� − �b�,a��� ,

�A7b�

where Eq. �A5� was taken into account. Let us focus on Eq.
�A7a� first. As a nontrivial linear relation, it must be possible
to obtain Eq. �A7a� as a linear combination of the six rela-
tions in Eq. �A4�,

�
i=1

6


i�i, �A8�

where the �i represent the six lines of Eq. �A4�. The require-
ment that �a� ,b�� and �b� ,a�� must enter with opposite signs
results in the requirement that 
i=−
 j for any i� j, which is
evidently impossible. Next, let us try to obtain Eq. �A7b�
from Eq. �A8�. The situation is similar. There is now a single
pair �i , j�= �a ,b� for which the relation 
i=−
 j need not
hold. For any i� j with �i , j�� �a ,b�� �j , i�, 
i=−
 j still
follows from the same reasoning as before. Still, this is im-
possible to satisfy. This concludes the proof that no state of
the form �A2� can be expressed as a linear combination of
the resonance loop states making up the set R�C�, and hence
no state of the form �A1� is invariant under the action of the
operator RC, as explained initially.
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