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The lattice parameter, bulk modulus, and cohesive energy of lithium hydride are calculated to very high
accuracy through a combination of periodic and finite-cluster electronic structure calculations. The Hartree-
Fock contributions are taken from earlier work in which plane-wave calculations were corrected for pseudo-
potential errors. Molecular electronic structure calculations on finite clusters are then used to compute the
correlation contributions and finite-size effects are removed through the hierarchical scheme. The systematic
improvability of the molecular electronic structure methods makes it possible to converge the static cohesive
energy to within a few tenths of a millihartree. Zero-point energy contributions are determined from density
functional theory phonon frequencies. All calculated properties of lithium hydride and deuteride agree with
empirical observations to within experimental uncertainty.
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I. INTRODUCTION

Computational studies of crystalline solids are dominated
by density functional theory �DFT; see, for example, Ref. 1�,
but despite many successes, DFT does have some draw-
backs. In conventional formulations, there is no description
of long-range dispersion; accuracy has been found inad-
equate for the description of processes at surfaces �see, for
example, Ref. 2�; and, worst of all, there is no clear route for
systematic improvement of DFT results. Quantum Monte
Carlo3 is widely used for solids, and is in principle exact. But
the fixed-node approximation and pseudopotential errors pre-
vent systematic improvement beyond a certain point, and
geometry optimization, though possible, is not straightfor-
ward.

Wave-function-based methods for molecular electronic
structure theory, such as Møller-Plesset �MP� and coupled-
cluster �CC� theory, are systematically improvable: generally
it is clear how a calculation can be improved toward the
exact nonrelativistic, Born-Oppenheimer solution. Further
corrections for these smaller effects can be added, and very
high accuracy can be achieved for thermochemistry,4,5

spectroscopy,6 and kinetics.7

Various approaches have been adopted to apply these mo-
lecular methods to solids. The most obvious �but least
straightforward� is to implement periodic methods directly.
This has been achieved for MP2 theory in at least three dif-
ferent ways: Ayala et al. reported an atomic-orbital-driven
Laplace-transform MP2 method,8 the CRYSCOR code uses a
combination of local correlation methods and Poisson den-
sity fitting,9,10 and MP2 is now implemented in VASP using
plane waves.11

Simpler methods can be formulated by attempting to learn
about the bulk material from calculations on smaller frag-
ments. In the incremental scheme12–14 a many-body expan-
sion of the correlation energy is combined with periodic
Hartree-Fock �HF� calculations to estimate properties of the
crystal. In this paper, we will use the hierarchical

method,15,16 by which the electron correlation energy of the
solid can be determined to high accuracy from calculations
on finite clusters through careful subtraction of edge effects.

In our earlier work, we introduced the hierarchical
method and made a preliminary calculation on lithium hy-
dride at one value of the lattice parameter. The aim of the
present paper is to set out a calculation of the lattice param-
eter, bulk modulus, and cohesive energy of crystalline
lithium hydride to the highest accuracy currently feasible.
This serves two important purposes: first we establish �by
comparison with experiment� the very high accuracy that can
be achieved by the hierarchical method; second, we offer a
number of benchmarks that can aid in the development and
calibration of other periodic electronic structure codes.

II. HIERARCHICAL METHOD

The hierarchical method has been described before,15 so
here only the salient features will be reported, for the specific
case of an ionic solid MX in the rock-salt structure. All en-
ergies are calculated per formula unit and relative to the free
atoms. The static cohesive energy can be decomposed into
Hartree-Fock and correlation contributions

Ecoh = Ecoh
HF + Ecoh

cor . �1�

The correlation contribution Ecoh
cor is dominated by a term Emol

cor

that describes the correlation contribution to the energy re-
quired to break a single MX molecule into its constituent
atoms. A correction, called the correlation residual �Ecoh

cor , is
then needed to account for the correlation contribution to the
energy required to split the crystal into separated MX mol-
ecules. Here, “molecule” refers to the MX unit with its crys-
talline interatomic separation.

Thus, the strategy for computing the static cohesive en-
ergy is to evaluate
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Ecoh = Ecoh
HF + Emol

cor + �Ecoh
cor �2�

using periodic Hartree-Fock theory for the first term, and
accurate molecular electronic structure theory for the second.
The final term is estimated through calculations on finite
clusters. For the case of LiH, the first term has recently been
determined to high accuracy,17 and the second, for such a
small system, can easily be computed to extremely high ac-
curacy. It will be shown here that for this system, the corre-
lation residual can also be computed to high accuracy, lead-
ing to computed properties for this material of unsurpassed
reliability.

To proceed, we define an analogous correlation residual
for a finite cluster of size l�m�n

�Elmn
cor = Elmn

cor −
lmn

2
E112

cor �3�

where Elmn
cor is the correlation energy of the corresponding

block, and E112
cor is simply the special case of this quantity for

a single MX unit. Clearly atoms at the surfaces of the cluster
will not be representative of the bulk crystal. In fact there are
four distinct environments for the atoms in cuboidal clusters:
corners, edges, faces and bulk. Each of these contributes dif-
ferently to the correlation residual, and in particular we can
write

�Elmn
cor = 8E000 + 4��l − 2� + �m − 2� + �n − 2��E001 + 2��l − 2�

��m − 2� + �l − 2��n − 2� + �m − 2��n − 2��E011

+ �l − 2��m − 2��n − 2�E111, �4�

when l, m, n�2. Here, E000, E001, E011, and E111 are the
contributions to the correlation residual from atoms at the
corners, edges, faces and in the bulk. A similar �and formally
equivalent� formula was derived in our earlier work based on
considering the extensivity of the energy with respect to ex-
tensions in any of the three Cartesian directions.15

For a given maximum number of atoms, a set of four
distinct clusters is chosen and Eq. �4� is solved as a set of
simultaneous equations. The clusters are chosen according to
the algorithm in Ref. 15, ensuring that the most bulklike
clusters are included. The bulk correlation residual can then
be obtained as �Ecoh

cor =2E111.

III. BULK PROPERTIES OF LITHIUM HYDRIDE

The Hartree-Fock contribution to the cohesive energy Ecoh
HF

is known to high precision at a range of lattice parameters.17

The remaining task is to evaluate the correlation contribu-
tions Emol

cor and �Ecoh
cor , and convergence of these quantities to

high accuracy was initially studied at the experimental room-
temperature lattice parameter, a=4.084 Å. All of the mo-
lecular electronic structure calculations were performed us-
ing the MOLPRO package, unless otherwise noted.18

LiH has only four electrons, so the molecular-correlation
contribution Emol

cor can be found to exceptionally high accu-
racy. For this term, all-electron full configuration interaction
�ae-FCI� is used with a basis-set correction computed at the
level of all-electron coupled-cluster theory with full treat-
ment of single and double excitations and perturbative treat-

ment of triple excitations �ae-CCSD�T��. The binding energy
computed using ae-FCI/cc-pCVTZ exceeds that given by ae-
CCSD�T�/cc-pCVTZ by only 15 �Eh. The basis-set limit
was approached using ae-CCSD�T�/cc-pCV�TQ�Z, where the
notation cc-pCV�TQ�Z implies that the correlation energies
from calculations in the cc-pCVTZ and cc-pCVQZ basis sets
were extrapolated using the L−3 scheme and added to the
cc-pCVQZ Hartree-Fock energy.19

Counterpoise corrections for basis-set-superposition error
were tested, and were found to be completely negligible, for
example, just 3 �Eh for cc-pCVQZ. The Hartree-Fock diag-

onal Born-Oppenheimer correction,20 ���T̂nuc���, was calcu-
lated using with the PSI3 electronic structure package,21 and
the minute destabilizing effect �7 �Eh� was considered neg-
ligible. Relativistic corrections were also found to be com-
pletely negligible, as expected for such light elements.

We compute the correlation residual through MP2/cc-
pVTZ calculations up to large cluster sizes �N=64� with
higher-level corrections calculated up to smaller maximum
cluster sizes. The rationale for this approximation is that the
corrections to the correlation residual converge much more
rapidly with respect to N than do the individual energies.
Density fitting was used for the frozen-core MP2/cc-pVTZ
calculations �which involved calculations up to 64 ions� and
for the basis-set corrections. In these cases, Hartree-Fock
theory was performed using the DF-HF method22 with the
cc-pVnZ /JKFIT basis on hydrogen, and the nZVPP /JKFIT
basis on Li.23 The density-fitted MP2 �DF-MP2� calculations
used the corresponding cc-pVnZ /MP2FIT basis sets of
Weigend et al.24 and Hättig.25 For MP2/cc-pVTZ the error
introduced to the N=16 correlation residual by density fitting
in both the HF and MP2 calculation is only around 10 �Eh.

The E111 coefficients obtained are plotted in Fig. 1 for
MP2/cc-pVTZ, CCSD�T�/cc-pVTZ, MP2/cc-pVQZ, and ae-
MP2/cc-pCVTZ. The small jumps in each line have been
explained previously in terms of the structural characteristics
of the clusters involved;15 but here it is worth noting that the
lines for different methods are closely parallel, justifying the
use of smaller N for high-level corrections. In common with
many computational studies, we rely on the additivity of cor-
rections from higher-level methods. Such approaches are
well-tested and well-documented in the literature �represen-
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FIG. 1. Coefficients E111 for LiH with lattice-parameter a
=4.084 Å using CCSD�t�/cc-pVTZ �pluses�, MP2/cc-pVQZ
�squares�, MP2/cc-pVTZ �circles� and ae-MP2/cc-pCVTZ
�crosses�.
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tative examples can be found in Refs. 4, 26, and 27� but
nevertheless for high-accuracy work it is always worth cali-
brating the error that arises from nonadditivity. To this end,
we calculated correlation contributions to the binding ener-
gies of the 1�2�2 and 2�2�2 clusters �per formula unit
and relative to isolated molecules� at a variety of levels of
theory. We then analyzed the additivity error that arises from
treating �i� basis-set corrections using MP2 instead of
coupled-cluster theory; �ii� core-correlation corrections using
MP2; and �iii� core-correlation corrections using smaller ba-
sis sets. The results are presented in Table I, and indicate that
errors are typically on the order of 100 �Eh.

Here, we further analyze the convergence of the hierarchi-
cal procedure, by evaluating several different E111 contribu-
tions for each maximum cluster size N. For a given value of
N we form a lexicographically ordered list of clusters, as
before. We then select all quadruples of clusters not larger
than N and not smaller than the smallest cluster in the stan-
dard hierarchical method for N−2. This provides a number
of different estimates for the MP2/cc-pVTZ E111 for each
cluster size, and the average of these data is compared with
the standard hierarchical result in Fig. 2. Qualitatively the
performance of the two approaches is equivalent: there are
oscillations of the same magnitude where the calculations no

longer rely on chains and sheets. For values of N large
enough that no information is derived from sheets, the aver-
age energy becomes almost constant, with a standard devia-
tion of around 20–30 �Eh.

For our reference lattice parameter �a=4.084 Å� we have
performed higher-level calculations to assess convergence. In
particular we performed the first step of hierarchical analysis
�with N=8� using CCSDT/cc-pVDZ and CCSDT�Q�/cc-
pVDZ with the MRCC code of Kállay.28,29 The contribution
to the cohesive energy of the crystal is almost half a milli-
hartree, so for more complicated solids it is very likely that
effects beyond CCSD�T� will be needed to achieve chemical
accuracy.

It is perhaps surprising that CCSD�T� is in error by this
amount: often �T� overestimates the triples effect, and there-
fore to some extent compensates for the lack of quadruples;
here we find that the discrepancy between CCSD�T� and
CCSDT�Q� is typically 10–20 times greater than the discrep-
ancy between CCSDT and CCSDT�Q�. The beyond-�T� cor-
rection to the cohesive energy arises entirely from breaking
the crystal into LiH molecules �since LiH itself has only two
valence electrons all of these methods are identical to
CCSD�.

To investigate this further we computed binding energies
using CCSD�T�, CCSDT and CCSDT�Q� per formula unit
and relative to free LiH molecules. For the cluster size
1�2�2, CCSD�T� and CCSDT differ from CCSDT�Q� by
−84 �Eh and −4 �Eh, respectively. For 2�2�2, the dis-
crepancies rise to −154 �Eh and −12 �Eh, respectively, and
the figures of −420 �Eh and −50 �Eh for the CCSDT and
CCSDT�Q� contributions to the bulk cohesive energy seem
to fall reasonably in line with a pattern of increasing contri-
butions with increasing numbers of neighbors: see Fig. 3.
The straight line in the plot is that implied by the first two
points, suggesting that it might be possible to approximate
the beyond-�T� corrections to the cohesive energy using cal-
culations on just four ions. To test the additivity of basis-set
and correlation-level corrections, we computed the binding
energy of the 1�2�2 cluster using CCSD�T�/cc-pVTZ and

TABLE I. Analysis of additivity errors for the correlation con-
tributions to the binding energy of two clusters per formula unit
relative to isolated LiH molecule. All errors are in microhartree. CC
is used as an abbreviation for CCSD�T�; and �C�VnZ for
cc-p�C�VnZ. The first three rows test the error in using an MP2
basis-set correction; MP2 for the core-correlation correction;
smaller basis sets for the core correction. The final row contains the
discrepancy between the ae-CCSD�T�/CVQZ energies and energies
estimated by MP2/VTZ together with all corrections.

1�2�2 2�2�2

EVQZ
CC − �EVTZ

CC +EVQZ
MP2 −EVTZ

MP2� 58 93

ECVTZ
ae-CC − �EVTZ

CC +ECVTZ
ae-MP2−EVTZ

MP2� 1 −22

ECVQZ
ae-MP2− �EVQZ

MP2 +ECVTZ
ae-MP2−EVTZ

MP2� −101 −126

ECVQZ
ae-CC − �EVTZ

MP2+all corrections� −44 −66
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FIG. 2. Coefficients E111 for LiH with lattice-parameter a
=4.084 Å using MP2/cc-pVTZ in the hierarchical scheme �circles�
and by averaging energies obtained with all possible quadruples of
clusters at size N �crosses; see text for exact specification�. Standard
deviation is denoted by the vertical bars.
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FIG. 3. �Color online� Error in CCSD�T� �defined as
CCSDT�Q�-CCSD�T�� as a function of number of nearest neigh-
bors. The crosses arise from clusters 1�1�2, 1�2�2, 2�2�2,
and from the bulk cohesive energy �computed in the hierarchical
method with N=8�. The first datum has an error of zero by defini-
tion, since these are errors in binding energies relative to the LiH
molecule. The straight line is that which passes through the first two
points.
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CCSDT/cc-pVTZ, and encouragingly obtained almost ex-
actly the same value for the beyond-�T� contribution:
−84 �Eh.

At this geometry we verified that other effects are small.
We computed the effect of the diagonal Born-Oppenheimer
correction on E111 using HF/cc-pVTZ with N=8, with the
PSI3 package.21 For such light elements relativistic effects are
expected to be extremely small, and Douglas-Kroll HF/cc-
pVDZ �Refs. 30–32� calculations �with N=8� indicate an ef-
fect of the order 10 �Eh. Relativity was therefore neglected.

In order to compare with experiment, the contribution of
zero-point energy and its variation with lattice parameter
must be considered. This is obtained from periodic DFT cal-
culations. For semi-ionic materials like LiH computed pho-
non frequencies are generally correct to better than 5%.33 We
calculated phonon dispersion relations by the linear-response
and small displacement methods,34,35 using the VASP �Ref.
36� and ESPRESSO �Ref. 37� codes. As noted previously,15 the
results in the local-density and generalized-gradient approxi-
mations at the reference lattice parameter differ by just
0.2 mEh.

This concludes the evaluation of all contributions to the
cohesive energy at the reference lattice parameter of
4.084 Å. The results of all of these calculations are summa-
rized in Table II, and lead to a total cohesive energy �at this
unrelaxed lattice parameter� of −175.3 mEh.

At is this stage it is perhaps worth reviewing the compu-
tational cost of each correlation correction. The computa-
tional scaling with respect to system size of MP2, CCSD�T�,
CCSDT, and CCSDT�Q� is O�N5�, O�N7�, O�N8�, and
O�N9�, respectively. The scaling with respect to number of
basis functions �for fixed molecular size� is at least m4. On a
single Opteron processor �2 GHz� the largest MP2 calcula-
tion �64 ions, 4�4�4, cc-pVTZ� took just over 7 h. It
should be noted, though, that modern implementations of
MP2 use screening �and in this case also density fitting� so
effectively that most of this time is spent doing the prelimi-
nary Hartree-Fock calculation. The largest CCSD�T� �16
ions, 2�2�4, cc-pVTZ� took around 4 h, but in this size
regime, the preceding Hartree-Fock calculation only con-
sumes a small fraction of the time. The implementation of
higher-order corrections is extremely complicated, and in
fact the most expensive calculations of all were the CCS-
DT�Q� corrections on 8-ion systems. The very high scaling
of this method is such that it would be difficult to apply it to
more complicated solids; but in any case the correction from
connected quadruples is reassuringly small.

We next repeated the calculation of all of the main con-
tributions to the cohesive energy at several different values
of the lattice parameter. Most of the variation in the energy
resides in the Hartree-Fock and molecular-correlation contri-
butions, and these were evaluated on a grid of seven values
at intervals of 0.1 Å. Smaller contributions �and more im-
portantly, contributions whose variation with lattice param-
eter is essentially linear� were computed at four points with
intervals of 0.2 Å. The contributions to the correlation re-
sidual are shown in Table III. Note that the minute but very
expensive CCSDT�Q� corrections were not computed at mul-
tiple lattice-parameter values.

The Hartree-Fock,17 molecular-correlation and residual
contributions are given in Table IV together with zero-point

contributions for 7LiH and 7LiD. The lattice parameter, bulk
modulus, and cohesive energy of these isotopomers were de-
termined from the tabulated energy data by two methods.
First the finely tabulated energies Ecoh

HF +Emol
cor �Table IV� were

fitted to a sixth-order polynomial. The corrections �Ecoh
cor

+EZP were then fitted to a cubic polynomial, and the sum of
these two polynomials was minimized to obtain the opti-

TABLE II. Contributions to the cohesive energy of LiH calcu-
lated using the hierarchical method at a fixed lattice parameter of
4.084 Å. The abbreviation VnZ is used for cc-pVnZ; V�TQ�Z in-
dicates that cc-pVTZ and cc-pVQZ correlation energies have been
cubically extrapolated.

Contribution Energy/mEh Comments

Hartree-Fock −131.90 PWSCF+pseudopotential corrections

Corr. �mol.�a −38.40 CCSD�T� /CV�TQ�Z+�FCI /CVTZ

MP2 −12.00 MP2/VTZ N=64

Core corr.b −2.29 ae-MP2/CVTZ N=16

Basisc +0.80 V�TQ�Z N=36 and V�Q5�Z N=12

�CCSD�T� d +1.08 CCSD�T�/VTZ N=16

�CCSDT e −0.42 CCSDT/VDZ N=8

�CCSDT�Q� f −0.05 CCSDT�Q�/VDZ N=8

DOBCg +0.06 HF/VTZ N=8

Zero point +7.79 from GGA phonon frequencies

Total −175.31

aMolecular contribution to the cohesive energy, computed as de-
scribed in the text.
bCorrection for core correlation, computed as ae-MP2/CVTZ—
MP2/VTZ with N=16.
cBasis-set incompleteness correction, computed as MP2/V�TQ�Z—
MP2/VTZ with N=36 plus MP2/V�Q5�Z—MP2/V�TQ�Z with N
=12.
dMain coupled-cluster correction: computed as CCSD�T�/VTZ—
MP2/VTZ with N=16.
eCorrection for full triples computed as CCSDT/VDZ—CCSD�T�/
VDZ with N=8.
fCorrection for full perturbative quadruples computed as
CCSDT�Q�/VDZ—CCSDT/VDZ with N=8.
gDiagonal Born-Oppenheimer correction.

TABLE III. Contributions to the correlation residual of the crys-
tal at various lattice parameters. All energies in millihartree, and the
details of each term are exactly as described in Table II unless
otherwise noted.

a /Å MP2/VTZ Core Basisa �CCSD�T� �CCSDT

3.684 −15.094 −3.534 +0.104 +0.830 −0.365

3.884 −13.474 −2.850 +0.197 +0.928 −0.391

4.084 −11.998 −2.294 +0.294 +1.080 −0.418

4.284 −10.620 −1.842 +0.401 +1.282 −0.444

aBasis-set correction using MP2/V�TQ�Z—MP2/VTZ with N=16.
Note that these corrections differ significantly from the more thor-
ough correction shown in Table II, but we found the variation of the
additional basis-set effects with respect to lattice parameter to be
extremely small.
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mized lattice parameter. The cohesive energy was further re-
fined by the addition of small corrections from Table II. As
an independent check, the energies at the four points for
which all energy contributions were computed were fitted to
the Birch-Murnaghan38,39 equation of state. This yielded lat-
tice parameters, bulk moduli, and cohesive energies that
agreed with those obtained from polynomial interpolation to
within 0.0002 Å, 0.05 GPa, and 1 �Eh, respectively.

Since considerable effort has been made on the accuracy
of the theoretical treatment of lithium hydride, it is worth
briefly reviewing the most reliable experimental data. The
cohesive energy of the hydride can be computed from stan-
dard thermochemical quantities, as shown in Table V. Two
different cycles are possible: relying in case �i� on tabulated
zero-temperature heats of formation of H�g�, Li�g� and LiH�s�;
and in case �ii� on tabulated room-temperature heats of for-
mation coupled with low-temperature heat-capacity data.
The two values disagree by around 1.5 kJ mol−1 giving
some indication of the maximum reliability of the experi-
mentally determined cohesive energy. For the deuteride only
route �ii� was possible, as shown in Table V.

The theoretical results for both, isotopomers are compared
to experimental values in Table VI. In all cases, excellent
agreement with experiment is found. The cohesive energy for
LiH falls about halfway between the two experimentally de-
termined values, and for LiD the discrepancy between ex-
periment and theory is one half of a millihartree. The lattice
parameters have been measured by neutron diffraction at 93
K �for LiH� and 83 K �for LiD�.43 An earlier x-ray diffraction
study, although less reliable owing to contamination by Li
metal, revealed that the contraction on cooling from 80 to
12.1 K amounted to no more than 0.001 Å, and comparable
to the quoted uncertainty in both experiments. Values for the
bulk modulus vary quite widely between different experi-
ments, but are in broad agreement with the theoretically de-
termined values.

IV. BENCHMARK RESULTS

Having established the accuracy of our overall procedure
through careful comparison with experiment, it seems rea-
sonable to take the simple additional steps to provide bench-
mark data against which other periodic electronic structure
methods can be tested. In Table VII, we provide our basis-
set-limit estimates of the static cohesive energy of LiH using
Hartree-Fock, MP2, and coupled-cluster theory, and compare
with other calculations performed using the newly developed
plane-wave MP2 code in VASP.11 Also included in the table is
the highly converged Hartree-Fock result of Paier et al. using
the CP2K and GAUSSIAN codes.46 These are the best con-
verged values �at their respective levels of theory� available
in the literature, but there have been numerous earlier calcu-
lations.

An early study with the CRYSTAL code gave the Hartree-
Fock static cohesive energy as −130 mEh �at a=4.102 Å�
by Dovesi et al.,47 it was later determined as −131 mEh
�at a=4.112 Å� by Bellaïche and Lévy,48 and as −129 mEh

TABLE IV. Energy contributions in millihartree to the cohesive
energy of the crystal at various lattice parameters. The correlation
residual �Ecoh

cor is the sum of the energy columns of Table III.

a /Å Ecoh
HF Emol

cor a �Ecoh
cor EZP�LiH� EZP�LiD�

3.684 −124.135 −37.909 −18.059 10.530 8.330

3.784 −127.634 −37.980

3.884 −129.986 −38.080 −15.590 9.040 7.140

3.984 −131.365 −38.211

4.084 −131.910 −38.371 −13.336 7.790 6.120

4.184 −131.747 −38.559

4.284 −130.978 −38.773 −11.223 6.630 5.200

aComputed as ae-FCI/cc-pCVTZ plus a basis-correction using ae-
CCSD�T�/cc-pCV�TQ�Z.

TABLE V. Derivation of zero-temperature cohesive energies of
LiX �X=H or D� from thermochemical data. All data are taken
from the JANAF tables �Ref. 40� unless otherwise noted; and all
energies are given in kJ/mol. The available data allow two thermo-
dynamic cycles for the 7LiH isotopomer, and one for 7LiD.

LiH LiD

T=0 K T=298 K T=298 K

−�fH�X�g� ,0 K� −216.035 −216.035 −219.807

−�fH�Li�g� ,T� −157.725 −159.300 −159.300

�fH�LiX�s� ,T� −85.548 −90.625 −91.144 a

H298�Li�g��−H0�Li�g�� 4.622 4.622

�H298�X2�g��−H0�X2�g��� /2 4.234 4.285

H0�LiX�s��−H298�LiX�s�� −3.778 −4.596 b

Ecoh −459.308 −460.882 −465.940

aTaken from Gunn and Green �Ref. 41�.
bComputed by integration by of heat-capacity data from Yates et al.
�Ref. 42�.

TABLE VI. Theoretical values for the zero-temperature lattice
parameter, bulk-modulus, and cohesive energy of LiH and LiD �per
formula unit and relative to free atoms�. Experimental values are
shown for comparison.

a0 /Å B0 /GPa Ecoh /mEh

7LiH This work 4.062 33.2 −175.3

Experiment 4.061�1�a 33–38b −175.6, −174.9 c

7LiD This work 4.046 34.2 −177.0

Experiment 4.045�1�a 33.5�4�d −177.5 c

aNeutron scattering, T=93 K for LiH and T=83 K for LiD �Ref.
43�; the lattice parameter at 0 K would probably not differ to within
the experimental uncertainty. See text for details.
bThese 0 K numbers were obtained from various experimental re-
sults at 300 K by scaling by 1.06 �Ref. 44�; see Ref. 14 and refer-
ences therein.
cComputed from the thermodynamic cycles given in Table V.
dMeasured by neutron diffraction at 300 K �Ref. 45� and corrected
to 0 K by multiplication by 1.06 �Ref. 44�. The errors associated
with the scaling procedure are expected to be much smaller than the
quoted experimental uncertainty �Ref. 44�.
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�at a=4.106 Å� by Shukla et al.14 The last authors also pro-
duced correlated values for the cohesive energy
�−164 mEh� and lattice parameter �a=4.106 Å� through the
incremental scheme. The large discrepancy between this
value and the static cohesive energy �of about −183 mEh�
produced here arises from a variety of approximations made
in the earlier work; but it is highly likely that the difference
mostly arises from their use of extremely limited one-particle
basis sets �with 3s1p on H and 2s1p on Li� in the correlation
treatment.

V. CONCLUSIONS

Using the hierarchical scheme it is possible to obtain
highly converged properties of a simple ionic solid like
lithium hydride. Edge effects dominate properties of the
small clusters that are used, but in the hierarchical scheme
these effects are carefully subtracted to reveal information
about the bulk crystal. An alternative perspective on the suc-

cess of the method is provided by Nolan et al.16

Through use of the extensively tested hierarchies of mo-
lecular electronic structure theory, corrections can be made
for higher-order correlation effects, correlation of the core
electrons and basis-set effects. In all cases, the error intro-
duced by the simple additive scheme for combining these
corrections has been assessed and found to be small. Consid-
ering the various sources of error in these calculations �non-
additivity, residual correlation, and basis-set effects, incom-
plete convergence of the hierarchical scheme, and use of
DFT zero-point corrections� it would seem that the computed
cohesive energy is accurate to within a few tenths of a mil-
lihartree. While all of these approximations could be refined,
a significant reduction in the errors below this level would at
least involve CCSD�T� calculations in larger basis sets and
on larger clusters, incurring an enormous increase in compu-
tational cost.

As a by-product of the study we have established bench-
mark results for a variety of methods, so that as periodic
MP2 and even coupled-cluster codes become available they
can be tested against this simple test system. Moreover, an
independent check of our methodology is provided through
excellent agreement �to with a few tenths of a millihartree�
with the MP2 cohesive energy computed using entirely dif-
ferent techniques.11
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