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The optical conductivity of the one-band Hubbard model is calculated using the “dynamical cluster approxi-
mation” implementation of dynamical mean-field theory for parameters appropriate to high-temperature
copper-oxide superconductors. The calculation includes vertex corrections and the result demonstrates their
importance. At densities of one electron per site, an insulating state is found with gap value and above-gap
absorption consistent with measurements. As carriers are added the above-gap conductivity rapidly weakens
and a three component structure emerges, with a low-frequency “Drude” peak, a mid-infrared absorption, and
a remnant of the insulating gap. The mid-infrared feature obtained at intermediate dopings is shown to arise
from a pseudogap structure in the density of states. On further doping the conductivity evolves to the Drude
peak plus weakly frequency dependent tail structure expected for less strongly correlated metals.

DOI: 10.1103/PhysRevB.80.161105 PACS number�s�: 74.25.Gz, 72.80.�r, 74.25.Fy, 71.27.�a

The frequency-dependent �‘optical’� conductivity ���� is
an important probe of electronic condensed-matter physics,
revealing electronic band gaps, scattering processes, carrier
number and effective mass. Optical conductivity measure-
ments have played a particularly important role in the study
of high-temperature copper-oxide superconductors,1,2 reveal-
ing behavior which deviates sharply from conventional band
theoretic expectations. In the undoped “parent compounds”
such as La2CuO4 measurements1 reveal a large �1.75 eV
gap which persists essentially unchanged as temperature is
raised above the Néel temperature TN�300 K while band
theory predicts metallic behavior in the absence of antiferro-
magnetism. As the materials are doped, the gap feature
weakens and absorption appears at lower frequencies. The
lower frequency absorption is often3 decomposed into two
parts, a “Drude” peak centered at �=0 and a “mid-IR” struc-
ture at ��0.5 eV; both parts are characterized by an oscil-
lator strength �integral of conductivity over a frequency
range� which is small compared to the band theory value and
increases as the doping is increased.4 The “mid-IR” band has
been variously interpreted as an effect of scattering of carri-
ers from spin fluctuations5,6 or other bosons,7,8 a signature of
two-component absorption9 and as an indication of a pre-
dicted charge 2e excitation,10,11 but a clear consensus on the
interpretation has not emerged.

Cluster dynamical mean-field approximations12,13 to the
one-band Hubbard model have been argued to provide a rea-
sonable description of the physics of the cuprates. Single-
electron properties such as the photoemission spectra have
been argued14–18 to be in good agreement with data. How-
ever, in cluster dynamical mean-field theory evaluation of
two-particle response functions such the optical conductivity
requires computation of a vertex function. In this Rapid
Communication we show that the vertex correction may be
computed and makes a significant contribution �especially to
the conductivity of undoped and lightly doped materials�.
Our main result, a computation of the variation with doping
of the frequency dependent conductivity ���� of the Hub-
bard model at physically relevant parameters, is shown in
Fig. 1. The curves bear a striking similarity to the conduc-
tivity of hole-doped high-temperature superconductors.1,2

The conductivity calculated for the undoped system displays
a characteristic insulating spectrum with a gap
�5t�1.8 eV similar in magnitude to that observed in
La2CuO4 and an above-gap absorption strength correspond-
ing to �1300 �−1 cm−1 about 30% larger than observed. On
doping, this gap is rapidly destabilized, again in a manner
consistent with measurements. Absorption in the near-gap
region is suppressed, while substantial absorption strength
appears at low frequencies. As the doping is increased the
optical response may be described in terms of a “Drude”
peak indicating coherent quasiparticle motion, an additional
“mid-IR” feature ���0.5t� and a high-frequency tail. By the
highest doping the conductivity has evolved to the ‘Drude
peak’ plus weak high-frequency tail characteristic of Fermi-
liquid metals.

To further characterize the evolution of the conductivity
we present in the inset of Fig. 1 the partial optical integrals
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FIG. 1. �Color online� Optical conductivity calculated for indi-
cated dopings using four-site DCA approximation to the paramag-
netic phase of the two-dimensional one-band Hubbard model at
parameters corresponding to high-temperature superconductors at
temperature T�400 K and t�0.35 eV, t��−0.3t, U�9t. Inset:
2 /� times integral of optical conductivity over low-frequency
��0.6t �“Drude,” solid line, black online�, intermediate frequency
�=2t �“mid-IR,” long-dashed line, red online�, and all frequencies
�“total,” light solid line, green online�, along with independently
computed kinetic energy �“KE,” light dashed line, blue online�.
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K���= 2
��0

�d����� for a low-frequency ��=0.6t encom-
passing the Drude peak�, an intermediate frequency �=2t,
somewhat less than half of the gap value and the total inte-
gral �→� �which is seen to agree with the independently
calculated kinetic energy�. The shift of spectral weight, first
into a mid-IR band and then into a Drude peak is very simi-
lar to observations in high-Tc cuprates, although the calcu-
lated mid-IR spectral weight is higher than values inferred
from data �see, e.g. Fig. 1 in Refs. 1 and 4�.

The derivation of our results begins from the current-
current response function 	 j j�t�= i�t��t� which relates a spa-
tially uniform, time dependent �therefore transverse� electric
field E� to the current j� it creates. For a system described by
a Hamiltonian H=T+U with interactions U which depend
only on particle and spin densities �not on particle or spin
currents� we have j��t�=Tr�J��A�G�t ; �A� ��	. The current opera-
tor J� is obtained from the derivative of the single-particle
terms T with respect to vector potential: J� =
T /
A� while the
electron Green function G�t ; �A� �	= �i�t−T��A� �	−���A� �	�−1 is
to be computed in the presence of the time dependent vector
potential A� . Here bold face quantities denote matrices in the
space of states of the system �including the spatial indices�.
Expanding to linear order in A� and introducing the diamag-
netic operator K=
2T /
A� 2 and vertex operator �� =
� /
A�
we obtain 	 j j =	dia+	bubble+	vertex with

	dia�t − t�� = Tr�KG�t = 0�	
�t − t�� , �1�

	bubble�t − t�� = Tr�J�G�t − t��J�G�t� − t�	 , �2�

	vertex�t − t�� = Tr�J�G�t − t1��� �t1 − t�,t� − t2�G�t2 − t�	 , �3�

�convolution on internal time indices is to be understood�.
Note that the quantity K is commonly referred to as the
“kinetic energy.” It is of the same order of magnitude as the
expectation value of the hopping operator, and becomes
identical to it in the limit of nearest-neighbor hopping. Com-
bining the Kramers-Kronig relation between real � �� and
imaginary � �� parts of � with the gauge-invariance condition
that for a nonsuperconducting material 	 j j��=0�=0
implies19 	dia=� d�

� 	 j j� ��� /�=� d�
� �����, which is the usual

f-sum rule.
In the dynamical cluster approximation �DCA� �Refs. 12

and 20� implementation of the dynamical mean-field
approximation21 one tiles the Brillouin zone into a=1. . .N
nonoverlapping equal-area regions and approximates the
electron self-energy ��k ,�� by the piecewise constant form

��k,�� = 

a

N

�a����a�k� �4�

with �a�k�=1 if k is in tile a and zero otherwise. Thus if
N�1 the self-energy has an explicit momentum dependence
arising from the discontinuities at the boundaries of the tiles.
The self-energies �a are computed from the solution of an
N-site quantum impurity model which involves the interac-
tions of the original model �projected onto the impurity clus-
ter� and mean-field functions Ga

−1 which are fixed by the self-
consistency equations

Ga
−1 = �a + ��

a

�dk�G�k�
−1

�5�

where the integral is over the tile a with appropriate measure
�dk�, G�k� is the Green function of the lattice problem com-
puted with � defined by Eq. �4�.

For the conductivity we require the vertex function

� ��+� ,���
� /
A� , which has two sources: the explicit
dependence on k arising from the momentum-space discon-
tinuities and any additional dependence of � on A� . The ad-
ditional A� -dependence arises via the impurity model from a
dependence of G−1 on A which may be computed by linear-
izing Eq. �5� in A. Denoting the first-order changes in G and
� by 
G and 
� we have


Ga
−1 − I���
�a�	 = − I�v

a · A� �6�

with �time arguments are not written explicitly�

I�v = − Ga
−1��

a

�dk�G�k�
��

�k�
G�k��Ga

−1 �7�

I� = 
�a + Ga
−1��

a

�dk�G�k�
�aG�k��Ga
−1 �8�

The canonical tiling for clusters of size N=1,2 ,4 pro-
duces momentum sectors with symmetry such that Iv=0.
Thus as noted by Ref. 22 �for N=1� and 23 �for N=4�, in
these clusters there is no explicit dependence of �a on A.
Reference 23 further argued that for N=4 all vertex correc-
tions vanished. This is incorrect, although the vertex correc-
tions turn out to be unimportant for the situation of interest to
Ref. 23. The explicit momentum dependence provides a non-
vanishing vertex correction arising from the momentum-
space discontinuities which occur along the lines k�ab separat-
ing tile b �on the of larger k side� from tile a �on the smaller
k side�. We define n�ab to be the normal to this line. In the
�=0 limit the vertex correction is directly given by �� /�k�.
To determine the vertex correction for ��0 we consider the
Ward identity �
�−q� ·
� J=G−1�k+q ,�+��−G−1�k ,�� relat-
ing the charge 
� and current 
� J vertices to the inverse Green
functions. Within the DCA approximation 
� arises from the
functional derivative of � with respect to a time dependent
chemical potential; it is computed along the lines of Eq. �6�
but with ��k /�k� ·A� replaced by 
�. Because this perturbation
is a scalar it has no contribution from the functions �k and
therefore cannot have any term proportional to a delta func-
tion of k. Thus we may identify the current vertex from the
contributions in the Ward identity proportional to delta func-
tions in k space, yielding


� k�� + �,�� = n�ab��b�� + �� − �a���	
��k� − k�ab� · n�ab	 . �9�

We apply the formalism to the four-site DCA approxima-
tion to the two-dimensional Hubbard model,
H=
k��kck�

† ck�+U
ini↑ni↓ with �k=−2t�cos kx+cos ky�
−4t� cos kx cos ky. The current operator for the x direction is
jx=2t sin kx+4t� sin kx cos ky and the kinetic-energy opera-
tor K=2t cos kx+4t� cos kx cos ky. For this approximation,
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Eq. �9� is the appropriate vertex correction. We restrict atten-
tion to the paramagnetic phase. We use the numerically exact
continuous-time auxiliary field24 �CT-AUX� impurity solver
to solve the impurity model and construct vertex functions
and the conductivity. Parameters relevant to high-
temperature copper-oxide superconductors are t�0.35 eV,
t��−0.3t �Ref. 25� and U�9t.4 The precision of calcula-
tions for t��0 or n�1 is limited by a fermion sign problem;
we therefore present results for U=6t and t�=0 where higher
precision data can be obtained.

Because we solve the model on the imaginary axis, an
analytical continuation is required to obtained real frequency
information. This may be done in two ways: either by con-
tinuing the self-energies26 and then computing the conduc-
tivity or by continuing directly the Matsubara-axis conduc-
tivity. Analytical continuation requires a covariance matrix of
error estimates. For the self-energy the covariance matrix is
available from the quantum Monte Carlo �QMC� data, while
for the conductivity we estimate the covariance �which is
highly nondiagonal because of the 1 /� in the definition�
from an ensemble of 16 independent QMC solutions of the
mean-field equations. The continuations are tested by com-
paring the directly computed Matsubara axis ��i�n� to the
same quantity ‘back-computed’ from the continuation. Sig-
nificant differences in real-axis conductivity correspond to
variations of a few times 10−4 in ��i�n�, setting a stringent
requirement on the quality of the data. The inset of Fig. 2
presents highly precise data obtained at the sign-problem-
free parameters U=6t and t�=0; we see that the two continu-
ation methods yield similar results; differences between them
are a measure of the best-case uncertainties in the continued
�. At U=9t and t�=−0.3t the differences between the meth-
ods are larger; in particular the gap edges are much broader
in the traces obtained by continuing the Matsubara-axis re-
sponse functions; we believe this broadening is unphysical

for the reasons given in Ref. 26. The conductivity obtained
from continuing ��i�n� is found in general to produce a
back-continued � in worse agreement with original data than
the conductivity obtained by continuing the self-energy; we
therefore present results obtained from the latter method.
One difficulty must be noted. As can be seen from Fig. 2, in
the high-frequency regime �frequencies well above the gap�
the vertex correction acts to cut off the high-frequency tail
found in 	bubble, adding a negative contribution to the
positive-definite 	bubble so that the total contribution nearly
vanishes. In calculations based on continuing the self-energy
first, the vertex correction in fact overcompensates, leading
to an unphysical negative conductivity for some high fre-
quencies �if ��i�n� is directly continued the ����� is by
construction positive�. We believe that the overcompensation
is a numerical artifact. Our numerical uncertainties, both
from the QMC measurement and the analytical continuation,
are largest in this regime. The magnitude of the unphysical
negative contribution is small: for our U=9t calculations the
spectral weight in the negative region ranges from 5% of the
total spectral weight at x=0 to 0.4% at our highest doping.
Further, the overshoot is found to decrease as the numerical
accuracy of our computation is improved and as seen from
the second inset to Fig. 2 can be made smaller than 2% of the
total spectral weight in our best case. However, to date we
have been unable to eliminate the negative region entirely.

The main panel of Fig. 2 presents the conductivity for
t�=−0.3t and U=9t as well as its decomposition into
“bubble” �Eq. �2�	 and “vertex” �Eq. �3�	 contributions for
dopings x=0 and x=0.054. The vertex correction is seen to
make a non-negligible contribution to the conductivity and to
be essential to fulfilling the f-sum rule. It decreases in im-
portance as doping increases, as expected because with in-
creased doping the self-energy becomes more isotropic in
momentum space. This aspect of our result disagrees with
Ref. 11 which stated �on the basis of a comparison of a
four-site CDMFT conductivity computed without vertex cor-
rections to the f-sum rule� that vertex corrections were un-
important near half filling and increased in importance as the
doping increased; on the other hand at lower frequencies and
higher dopings where vertex corrections are of less impor-
tance our result is similar to that of Ref. 11. The origin of the
difference is not clear.

At x=0 the vertex corrections bring two effects: they in-
crease the magnitude of the conductivity in the above-gap
region and they steepen the rate at which the conductivity
rises above the gap edge. We believe that these two effects
are consequences of the short ranged order captured by the
DCA approximation. Inspection of the Green function �not
shown here� indicates that on the single-particle level the
state is an indirect-gap insulator with the highest energy
filled states at a different momentum from the lowest energy
empty states. As shown, e.g., in Refs. 4 and 26, the backfold-
ing associated with long-ranged order converts the indirect
gap to a direct one, steepening the conductivity onset. The
vertex correction provides a similar effect. The vertex cor-
rection also expresses the “coherence factor” physics associ-
ated with strong two-sublattice spatial correlations. To see
this, consider a mean-field model of a material with two-
sublattice order, for which the electron propagator has “nor-
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FIG. 2. �Color online� Main panel: conductivity calculated from
4-site DCA approximation to one-band Hubbard model for U=9t,
t�=−0.3t and dopings x=0 �heavy lines, red online� and 0.054 �light
lines, black online� by continuing self-energy. Full lines: conductiv-
ity; dashed lines: contribution to conductivity from convolution of
bubble diagrams �Eq. �2�	; dash dotted lines: contribution from ver-
tex corrections �Eq. �3�	. Larger Inset: comparison of conductivity
computed by continuing self-energy �dashed line, red online� and
continuing Matsubara response function �solid line, black online� at
U=6t and t�=0. Smaller inset: expansion of high-frequency nega-
tive conductivity region for U=6t and t�=0.
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mal” �G��ckck
†�� and “anomalous” �F��ckck+Q

† �� parts
given by G�k ,��= ��−�k+Q� / ���−�k���−�k+Q�−�2�=1 / ��
−�k−�2 / ��−�k+Q�� and F�k ,��=�2 / ���−�k���−�k+Q�
−�2� respectively. The conductivity in the ordered state is
computed from the sum of a “G−G” and an “F−F” bubble
which give equal contributions to the conductivity for fre-
quencies near the gap edge. The state uncovered in the four-
site DCA calculation has no long-ranged order, so the
anomalous �F� part vanishes and convolution of bubble dia-
grams would capture only the G−G contribution. The vertex
corrections in effect add back the F−F term.

The conductivity is related to the electron spectral func-
tion, shown in Fig. 3. The initial doping moves the chemical

potential into the lower Hubbard band and rapidly broadens
the sharp peak at the edge of the upper Hubbard band; we see
also from Fig. 1 that the form of the near-gap-edge conduc-
tivity changes substantially. Interestingly, in the doped mate-
rials the remains of the above-gap absorption is entirely ex-
pressed by the vertex correction. At intermediate dopings x
=0.054 and 0.089 the many-body density of states exhibits a
‘pseudogap’, a small gap at the Fermi level previously
noted.14,17,27 Excitations across the pseudogap have the cor-
rect energy to account for the mid-IR feature observed in the
data and in high-Tc materials �a similar connection was made
in Refs. 10 and 11�.

To summarize, we have presented theoretically consistent
calculations of the optical conductivity of the Hubbard
model within the “DCA” implementation of cluster dynami-
cal mean-field theory. The calculated results bear a very great
similarity to the conductivity observed in high-temperature
superconductors. The important role played by spatial corre-
lations in the cluster DMFT approximation �expressed in the
calculation by vertex corrections� is seen from the rapid rise
of the conductivity above the gap edge and the rapid changes
with doping, while vertex corrections are less important at
higher doping and lower frequency. Important directions for
future study include extensions to the case of Raman scatter-
ing and to larger clusters.

We thank P. Philips, Jie Lin, and X. Wang for helpful
conversations and acknowledge support from the National
Science Foundation Division of Materials Research under
Grant No. DMR-0705847. QMC calculations have been per-
formed on the Brutus cluster at ETH Zurich, using a code
based on ALPS �Ref. 28�.
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FIG. 3. �Color online� Main panel: Density of states calculated
for the sector containing the Fermi surface from four-site DCA
approximation at U=9t and t�=−0.3t at dopings indicated. Inset:
expansion of the near-Fermi-surface region.
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