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Spectral singularities are predicted to occur in a non-Hermitian extension of the Friedrichs-Fano-Anderson
model describing the decay of a discrete state �a� coupled to a continuum of modes. A physical realization of
the model, based on electronic or photonic transport in a semi-infinite tight-binding lattice with an imaginary
impurity site at the lattice boundary, is proposed. The occurrence of the spectral singularities is shown to
correspond either to a diverging reflection probability �for an amplifying impurity� or to a vanishing reflection
probability �for an absorbing impurity� from the lattice boundary. In the former case, the spectral singularity of
the resolvent is also responsible for the nondecay of state �a� into the continuum, in spite of the absence of
bound states.
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I. INTRODUCTION

Over the last decade, a great attention has been devoted to
investigate the properties of non-Hermitian physical systems.
In particular, it has been shown that the framework of quan-
tum mechanics can be extended by relaxing the common
constraint of Hermiticity for the underlying Hamiltonian H
�see, for instance, Refs. 1–3 and references therein�, provided
that H has a real energy spectrum and is diagonalizable. In
this case, after a proper change in the inner product �metric�
of the Hilbert space, the non-Hermitian Hamiltonian H may
be used to define a unitary quantum system.3 Examples of
such systems include non-Hermitian Hamiltonians with
parity-time �PT� symmetry,4 in which the reality of the en-
ergy spectrum �bound as well as radiation states� below a
symmetry-breaking transition has been proved for several
complex potentials.1 Unfortunately, non-Hermitian Hamilto-
nians possessing a real-valued energy spectrum may fail to
be diagonalizable because of the occurrence of exceptional
points in the point spectrum5,6 or of spectral singularities in
the continuous part of the energy spectrum.7–9 Exceptional
points refer to the coalescence of two or more discrete eigen-
values together with their eigenvectors; their physical rel-
evance has been investigated in several works, and different
physical realizations have been proposed and experimentally
demonstrated.10 On the other hand, spectral singularities re-
fer to divergences of the resolvent operator G�z�= �z−H�−1

belonging to the continuous spectrum of H, i.e., which do not
correspond to square-integrable eigenfunctions. As opposed
to exceptional points, spectral singularities have received
less attention from physicists and have been mainly viewed
as a curious mathematical property of certain non-Hermitian
operators.7–9 The physical meaning and the relevance of
spectral singularities have been highlighted solely quite re-
cently, notably by Mostafazadeh11 �see also Refs. 8, 9, 12,
and 13� in the framework of wave scattering by complex
potentials.14 Mostafazadeh showed that spectral singularities
of a non-Hermitian Hamiltonian with a complex potential
correspond to divergences of reflection and transmission co-
efficients of scattered states, i.e., to resonances with vanish-
ing spectral width. He also investigated in details the appear-

ance of spectral singularities in an electromagnetic
realization of a non-Hermitian Hamiltonian with PT symme-
try based on a waveguide filled by an atomic gas,11,15 follow-
ing an earlier proposal by Ruschhaupt and co-workers.16

It is the aim of this work to investigate the onset of spec-
tral singularities in a non-Hermitian extension of the famous
Friedrichs-Fano-Anderson �FFA� model,17–19 which gener-
ally describes the decay of a discrete state coupled to a con-
tinuum of modes. The FFA model is encountered in different
areas of physics, ranging from atomic physics20–22 to quan-
tum electrodynamics23,24 and condensed-matter physics.25–29

The FFA model has been studied in the quantum theory of
nonintegrable systems30 and used to describe unstable quan-
tum systems, quantum-mechanical decay, and quantum Zeno
dynamics.31,32 Simple models of single-particle electronic or
photonic transport in tight-binding lattices can be also de-
scribed by means of FFA Hamiltonians.25–29,33–38 In this
work it is shown in particular that spectral singularities can
be observed in photonic or electronic transport in semi-
infinite tight-binding lattices with an imaginary impurity site
at the lattice boundary, leading to either a diverging or a
vanishing wave reflection from the lattice boundary.

The paper is organized as follows. In Sec. II we introduce
a non-Hermitian extension of the FFA model and derive the
conditions for the appearance of spectral singularities. In par-
ticular, it is shown by direct calculations that the appearance
of divergences of the resolvent operator G�z� on the branch
cut correspond to the nondiagonalizability of the FFA Hamil-
tonian. In Sec. III we present an example of non-Hermitian
FFA model showing spectral singularities, which provides a
simple model of electron or photonic transport in a semi-
infinite tight-binding lattice with a boundary impurity site. It
is shown that spectral singularities in this model correspond
to either a vanishing or a diverging reflection probability
from the lattice boundary. Finally, in Sec. IV the main
conclusions are outlined.

II. SPECTRAL SINGULARITIES IN A NON-HERMITIAN
FRIEDRICHS-FANO-ANDERSON MODEL

A. Model

The standard FFA model describes the interaction of a
discrete state �a�, of energy Ea, with a continuous set of
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states �k� with energy E�k� �see, for instance, Refs. 22, 24–
26, 29, and 36�. Here, �a� and �k� represent a complete set of
Dirac states in the Hilbert space which satisfy the orthonor-
mal conditions �a �a�=1, �a �k�=0, and �k� �k�=��k−k��. The
Hamiltonian of the full system can be written as H=H0+V,
where

H0 = Ea�a��a� +� dk E�k��k��k� �1�

is the Hamiltonian of the noninteracting discrete and con-
tinuous states, and

V =� dk�v�k��a��k� + v��k��k��a�� �2�

is the �self-adjoint� interaction term, described by the spec-
tral coupling function v�k�. Typically, we assume that the
energy E�k� of continuous states spans the interval E1�E
�E2 �eventually E2=��, and E�k� is a monotonic function
�either increasing or decreasing� of k, i.e., we assume that
there are no energy degeneracies of continuous states. The
state vector of the system ��� evolves according to the
Schrödinger equation �with �=1�

i
� ���
�t

= H��� . �3�

Note that, provided that the energies Ea and E�k� are real
valued, the Hamiltonian H is Hermitian. The spectrum of H
can be determined either by analyzing the singularities of the
resolvent G�z�= �z−H�−1 or by projecting the eigenvalue
equation H���=E��� on the basis 	�a� , �k�
. As is well known,
the continuous spectrum of H is E1�E�E2, i.e., the same as
that of H0, whereas the point spectrum can be either empty or
composed by a number of discrete eigenvalues, either out-
side or embedded into the continuous spectrum �see, for in-
stance, Refs. 22, 39, and 40�.

We now relax the Hermiticity condition of the FFA model
by allowing the “energy” Ea of the discrete state �a� to be
complex valued. However, we will assume that the spectrum
of H remains real valued in spite of the non-Hermiticity of
H. The condition for the spectrum of H to remain real valued
will be discussed below in Sec. II B and corresponds to the
absence of bound states, i.e., to an empty point spectrum.
This means that a non-Hermitian FFA Hamiltonian has a
real-valued energy spectrum if and only if its spectrum is
purely continuous. We are interested here to determine, if
any, the appearance of spectral singularities of H, which
would prevent H to be diagonalizable. This problem can be
addressed in two ways: �i� by the determination of the resol-
vent G�z� and �ii� by a direct diagonalization of H following
the original procedure by Fano,18 extended to account for the
non-Hermitian nature of H. In the former case, a spectral
singularity at E=E0, embedded in the continuous spectrum
�E1 ,E2�, is revealed as a divergence of the Green’s function
G�x ,y ;z�= �x �G�z�y� in a neighborhood of z=E0, divergence
which does not corresponds to a bound state embedded in the
continuum.9 In the latter case, a spectral singularity at E

=E0 occurs when �E0
† �E0�=0, where �E0� and �E0

†� are the
eigenfunctions of H and of its adjoint H†, respectively, cor-
responding to the eigenvalue E0.9

B. Spectral singularities: The resolvent approach

For a given complex number z, the resolvent operator
G�z� of the Hamiltonian H is defined as

G�z� = �z − H�−1, �4�

i.e., G�z��z−H�= �z−H�G�z�=I, where I is the identity op-
erator. The knowledge of the resolvent of H, for any z, is
equivalent to the knowledge of the set of eigenfunctions and
eigenvalues of H. In particular, the singularities of G�z� in
the complex plane define the spectrum of H: an eigenvalue E
belonging to the point spectrum of H is a pole of G�z�,
whereas the branch cut of G�z� determines the continuous
part of the spectrum of H. The Hamiltonian H is said to have
a spectral singularity at E=E0, where E0 belongs to the con-
tinuous spectrum of H, if the function

G�,��z� = ���G�z��� �5�

is unbounded in the neighborhood of z=E0, and E0 does not
belong to the point spectrum of H, i.e., it does not corre-
sponds to a bound state embedded in the continuum.9 In the
previous equation, ��� and ��� are two assigned functions of
the Hilbert space; in particular, for ���= �x� and ���= �y� one
obtains the coordinate representation of the resolvent G, i.e.,
the Green’s function G�x ,y ;z�= �x �G�z�y�. An interesting
property of the FFA Hamiltonian is the possibility to calcu-
late the resolvent in a closed form. The procedure to calcu-
late G�z� is well known for the Hermitian case �see, for in-
stance, Ref. 26� and can be extended mutatis mutandis to the
non-Hermitian FFA model considered in this work. As de-
tailed in Appendix A, the matrix elements of the resolvent
G�z� on the complete basis 	�a� , �k�
 read explicitly

Ga,a � �a�G�z�a� =
1

z − Ea − ��z�
, �6�

Ga,k � �a�G�z�k� =
v�k�

�z − E�k���z − Ea − ��z��
, �7�

Gk,a � �k�G�z�a� =
v��k�

�z − E�k���z − Ea − ��z��
, �8�

Gk,k� � �k�G�z�k��

=
v�k��v��k�

�z − E�k���z − E�k����z − Ea − ��z��
+

��k − k��
z − E�k��

,

�9�

where ��z� is the self-energy, defined by

��z� =� dk
�v�k��2

z − E�k�
. �10�

Note that, by introducing the density of states 	�E�
= ��E /�k�−1 and letting V�E�=	�E��v�E��2 �V�E�=0 for E
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E2 and E�E1�, the self-energy can be written in the
equivalent form

��z� = �
E1

E2

dE
V�E�
z − E

. �11�

Note also that ��z� is not defined on the segment �E1 ,E2� of
the real axis, and one has

��z = E � i0+� = ��E�  i�V�E� , �12�

where

��E� = P�
E1

E2

dE
V�E�
E − E

, �13�

P denotes the principal value, and E is real valued. There-
fore, ��z� has a branch cut in the interval �E1 ,E2�.

For two assigned functions ���=�a�a�+�dk ��k��k� and
���=�a�a�+�dk ��k��k� of the Hilbert space, the complex
function G�,��z�= �� �G�z��� can be readily calculated as

G�,��z� = �a
��aGa,a�z� + �a

�� dk ��k�Ga,k�z�

+ �a� dk ���k�Gk,a�z�

+� dkdk� ���k����k�Gk�,k�z� . �14�

Substitution of Eqs. �6�–�9� into Eq. �14� finally yields

G�,��z� = Ga,a�z��1�z� + �2�z� , �15�

where we have set

�1�z� = �a
��a + �a

�� dE
	�E���E�v�E�

z − E

+ �a� dE
	�E����E�v��E�

z − E
+ � dE

	�E�v�E���E�
z − E

�
�� dE

	�E�v��E����E�
z − E

� , �16�

�2�z� =� dE
	�E����E���E�

z − E
. �17�

We are now ready to determine the singularities of the resol-
vent, i.e., the spectrum of H and possible spectral singulari-
ties. To this aim, let us notice that �1�z� and �2�z� are
bounded functions of z and have a branch cut on the segment
�E1 ,E2� of the real axis �as for the self-energy ��. According
to Eq. �15�, we may therefore limit to consider the singulari-
ties of Ga,a�z�. From Eqs. �6�, �11�, and �12� one can
conclude that:

�i� The continuous spectrum of H is the same as that of
H0, i.e., the interval �E1 ,E2� of the real axis, where G�z� has
a branch cut.

�ii� The point spectrum of H, corresponding to bound
states outside the continuum, is composed by the complex
roots z of the equation

z − Ea = ��z� , �18�

in correspondence of which the resolvent G�z� has a pole.
�iii� A spectral singularity E0 of the continuous spectrum

�E1 ,E2� is any solution of the coupled equations

Im�Ea� = � �V�E0� , �19�

E0 − Re�Ea� = ��E0� , �20�

provided that Im�Ea��0.41

Note that real-valued energies cannot belong to the point
spectrum of H because Eq. �18� does not have real-valued
roots whenever H is non-Hermitian.42 This means that the
point spectrum of H, if not empty, is strictly complex valued.
On the other hand, the continuous part of the spectrum is real
valued according to property �i�. Therefore, we may con-
clude that the energy spectrum of the non-Hermitian FFA
Hamiltonian is real valued if and only if its spectrum is
purely continuous. In this case, spectral singularities in the
continuous spectrum occur whenever Eqs. �19� and �20� can
be simultaneously satisfied. It should be noted that the be-
havior of G�z� in the neighborhood of the spectral singularity
z=E0 on the continuous spectrum is different for an “absorb-
ing” �Im�Ea��0� and for an “amplifying” �Im�Ea�
0� com-
plex energy Ea of state �a�. Since the spectral coupling V�E0�
is always positive, for an absorbing complex energy, Eq. �19�
can be satisfied by taking the lower �negative� sign on the
right-hand side; correspondingly, from Eqs. �6� and �12� it
follows that Ga,a�z� is unbounded when z→E0 from the bot-
tom of the real energy axis, i.e., for Im�z��0, but Ga,a�z�
remains bounded when z→E0 with Im�z�
0.43 Conversely,
for an amplifying complex energy Im�Ea�
0, Eq. �19� can
be satisfied by taking the upper �positive� sign on the right-
hand side; correspondingly, Ga,a�z� is unbounded when z
→E0 with Im�z�
0, but it remains bounded when z→E0
with Im�z��0.43 Such a different behavior of spectral singu-
larities for an absorbing or an amplifying complex energy Ea
has some relevant physical implications that will be dis-
cussed in Secs. II D and III C. In Sec. II D it will be shown
that the appearance of a spectral singularity in the amplifying
case is responsible for the nondecay of state �a� into the
continuum, in spite of the absence of bound states; in Sec.
III C the interplay between spectral singularities and wave
scattering will be investigated for a semi-infinite tight-
binding lattice realization of the FFA Hamiltonian.

C. Spectral singularities: The Fano diagonalization procedure

Let us assume that the spectrum of the non-Hermitian
Hamiltonian H=H0+V is real valued. As shown in the pre-
vious subsection, this implies that the spectrum of H is
purely continuous and spans the interval �E1 ,E2�. Let us in-
dicate by �E� the �improper� eigenfunction of H correspond-
ing to the eigenvalue E, and by �E†� the �improper� eigen-
function of the adjoint H† corresponding to the same
eigenvalue E. For H to be diagonalizable, the set of functions
	�E� , �E†�
 must form a complete biorthonormal basis of Hil-
bert space,9 that is,
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�E†�E�� = ��E − E��, �
E1

E2

dE�E��E†� = I . �21�

A spectral singularity at E=E0 sets in when

�E0�E0
†� = 0, �22�

which prevents H to be diagonalizable. To determine the
onset of spectral singularities of the FFA Hamiltonian H, we
can thus proceed by calculating the eigenfunctions �E� of H
and �E†� of its adjoint H† following the diagonalization pro-
cedure used by Fano18 in the problem of atomic autoionizing
resonances �see also Refs. 17 and 21�, properly modified to
account for the non-Hermitian nature of H. To this aim, we
expand the eigenstates �E� and �E†� on the orthonormal and
complete basis 	�a� , �k�
 as

�E� = ��E��a� +� dk ��E,k��k� , �23�

�E†� = �†�E��a� +� dk �†�E,k��k� , �24�

with expansion coefficients ��E�, �†�E�, ��E ,k�, and �†�E ,k�
to be determined. Note that

�E��E†� = ���E���†�E� +� dk ���E�,k��†�E,k� . �25�

Using Eqs. �1�, �2�, and �23�, the eigenvalue equation H�E�
=E�E� yields the following coupled equations for the expan-
sion coefficients ��E� and ��E ,k�:

�Ea − E���E� +� dk v�k���E,k� = 0, �26�

�E�k� − E���E,k� + v��k���E� = 0. �27�

Equation �27� can be solved for ��E ,k� and substituted into
Eq. �26�. However, there is a singularity at E�k�=E, so that
1 / �E�k�−E� must be written as its principal and delta func-
tion parts, yielding �see Refs. 18 and 21�

��E,k� = − v��k���E�P
1

E�k� − E
+ z�E��„E�k� − E…� .

�28�

The coefficient z�E� in front of the delta function on the
right-hand side of Eq. �28� is determined by substituting Eq.
�28� into Eq. �26� and requiring that ��E� does not vanish.
This yields

z�E� =
Ea − E + ��E�

V�E�
, �29�

where ��E� is defined by Eq. �13�, V�E�=	�E��v�E��2, and
	�E�= ��E�k� /�k�−1 is the density of states.

Similarly, the eigenvalue equation H†�E†�=E�E†� yields

�Ea
� − E��†�E� +� dk v�k��†�E,k� = 0, �30�

�E�k� − E��†�E,k� + v��k��†�E� = 0, �31�

and the following expression of the coefficient �†�E ,k� can
be derived following the same procedure as above:

�†�E,k� = − v��k��†�E�P
1

E�k� − E
+ z��E��„E�k� − E…� .

�32�

Substitution of Eqs. �28� and �32� into Eq. �25� yields

�E��E†� = ���E���†�E�F�E,E�� , �33�

where we have set

F�E,E�� = �
E1

E2

dE V�E�P
1

E − E
+ z��E���E − E��

�P
1

E − E�
+ z��E����E − E��� + 1. �34�

The calculation of the integral on the right-hand side of Eq.
�34� is complicated by the product of two principal parts,
which must be properly resolved into its partial fraction and
singular terms �see Ref. 18 or the Appendix of Ref. 21�.
Taking into account that

P
1

E − E
P

1

E − E�
= P

1

E − E�
P

1

E� − E
− P

1

E − E
�

+ �2��E� − E���E − E� , �35�

and using Eq. �29�, from Eq. �34� one obtains

F�E,E�� = V�E���2 + z�2�E����E − E�� , �36�

so that �see Eq. �33��

�E��E†� = ���E��†�E�V�E���2 + z�2�E����E − E�� . �37�

In order for 	�E� , �E†�
 to represent a complete biorthonormal
set of functions �Eq. �21��, the amplitudes ��E� and �†�E�
should be thus normalized such that

���E��†�E�V�E���2 + z�2�E�� = 1. �38�

For the Hermitian FFA model, the energy Ea is real valued,
z�E� turns out to be real valued, and �†�E�=��E� �because of
�E†�= �E��, so that Eq. �38� is solved to yield

���E��2 =
V�E�

�2V2�E� + �Ea − E + ��E��2 �39�

according to Fano.18 The physical meaning of Eq. �39� is
well known:18 owing to the coupling with the continuum, the
discrete state �a� is “diluted” throughout a set of continuous
states �i.e., it becomes a resonance for H� with a typical
resonance curve ���E��2 peaked at E�Ea−��Ea� of width
��V�Ea�.44

For the non-Hermitian FFA model, the energy Ea is com-
plex valued and from Eq. �37� it follows that a spectral sin-
gularity can appear at the energy E=E0 of the continuous
spectrum such that �2+z�2�E0�=0, i.e., when
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z��E0� =  i� . �40�

Using Eq. �29�, Eq. �40� yields the following conditions for
the appearance of a spectral singularity in the non-Hermitian
FFA model:

Im�Ea� = � �V�E0�, Re�Ea� − E0 + ��E0� = 0, �41�

which are precisely Eqs. �19� and �20� derived in Sec. II B
following the resolvent approach to spectral singularities.

D. Spectral singularities and decay dynamics

Hermitian FFA models are often used to describe the evo-
lution of unstable quantum systems and the related problem
of quantum-mechanical decay and deviations from an expo-
nential decay law �see, for instance, Refs. 31 and 32 and
references therein�. If the system is initially prepared in state
�a�, i.e., if ���t=0��= �a�, the survival probability P�t� to find
the system at state �a� at a successive time t is given by
P�t�= �ca�t��2, where

ca�t� = �a���t�� = �a�exp�− iHt��a� . �42�

Here, we consider the case of a non-Hermitian FFA Hamil-
tonian H with a real-valued �and thus purely continuous�
energy spectrum and briefly discuss the physical implications
of spectral singularities of H on the decay dynamics of sur-
vival probability P�t�. The temporal evolution operator
exp�−iHt� of the system can be written in terms of the resol-
vent G�z� as

exp�− iHt� =
i

2�
�

B
dz G�z�exp�− izt� , �43�

where the Bromwich path B is any horizontal line Im�z�
=const
0 in the upper half of the complex z plane �see Fig.
1�a��. Substitution of Eq. �43� into Eq. �42� yields

ca�t� =
i

2�
�

B
dz Ga,a�z�exp�− izt� , �44�

where the matrix element Ga,a�z� of the resolvent is given by
Eq. �6�. As discussed in Sec. II B, Ga,a�z� is analytic in the

full complex plane, except for the branch cut on the real axis,
from z=E1 to z=E2 �see Fig. 1�, where it can also become
unbounded at energies E0 corresponding to spectral singulari-
ties. The integral on the right-hand side of Eq. �44� can be
evaluated by the residue method after suitably closing the
Bromwich path B with a contour in the Im�z��0 half plane
�see, e.g., Ref. 31�. Since the closure crosses the branch cut
on the real axis, the contour must necessarily pass into the
second Riemannian sheet in the sector of the Im�z��0 half
plane with E1�Re�z��E2, whereas it remains in the first
Riemannian sheet in the other two sectors Re�z��E1 and
Re�z�
E2 of the Im�z��0 half plane. To properly close the
contour, it is thus necessary to go back and turn around the
two branch points of the cut at z=E1 and z=E2, following the
Hankel paths h1 and h2 as shown in Fig. 1�b�. Indicating by
Ga,a

�II��z� the analytical continuation of Ga,a�z� from the upper
�Im�z�
0� to the lower �Im�z��0� half plane across the
branch cut, and by z1 ,z2 , . . . the �possible� poles of Ga,a

�II��z�
that lies in the sector Im�z���, E1�Re�z��E2 of the com-
plex plane �with �
0 arbitrarily small�, assuming that the
poles are of first order, one can write

ca�t� = �
zk

Rk exp�− izkt� + C�t� , �45�

where Rk is the residue of Ga,a
�II��z� at z=zk and C�t� is the

contribution from the contour integration along the Hankel
paths h1 and h2,

C�t� =
i

2�
�

E1−i�

E1+i0

dz�Ga,a�z� − Ga,a
�II��z��exp�− izt�

+
i

2�
�

E2−i�

E2+i0

dz�Ga,a
�II��z� − Ga,a�z��exp�− izt� . �46�

The cut contribution C�t� vanishes as t→�; however, it is
responsible for the appearance of nonexponential features in
the decay dynamics.31 For the Hermitian FFA model, the
poles zk of Ga,a

�II��z� lie below the real axis, i.e., Im�zk��0,
because Ga,a�z=E+ i0+� is a bounded function. Therefore,
P�t�→0 as t→�.45 Typically, Ga,a

�II��z� has one pole below the
imaginary axis,31 so that the decay of ca�t� follows an expo-
nential law �with the decay rate determined by the imaginary
part of the pole�, corrected by the cut contribution C�t�. Let
us consider now the non-Hermitian FFA model with a spec-
tral singularity at E=E0 in the continuous spectrum. In this
case, we have to distinguish two cases. For an absorbing
complex energy Ea, as shown in Sec. II B, Ga,a�z� is bounded
for z=E+ i0+; therefore, its analytical continuation Ga,a

�II��z� in
the lower-half complex plane is bounded for z=E− i0+. This
means that possible poles of Ga,a

�II��z� have a strictly negative
imaginary part, as for a Hermitian FFA model. Therefore, the
survival probability P�t� decays toward zero as t→� similar
to what happens in the Hermitian limit. Conversely, for an
amplifying complex energy Ea, Ga,a�z� diverges for z=E0
+ i0+; therefore, Ga,a

�II��z� has a pole on the real axis, z1=E0. In
this case, according to Eq. �45� the survival probability P�t�
does not decay and may become larger than 1 depending on
the modulus of the residue of the dominant pole. This phe-
nomenon is analogous to the fractional decay found in Her-
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FIG. 1. �a� Integration contour �Bromwich path B� in the
Im�z�
0 complex plain entering in Eqs. �43� and �44�. The bold
horizontal segment on the real axis is the continuous spectrum of H
and corresponds to a branch cut of Ga,a�z�. �b� Integration contour
�Hankel paths h1 and h2� after deformation of the Bromwich path.
The integration along the solid �dashed� curves of the Hankel paths
is made on the first �second� Riemannian sheet of Ga,a�z�.
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mitian FFA models and related to the existence of bound
states �i.e., a nonempty point spectrum of H�. However, in
the non-Hermitian FFA model with Im�Ea�
0 the nondecay-
ing behavior of P�t� results from the appearance of a spectral
singularity in the continuous spectrum, not from the exis-
tence of bound states. It should be noted that such a nonde-
caying behavior was previously predicted in the study of the
lasing threshold of an optical microcavity resonantly coupled
to a coupled resonator optical waveguide under special cou-
pling conditions.35 This unusual behavior of laser phase tran-
sition was explained as a non-Markovian effect arising from
the structured continuum of the decay channel; however, it
was not related to spectral singularities of the underlying
Hamiltonian.

III. SPECTRAL SINGULARITIES IN A SEMI-INFINITE
TIGHT-BINDING LATTICE WITH A BOUNDARY

IMPURITY SITE

In this section we present a simple and analytically solv-
able example of a non-Hermitian FFA model showing spec-
tral singularities, which describes rather generally single-
particle electron or photon transport on a semi-infinite one-
dimensional tight-binding lattice with an impurity site. The
model is first presented in the framework of the general
theory developed in Sec. II, and its tight-binding lattice real-
ization is subsequently described. The physical implications
of spectral singularities on wave scattering from the lattice
boundary and on the decay dynamics of the impurity site are
finally highlighted.

A. Hamiltonian

Let us consider the non-Hermitian FFA model defined by
the following relations for the energy dispersion E�k� and
spectral coupling v�k�:

E�k� = − 2�0 cos k, v�k� = −� 2

�
�a sin k , �47�

where �0 ,�a are two real-valued positive constants and 0
�k��. The Hermitian limit of this model, attained by as-
suming Im�Ea�=0, is a special case of the FFA model previ-
ously investigated in Ref. 36, which is exactly solvable �see
also Ref. 29�. Note that the continuous spectrum of H spans
the band �E1 ,E2�, with E2=−E1=2�0. The density of states
for this model is given by

	�E� =  �E

�k
�−1

= � 1

�4�0
2 − E2

, − 2�0 � E � 2�0

0, �E� 
 2�0,
�

�48�

which shows Van Hove singularities at the band edges,
whereas the positive spectral function V�E�, defined by
V�E�=	�E��v�E��2, reads

V�E� = � �a
2

��0
�1 −  E

2�0
�2

, − 2�0 � E � 2�0

0, �E� 
 2�0,
� �49�

which is nonsingular. Substitution of Eq. �49� into Eq. �11�
yields the following expression for the self-energy ��z� �Ref.
46�:

��z� = − i
�a

2

2�0
2 ��4�0

2 − z2 + iz� , �50�

and thus �see Eq. �12��

��E� = Re���z = E � i0+��

=�
�a

2

2�0
2 �E + �E2 − 4�0

2� , E � − 2�0

�a
2

2�0
2E , − 2�0 � E � 2�0

�a
2

2�0
2 �E − �E2 − 4�0

2� , E 
 2�0.
� �51�

The condition for the non-Hermitian Hamiltonian to possess
a real-valued spectrum �i.e., to avoid complex-valued ener-
gies arising from bound states outside the continuum� is de-
rived in Appendix B. Precisely, let �1,2 be the two roots of the
second-order algebraic equation

�2 +
Ea

�0
� + 1 − ��a/�0�2 = 0. �52�

Then the Hamiltonian H has a real-valued energy spec-
trum if and only if ��1,2��1. Figure 2 shows the domain in
the plane �Im�Ea� /�0 ,�a /�0�, where H has a purely continu-
ous energy spectrum for a few increasing values of the ratio
�Re�Ea� /�0�. The domain lies in the sector �a /�0��2 and
shrinks toward Im�Ea� /�0=�a /�0=0 as �Re�Ea� /�0�→2−.
For �Re�Ea� /�0��2, bound states do exist for any value of
�a /�0 and Im�Ea� /�0. The wider domain is attained for
Re�Ea�=0. In particular, for Re�Ea�=0 and �a /�0=�2, from
Eq. �52� it follows that H has a real-valued energy spectrum
provided that

− 2�0 � Im�Ea� � 2�0. �53�

Let us now consider the occurrence of spectral singularities.
According to Eqs. �19� and �20� and using Eqs. �49� and
�51�, a spectral singularity at energy E=E0, inside the interval
�−2�0 ,2�0�, is found provided that the following two equa-
tions are simultaneously satisfied:

Im�Ea� = �
�a

2

�0

�1 −  E0

2�0
�2

, �54�

Re�Ea� = 1 −
�a

2

2�0
2�E0. �55�

For arbitrarily given values of Ea, �a, and �0, the above
conditions are generally not satisfied �nowhere for E0 in the
range �−2�0 ,2�0��, i.e., the non-Hermitian FFA Hamiltonian
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is generally diagonalizable. Spectral singularities appear
solely when a constraint among Re�Ea� /�0, Im�Ea� /�0, and
�a /�0 is satisfied. Let us first assume that �a /�0 is strictly
smaller than �2. In this case, a single spectral singularity, at
the energy E0=Re�Ea� / �1−�a

2 /2�0
2� �see Eq. �55��, is found

provided that

Im2�Ea� =
�a

4

�0
2�1 −

Re2�Ea�
�2�0 − �a

2/�0�2� . �56�

It can be readily shown that condition �56� defines the
boundary of the domains shown in Fig. 2, i.e., a spectral
singularity appears when the boundary of existence of bound
states is approached. The case �a /�0=�2 is somehow singu-
lar. From Eqs. �54� and �55�, for �a /�0=�2 it follows that
there are two spectral singularities at energies

E0 = � �4�0
2 − Im2�Ea� �57�

provided that Re�Ea�=0. The physical meaning of such spec-
tral singularities will be discussed in Sec. III C.

B. Lattice realization

FFA models are often encountered in connection to
single-particle electronic or photonic transport in one-
dimensional tight-binding lattices or networks �see, e.g.,
Refs. 25–29 and 33–38 and references therein�, and in most
cases the underlying Hamiltonian is Hermitian. In particular,
the Hermitian limit of the FFA Hamiltonian H considered in

the previous subsection has been previously studied in Refs.
29 and 36 and shown to be equivalent to a tight-binding
Hamiltonian of a semi-infinity lattice with an impurity site.
The equivalence can be proven after representing the Bloch
states �k� of the tight-binding energy band in terms of local-
ized Wannier states �n� on a lattice. Let us introduce the
Wannier states �n� as

�n� =� 2

�
�

0

�

dk sin�nk��k� �58�

for n=1,2 ,3 , . . .. Taking into account that

�
0

�

dk sin�nk�sin�mk� =
�

2
�n,m �n,m � 1� , �59�

one can readily show that the Wannier states form an ortho-
normal system, i.e., �n �m�=�n,m. Additionally, from Eq. �58�
it follows that the Bloch states �k� can be decomposed as a
superposition of Wannier states �n� according to

�k� =� 2

�
�
n=1

�

sin�nk��n� . �60�

In the Wannier representation, one can readily show that

� dk E�k��k��k� = − �0�
n=1

�

��n��n + 1� + �n + 1��n�� �61�

and

V =� dk�v�k��a��k� + v��k��k��a�� = − �a��a��1� + �1��a�� ,

�62�

so that the Hamiltonian H=H0+V can be written in the
equivalent form

H = − �0�
n=1

�

��n��n + 1� + �n + 1��n�� + Ea�a��a� − �a��a��1�

+ �1��a�� . �63�

In its present form, Eq. �63� describes single-particle electron
or photon transport on a one-dimensional semi-infinite tight-
binding lattice,29,36,37 with a hopping rate �0 between adja-
cent sites of the lattice and with the boundary attached to an
impurity site �a� with “complex” potential energy Ea and
with hopping rate �a �see Fig. 3�. From a physical viewpoint,
the complex potential at the boundary impurity site may ac-
count for, e.g., loss of the quantum particle flux into other
decay channels �quantum absorbing potentials47� or optical
gain or loss of light waves in photonic structures.34,35 For
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FIG. 2. Domains of nonexistence of bound states for the Hamil-
tonian H in the �Im�Ea� /�0 ,�a /�0� plane �shaded regions� for in-
creasing values of the ratio �Re�Ea�� /�0. For a non-Hermitian
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FIG. 3. �Color online� Schematic of a semi-infinite one-
dimensional tight-binding lattice attached to a boundary impurity
site �a�.
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instance, light transport in a semi-infinite waveguide array as
in Ref. 37, but with a lossy �or active� boundary waveguide,
provides a simple and experimentally accessible realization
of the tight-binding model �63�. It should be noted that trans-
port and scattering phenomena in tight-binding lattices with
complex potentials have been theoretically investigated in
recent works �see, for instance, Refs. 47 and 48�; however,
spectral singularities were not found in these previous
models.

C. Spectral singularities and lattice wave reflection

The physical meaning of spectral singularities in the non-
Hermitian FFA model can be captured by analyzing the wave
reflection properties of the lattice of Fig. 3. As it will be
shown below, a spectral singularity corresponds to the ap-
pearance of a diverging peak in the reflectance spectrum
when the boundary site is an amplifying impurity, i.e., when
Im�Ea�
0, and to the vanishing of wave reflection when the
boundary site is an absorbing impurity, i.e., when Im�Ea�
�0. In the former case, we retrieve for a “discrete” scatter-
ing problem the physical explanation of spectral singularities
as resonances with vanishing spectral width, shown by
Mostafazade,11 suggesting “continuous” wave scattering by
complex potentials. Conversely, the latter case, i.e., that of an
absorbing impurity site, gives a different manifestation of a
spectral singularity: a wave incident on the lattice boundary
is totally absorbed.

To analyze the reflection properties of the lattice shown in
Fig. 3, let us expand the state vector ���t�� as

���t�� = ca�t��a� + �
n=1

�

cn�t��n� , �64�

where �cn�t��2 is the occupation probability of site �n� and
�ca�t��2 is the occupation probability of the boundary impu-

rity site �a�. From Eqs. �3� and �63�, it follows that the oc-
cupation amplitudes cn and ca satisfy the following coupled
equations:

i
dcn

dt
= − �0�cn+1 + cn−1�, n � 2, �65�

i
dc1

dt
= − �0c2 − �aca, �66�

i
dca

dt
= − �ac1 + Eaca. �67�

Plane-wave solutions to Eqs. �65�–�67� with wave number
�momentum� k �0�k���, corresponding to eigenstates of H
with energy E�k�=−2�0 cos k, are of the form cn�t�
= c̄n�k�exp�−iE�k�t�, ca�t�= c̄a�k�exp�−iE�k�t�, where

c̄n�k� = exp�− ik�n − 1�� + r�k�exp�ik�n − 1�� , �68�

c̄a�k� =
�0

�a
�exp�ik� + r exp�− ik�� , �69�

and

r�k� = −
�a

2 − �0
2�2 cos k + Ea/�0�exp�ik�

�a
2 − �0

2�2 cos k + Ea/�0�exp�− ik�
�70�

is the spectral reflection coefficient �see, for instance, Ref.
37�. Note that cn�t� is given by the superposition of two
traveling waves: a regressive wave exp�−ikn− iE�k�t� that
propagates along decreasing values of n and a progressive
wave exp�ikn− iE�k�t� that propagates in the opposite direc-
tion, i.e., which is reflected from the lattice boundary.49 The
probability of reflection from the lattice boundary is given by

R�k� = �r�k��2 =
���a

2 − 2�0
2�cos k − �0 Re�Ea��2 + ��a

2 sin k + �0 Im�Ea��2

���a
2 − 2�0

2�cos k − �0 Re�Ea��2 + ��a
2 sin k − �0 Im�Ea��2 . �71�

In the Hermitian limit �Im�Ea�=0�, one has R�k�=1, i.e., the
incident wave is completely reflected from the lattice bound-
ary. This is merely a consequence of conservation of the
particle probability in the scattering process. Conversely, for
a complex-valued energy Ea of the impurity site, one has
R�k��1 for Im�Ea��0, i.e., for an absorbing potential, and
R�k��1 for Im�Ea�
0, i.e., for an amplifying potential. In
particular, for Im�Ea�
0 the reflection probability R�k� goes
to infinity at wave numbers k=k0 �with 0�k0��� that sat-
isfy simultaneously the two conditions

�a
2 sin k0 = �0 Im�Ea� , �72�

��a
2 − 2�0

2�cos k0 = �o Re�Ea� . �73�

Physically, the condition R→� implies the existence of an
outgoing wave in the lattice that is sustained by the amplify-
ing complex potential at the impurity site. Such a divergence
of R�k� is the signature of a spectral singularity of H. In fact,
taking into account that the energy of incident and reflected
waves is E0=−2�0 cos k0, it can be easily shown that Eq.
�73� is equivalent to Eq. �55�, whereas Eq. �72� is equivalent
to Eq. �54� with the upper �positive� sign on the right-hand
side. Therefore, for an amplifying impurity site �Im�Ea�

0�, the condition R→� is equivalent to the appearance of
a spectral singularity. This equivalence extends, to our scat-
tering problem on a truncated lattice, the general result
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shown by Mostafazadeh and Mehri-Dehnavi,9 suggesting to
interpret spectral singularities of a non-Hermitian Hamil-
tonian as resonances with vanishing width. However, for an
absorbing potential energy at the impurity site, i.e., for
Im�Ea��0, our lattice model indicates that the appearance of
spectral singularities has a different physical interpretation.
In fact, for Im�Ea��0 the reflection probability R�k� is
bounded from above and smaller than 1, which prevents R�k�
to diverge. However, in this case R�k� can vanish at wave
numbers k=k0 �with 0�k0��� that satisfy simultaneously
the two conditions �see Eq. �71��

�a
2 sin k0 = − �0 Im�Ea� , �74�

��a
2 − 2�0

2�cos k0 = �0 Re�Ea� . �75�

Note that Eq. �75� is equivalent to Eq. �55�, whereas Eq. �74�
is equivalent to Eq. �54� with the lower �negative� sign on
the right-hand side. Therefore, for an absorbing impurity site
�Im�Ea��0�, the appearance of a spectral singularity is
equivalent to the vanishing of the reflection probability R: an
ingoing plane wave with wave number k0 is fully absorbed
by the impurity site at the lattice edge. As an example, Fig. 4
shows the behavior of R�k� for an amplifying �Fig. 4�a�� and
for an absorbing �Fig. 4�b�� impurity site for Re�Ea�=0 and
�a /�0=1. The different curves in the figures refer to different
values of Im�Ea� /�0. Note that, at the value of Im�Ea� /�0
corresponding to the appearance of the spectral singularity, a
divergence and a zero in the R�k� curve are observed in Figs.
4�a� and 4�b�, respectively. Figure 5 shows the behavior of
R�k� as in Fig. 4, but for Re�Ea�=0 and �a /�0=�2. In this
case there are two spectral singularities at energies given by
Eq. �57�, which explain the two peaks �Fig. 5�a�� or dips
�Fig. 5�b�� in the reflectance curve R�k�. By increasing
�Im�Ea�� /�0, the two peaks �or dips� get closer each other,
until they coalesce at �Im�Ea�� /�0=2 �curve 3�.50

Figures 6 and 7 show two examples of wave-packet re-
flection from the lattice boundary for an amplifying �Fig. 6�
and an absorbing �Fig. 7� impurity site. The figures show a

snapshot of �cn�t�� as obtained by numerical analysis of Eqs.
�65�–�67� assuming at t=0 a broad Gaussian distribution of
site occupation amplitudes, i.e., cn�0�=exp�−�n−n0�2 /�n2

− ikn�, where �n is the wave-packet width, k is the mean
wave-packet momentum, and n0��n is the wave-packet
center of mass. The large �diverging� amplification of the
reflected wave packet in Fig. 6�b� and the almost absence of
wave-packet reflection in Fig. 7�b� are clearly visible when
the energy E=−2�0 cos k of the incoming wave packet at-
tains the spectral singularity point E0=0.

The interplay between spectral singularities and decay dy-
namics, discussed in Sec. II D, is exemplified in Figs. 8 and
9. The system of Eqs. �65�–�67� has been numerically inte-
grated with the initial condition ca�0�=1 and cn�0�=1. Note
that, in the photonic realization of the semi-infinite lattice
model of Ref. 37, such an initial condition simply corre-
sponds to initial excitation of the boundary waveguide. The
behavior of the site occupation probability P�t�= �ca�t��2 for
an amplifying and for an absorbing impurity site is depicted
in Figs. 8 and 9, respectively. Note that, according to the
general analysis presented in Sec. II D, the survival probabil-
ity P�t�= �ca�t��2 decays to zero in the absorbing case �Fig. 9�,
and the existence of a spectral singularity does not basically
influence the decay dynamics of state �a�. Conversely, for an
amplifying impurity site the occupation probability P�t� does
not decay to zero. Note that, for �a /�0��2 �like in Fig.
8�a��, P�t� converges to a steady-state value, whereas for
�a /�0=�2 the probability P�t� is an oscillating function �see
Fig. 8�b��. The different behavior in the two cases is ex-
plained by observing that for �a /�0��2 there is one spectral
singularity and thus in Eq. �45� there is only one pole that
contributes to the nondecaying part of ca�t�. On the other
hand, for the somehow special case �a /�0=�2 the Hamil-
tonian H has two spectral singularities �see Eq. �57��, and in
Eq. �45� there are two poles that contribute to the nondecay-
ing part of ca�t�. The interference of these two nondecaying
terms explains the oscillatory behavior of P�t� in Fig. 8�b�
�see also Ref. 35�.
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IV. CONCLUSIONS

In this work a comprehensive analysis of the spectral
properties of a non-Hermitian extension of the Friedrichs-
Fano-Anderson model has been presented. The FFA model
generally describes the decay of a discrete state �a� of energy
Ea coupled to a continuum of states. Here, we have extended
the ordinary model by allowing the energy Ea to become
complex valued, with either Im�Ea�
0 �the amplifying case�
or Im�Ea��0 �the absorbing case�. Contrary to the Hermit-
ian FFA, it has been shown by a direct diagonalization pro-
cedure and by the analysis of the resolvent operator that
spectral singularities in the continuous spectrum may exist
for both the amplifying and the absorbing non-Hermitian
FFA models. The physical implications and the relevance of
spectral singularities have been discussed, in particular with
reference to a tight-binding realization of the non-Hermitian
FFA model that describes single-particle electronic or photo-
nic transport in a semi-infinite lattice attached to an impurity
site with a complex energy. Different behaviors have been
found for an amplifying and for an absorbing impurity site,
reflecting the circumstance that the divergence of the resol-
vent G�z� appears when the spectral singularity is ap-
proached either from above or from below of the complex

energy plane. For an amplifying impurity site, the spectral
singularity manifests itself as a divergence of the reflection
probability from the lattice boundary, a result which is the
discrete analog of the general result recently established by
Mostafazadeh for wave scattering by complex potentials in
the framework of the continuous Schrödinger equation.11 As
compared to Ref. 11, here we have also clarified the physical
relevance of spectral singularities in the temporal domain,
showing that in the amplifying non-Hermitian FFA Hamil-
tonian the spectral singularity of the resolvent prevents the
decay of state �a� into the continuum, in spite of the absence
of bound states. For an absorbing impurity site, we have
shown that a spectral singularity corresponds to a zero of the
reflection probability from the lattice boundary. This result is
clearly not observable in the problem of wave scattering
from complex barriers addressed in Refs. 11 and 12, where
the double degeneracy of energy levels plays a major role
and a spectral singularity can never correspond to the total
absorption of the incident wave.

Owing to the importance of the FFA model in different
areas of physics, it is envisaged that the present analysis may
stimulate further theoretical and experimental studies aimed
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to investigate the unique features of non-Hermitian physical
systems. In particular, recent results obtained in photonic
systems based on coupled waveguides or arrays of coupled
waveguides with controlled regions of optical gain and/or
loss51 indicate that engineered photonic systems might pro-
vide an accessible laboratory tool to experimentally observe
spectral singularities.

APPENDIX A: MATRIX ELEMENTS OF THE RESOLVENT

In this appendix we derive the expressions of the matrix
elements Ga,a�z�= �a �G�z�a�, Gk,a�z�= �k �G�z�a�, Ga,k�z�
= �a �G�z�k�, and Gk,k��z�= �k �G�z�k�� of the resolvent �Eqs.
�6�–�9� given in the text�. From the identity G�z��z−H0−V�
= �z−H0−V�G�z�=I, it follows that

�a�G�z��z − H0�a� − �a�G�z�Va� = 1, �A1�

�a�G�z��z − H0�k� − �a�G�z�Vk� = 0, �A2�

�k��z − H0�G�z�a� − �k�VG�z�a� = 0, �A3�

�k�G�z��z − H0�k�� − �k�G�z�Vk�� = ��k − k�� . �A4�

Taking into account that

V�a� =� dk v��k��k�, V�k� = v�k��a� , �A5�

and that �z−H0��a�= �z−Ea��a�, �z−H0��k�= �z−E�k���k�, Eqs.
�A1� and �A2� take the form

�z − Ea�Ga,a�z� −� dk v��k�Ga,k = 1, �A6�

�z − E�k��Ga,k�z� − v�k�Ga,a�z� = 0, �A7�

which can be solved for Ga,a and Ga,k, yielding Eqs. �6� and
�7� given in the text. To calculate Gk,a�z�, we use Eq. �A3�
and note that �k � �z−H0�G�z�a�= ��z�−H0

†�k �G�z�a�
= �z−E�k��Gk,a�z� and �k �VG�z�a�= �Vk �G�z�a�=v��k�Ga,a�z�.
This yields �z−E�k��Gk,a�z�−v��k�Ga,a�z�=0, which can be
solved for Gk,a�z�, yielding Eq. �8� given in the text. Finally,
the matrix element Gk,k��z� is obtained from Eq. �A4�, which
can be written in the form �z−E�k���Gk,k��z�−v�k��Gk,a�z�
=��k−k��, i.e.,

Gk,k��z� =
v�k��Gk,a�z�

z − E�k��
+

��k − k��
z − E�k��

. �A8�

Substitution of Eq. �8� into Eq. �A8� finally yields Eq. �9�
given in the text.

APPENDIX B: CONDITIONS FOR A REAL-VALUED
ENERGY SPECTRUM OF THE NON-

HERMITIAN HAMILTONIAN

In this appendix we derive the necessary and sufficient
conditions that ensure a real-valued energy spectrum for the
non-Hermitian FFA Hamiltonian H introduced in Sec. III A.

As shown in Sec. II B, this condition is equivalent to the
vanishing of the point spectrum of H, i.e., to the absence of
bound states. The detailed calculations can be performed fol-
lowing two different, although equivalent, approaches. The
first one starts from the representation of H in the 	�a� , �k�

basis �the Bloch basis�, whereas the second approach uses a
different decomposition of H, namely, on the 	�a� , �n�
 basis,
where �n� are the Wannier states introduced in Sec. III B �the
Wannier basis�. For the sake of completeness, we present the
detailed calculations for both approaches.

�1� Bloch-basis representation of H. As shown in Sec.
II B, the absence of bound states of H requires that Eq. �18�
does not admit any solution in the complex z plane. Using
expression �50� of the self-energy ��z�, Eq. �18� takes the
form

1 −
�a

2

2�0
2�z − Ea = − i

�a
2

2�0
2
�4�0

2 − z2. �B1�

We can solve Eq. �B1� by introducing, in place of z, the new
complex-valued variable � defined by

z = − �0�exp��� + exp�− ��� = − 2�0 cosh � . �B2�

Without loss of generality, we may assume Re���
0. In
fact, the function z��� defined by Eq. �B2� is invariant for the
inversion �→−�, so that we may restrict our analysis to the
case Re���
0. With such a substitution, the square root on
the right-hand side of Eq. �B1� can be solved analytically,
yielding �2i�0 sinh �. Some care should be taken when
choosing the right determination �i.e., sign� of the square
root.46 For Re���
0, one obtains

21 −
�a

2

2�0
2�cosh � +

Ea

�0
= −

�a
2

�0
2sinh � . �B3�

After setting �=exp���, from Eq. �B3� one obtains Eq. �52�
given in the text once cosh � and sinh � are expressed in
terms of the exponentials exp����=��1. Therefore, if the
two roots �1,2 of Eq. �52� satisfy the condition ��1,2��1, Eq.
�B3� does not have roots with Re���
0, and hence H does
not have bound states.

�2� Wannier-basis representation of H. In this approach,
we use the tight-binding representation of the Hamiltonian H
using the Wannier function basis �Eq. �63��. Bound states of
H correspond in this case to surface states localized near the
edge of the truncated lattice of Fig. 3. They can be directly
determined by looking for a solution to Eqs. �65�–�67� of the
form

cn�t� = exp�− ��n − 1� − iEt�, ca�t� = A exp�− iEt�

�n � 1� , �B4�

where E is the energy of the surface state. The constants �
and A, as well as the dependence of E on �, are readily
determined by substituting Eq. �B4� into Eqs. �65�–�67�. One
obtains
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E = − 2�0 cosh � , �B5�

E = − �0 exp�− �� − �aA , �B6�

EA = − �a + EaA , �B7�

from which the following second-order algebraic equations
for �=exp��� is readily obtained:

�2 +
Ea

�0
� + 1 −

�a
2

�0
2 = 0, �B8�

which is Eq. �52� given in the text. Localization of the sur-
face state at the lattice edge requires cn→0 as n→�, i.e.,
Re���
0 �see Eq. �B4��. Therefore, if the two roots �1,2 of
Eq. �B8� satisfy the condition ��1,2��1, there are no surface
states at the lattice edge.
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