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Using first-principles plane-wave calculations, we investigate two-dimensional �2D� honeycomb structure of
group-IV elements and their binary compounds as well as the compounds of group III-V elements. Based on
structure optimization and phonon-mode calculations, we determine that 22 different honeycomb materials are
stable and correspond to local minima on the Born-Oppenheimer surface. We also find that all the binary
compounds containing one of the first row elements, B, C, or N have planar stable structures. On the other
hand, in the honeycomb structures of Si, Ge, and other binary compounds the alternating atoms of hexagons
are buckled since the stability is maintained by puckering. For those honeycomb materials which were found
stable, we calculated optimized structures, cohesive energies, phonon modes, electronic-band structures, effec-
tive cation and anion charges, and some elastic constants. The band gaps calculated within density functional
theory using local density approximation are corrected by GW0 method. Si and Ge in honeycomb structure are
semimetal and have linear band crossing at the Fermi level which attributes massless Fermion character to
charge carriers as in graphene. However, all binary compounds are found to be semiconductor with band gaps
depending on the constituent atoms. We present a method to reveal elastic constants of 2D honeycomb
structures from the strain energy and calculate the Poisson’s ratio as well as in-plane stiffness values. Prelimi-
nary results show that the nearly lattice matched heterostructures of these compounds can offer alternatives for
nanoscale electronic devices. Similar to those of the three-dimensional group-IV and group III-V compound
semiconductors, one deduces interesting correlations among the calculated properties of present honeycomb
structures.
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I. INTRODUCTION

Last two decades, nanoscience and emerging nanotech-
nologies have been dominated by honeycomb-structured
carbon-based materials in different dimensionality, such as
fullerenes, single-walled and multiwalled carbon nanotubes,
graphene and its ribbons. In particular, graphene, a two-
dimensional �2D� honeycomb structure of carbon, has been
an active field of research.1 Because of unique symmetry,
electron and hole bands of graphene show linear band cross-
ing at the Fermi level2 resulting in a massless Dirac fermion-
like behavior of charge carriers. As a result, Klein paradox,
an interesting result of quantum electrodynamics was ex-
pected to be observed in graphene.3–6 Moreover, it was
shown that half-integer quantization of Hall conductance4,7,8

can be observed in graphene. Unusual electronic and mag-
netic properties of graphene, such as high carrier mobility
and ambipolar effect, have promised variety of applications.
In addition to some early works on crystalline order in planar
structures,9,10 possibility of very large one-atom-thick 2D
crystals with intrinsic ripples is reported theoretically11 and
experimentally.12 Not only extended 2D graphene sheets but
also quasi-one-dimensional �1D� graphene ribbons with arm-
chair or zigzag edges have shown unusual electronic,13–18

magnetic,19–22 and quantum-transport properties.23–26

All these experimental and theoretical studies on
graphene created significant interest in one-atom-thick hon-
eycomb lattices of other group-IV elements and compounds
of III-V and II-VI group elements. Recently, the boron-

nitride �BN� honeycomb sheet was reported as a stable ionic
monolayer.27 BN has the same planar structure as graphene
with a nearest-neighbor distance of 1.45 Å. However, its
ionic character causes a gap opening at the K point. Thus,
instead of being a semimetal, BN honeycomb structure is a
wide band-gap insulator with an energy gap of 4.64 eV. Soon
after its synthesis, several studies on nanosheets28 and
nanoribbons29–32 of BN have been reported.

Hexagonal monolayer of zinc oxide �ZnO� is a II-VI
metal-oxide analog of graphene and BN. Previously, works
on nanostructures of ZnO such as nanosheets,33 nanobelts,34

nanotubes,35 nanowires,36 and nanoribbons37 were reported
and recently the synthesis of ZnO bilayer honeycomb struc-
ture was also achieved.38 In contrast to graphene, ZnO nan-
oribbons have ferromagnetic order in their ground state due
to electronic states at the zigzag edges dominated by oxygen
atoms.39,40

Two-dimensional SiC honeycomb sheet is another
group-IV binary compound displaying interesting properties.
While the infinite periodic 2D form of SiC is a semiconduc-
tor with 2.55 eV band gap, and its zigzag nanoribbons are
magnetic metals, the armchair ribbons are nonmagnetic
semiconductors.41 Half metallicity is also predicted for nar-
row SiC zigzag nanoribbons without any chemical decora-
tion or applied external field. Furthermore, functionalization
of SiC single sheets upon formation of various types of va-
cancies and adatom decoration was also predicted.42

Very recently, we have reported that among group-IV el-
ements not only C but also Si and Ge can form stable hon-
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eycomb structures.43 It is found that for Si and Ge planar
�PL� geometry is not the lowest energy configuration and it is
not stable. Alternatively, it was shown that a low-buckled
�LB� �or puckered� geometry corresponds to a stable local
minimum on the Born-Oppenheimer surface. Buckled hon-
eycomb structure of Si was pointed out even in some earlier
studies.8,44,45 Surprisingly, in spite of their puckered geo-
metrical structure, Si and Ge monolayers have electronic-
band structures which are similar to graphene. As a result,
linear crossing of � and �� bands at K and K� points of the
hexagonal BZ attributes a massless Dirac fermion character
to the charge carriers. Quasi-1D honeycomb structures,
namely, nanoribbons of Si and Ge, also show interesting
electronic and magnetic properties depending on their width
and orientation. Successful realization of single-crystal sili-
con monolayer structures46,47 through chemical exfoliation
shows that 2D silicon monolayers with their low resistivity
and extremely thin structures can be quite promising for na-
noelectronics.

Motivated by the recent experimental developments and
theoretical investigations on 2D monolayer honeycomb
structures, in this paper we carried out a systematic study of
similar structures of group-IV elements and III-V binary
compounds based on first-principles calculations within den-
sity functional theory �DFT�. Our objective is to reveal
whether monolayer honeycomb structures can be found as a
local minimum on the Born-Oppenheimer surface. The
present work, which considers a total of 26 elemental and
binary compounds in 2D honeycomb structure and reveals
whether they are stable, is an extension to our preliminary
work on Si and Ge puckered honeycomb structures.43 Based
on extensive analysis of stability, 22 different materials out
of 26 are found to be stable in a local minimum on the
Born-Oppenheimer surface either in finite size or in infinite
periodic form. We hope that interesting properties predicted
by this study will promote efforts toward synthesizing new
materials and heterostructures, which will constitute a one-
dimensional analog of three-dimensional family of tetrahe-
drally coordinated semiconductors.

The organization of this paper is as follows: in Sec. II the
methods together with parameters used in our calculations
are outlined. In Sec. III, we determine the atomic structure
and related lattice constants of the honeycomb structures via
total-energy minimization. We also discuss how the stability
of the structure is maintained through puckering. In the same
section, we present our results regarding the calculation of
phonon modes and our analysis of stability based on these
results. The mechanical properties of these structures are in-
vestigated in Sec. IV. We discuss the electronic-band struc-
ture of various stable materials calculated within DFT in Sec.
V. The underestimated band gaps are corrected by using GW0
calculations. As a proof of concept for a possible future ap-
plication of these materials we consider semiconductor su-
perlattices formed from the periodically repeating pseudo-
morphic heterostructure in Sec VI. We showed that the
superlattices have an electronic structure different from those
of constituent materials and behave as multiple quantum-
well structures with confined states. In Sec. VII, our conclu-
sions are presented.

II. METHODS

We have performed self-consistent field, first-principles
plane-wave calculations48,49 within DFT for total-energy and
electronic-structure calculations. We used projector aug-
mented wave potentials50 with Rcore value taken as the sug-
gested conventional values which is in between those used
for hard and soft potentials.51 This way two competing fac-
tors, namely, high accuracy and long computation time are
optimized. We considered s2p1, s2p2, and s2p3 as valence
electrons for III-, IV- and V-group atoms, respectively. The
exchange-correlation potentials is approximated by local-
density approximation �LDA�.52 In the self-consistent field
potential and total-energy calculations a set of �25�25�1�
k-point sampling is used for Brillouin Zone �BZ� integration
in k space. Here the k-point mesh is generated by
Monkhorst-Pack scheme.53 Kinetic energy cutoff �2�k
+G�2 /2m for plane-wave basis set is taken as 500 eV. The
convergence criterion of self-consistent calculations is
10−5 eV for total-energy values. Fermi-level smearing is
taken 0.1 eV for geometry optimization and 0.01 eV for ac-
curate energy-band calculations. By using the conjugate gra-
dient method, all atomic positions and unit cell were opti-
mized until the atomic forces were less than 0.05 eV /Å.
Pressures on the lattice unit cell are decreased to values less
than 0.5 kB. To prevent interactions between the adjacent
supercells a minimum of 10 Å vacuum spacing is kept.

To correct the energy-bands and band-gap values obtained
by LDA, frequency-dependent GW0 calculations are carried
out.54 Screened Coulomb potential, W, is kept fixed to initial
DFT value W0 and Green’s function, G, is iterated five times.
Various tests are performed regarding vacuum level, kinetic-
energy cut-off potential, number of bands, k points and grid
points. Final results of GW0 corrections are obtained by us-
ing �12�12�1� k points in BZ, 15 Å vacuum spacing,
default cut-off potential for GW0, 160 bands and 64 grid
points.

Cohesive energies �Ec� per pair of atoms �see Table I� are
calculated by using the expression

Ec = ET�AB� − ET�A� − ET�B� , �1�

where ET�AB� is the total energy per A-B pair of the opti-
mized honeycomb structure; ET�A� and ET�B� are the total
energies of free A and B atoms corresponding to nonmag-
netic state. All of them are calculated in the same cell. For
graphene, Si and Ge, A=B. For the charge-transfer analysis,
the effective charge on atoms are obtained by Bader
method.55 In fact, various methods for charge-transfer analy-
sis give similar trends for the honeycomb structures studied
in this paper. For rigorous test of the stability of fully relaxed
honeycomb structures under study, we also calculated pho-
non modes by using force-constant method.56 Here the dy-
namical matrix was constructed from forces, resulting from
displacements of certain atoms in �7�7� supercell, calcu-
lated by VASP software.

III. ATOMIC STRUCTURE

We first present a detailed analysis of 2D hexagonal struc-
ture of binary compounds of group-IV elements, their binary
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compounds and group III-V compounds all forming honey-
comb structure. In our study, we also include the discussion
of graphene, Si and Ge in honeycomb structure for the sake
of comparison.

Graphene has a 2D hexagonal lattice in which C atoms
are arranged to form a PL honeycomb structure as shown in
Fig. 1. Accordingly, it has a sixfold rotation axis, C6 at the
center of the hexagon, which is perpendicular to the atomic
plane. Hexagonal lattice has a two-atom basis in the primi-
tive unit cell, corresponding to A and B sublattices. That is
three alternating atoms of each hexagon belong to one of the
two sublattices. In graphene planar geometry is assured by
the formation of strong � bonding between two nearest-
neighbor pz orbitals perpendicular to the graphene plane. The
resulting � and �� bands determine also relevant electronic
properties. In addition, there are strong yet flexible, covalent
� bonds derived from the planar hybrid sp2 orbitals between
adjacent C atoms. Nearest C atoms are separated by 1.42 Å
and the magnitude of the hexagonal Bravais lattice vector is

2.46 Å. Briefly, the planar sp2 hybridization and perpendicu-
lar pz orbitals underlie planar geometry, unusual mechanical
strength and electronic structure of graphene.

In Fig. 2 we show the variation in the total energy with
respect to the lattice constant a of the 2D hexagonal Bravais
lattice. We see that C and BN stayed planar and have a single
minimum. The situation with Si, Ge, and GaAs is differ-
ent since they have two other minima corresponding to LB
and high-buckled �HB� geometries in addition to planar
geometry. In fact, the total energies corresponding to the
minimum of the planar geometry are already higher than
those of LB and HB geometries. In buckled geometries,
while atoms of A sublattice are rising, those of B sublattice
are lowered. At the end atoms of A and B sublattices lie in
different planes having a buckling distance, � as shown in
Fig. 1. The value of � in HB geometry is high and is in the
ranges of �2.5 Å but it is low in LB geometry and ranges
between 0.4 and 0.7 Å. We note that two minima corre-
sponding to HB and LB geometries in Fig. 2 are separated by

TABLE I. Calculated results for group-IV elements, their binary compounds, and group III-V compounds having honeycomb structure.
Stable structures are identified as PL or LB standing for the planar and low-buckled geometries, respectively. The values of angle between
neighboring bonds, �; buckling parameter, �; nearest-neighbor distance, d; 2D hexagonal lattice constant, �a1��= �a2��=a; cohesive energy, Ec;
minimum value of the energy gap, EG calculated using LDA and corrected by GW0 with the symmetry points indicating where minimum
�maximum� of conduction �valence� band occurs; calculated effective charges on the constituent cation/anion, Zc

� /Za
�; Poisson’s ratio, �; and

in-plane stiffness, C, are given. Some of the structural parameters are described in Fig. 1.

Geometry
�

�deg�
�

�Å�
d

�Å�
a

�Å�
Ec

�eV�

EG

�eV�

Zc
� /Za

� �
C

�J /m2�LDA-GW0

GROUP IV

Graphene PL 120.0 1.42 2.46 20.08 Semimetal 0.0/0.0 0.16 335

Si LB 116.4 0.44 2.25 3.83 10.32 Semimetal 0.0/0.0 0.30 62

Ge LB 113.0 0.64 2.38 3.97 8.30 Semimetal 0.0/0.0 0.33 48

SiC PL 120.0 1.77 3.07 15.25 2.52/KM–4.19/KM 1.53/6.47 0.29 166

GeC PL 120.0 1.86 3.22 13.23 2.09/KK–3.83/KK 2.82/5.18 0.33 142

SnGe LB 112.3 0.73 2.57 4.27 8.30 0.23/KK–0.40/KK 3.80/4.20 0.38 35

SiGe LB 114.5 0.55 2.31 3.89 9.62 0.02/KK–0.00/KK 3.66/4.34 0.32 57

SnSi LB 113.3 0.67 2.52 4.21 8.72 0.23/KK–0.68/KK 3.89/4.11 0.37 40

SnC PL 120.0 2.05 3.55 11.63 1.18 /	K–6.18 /	K 2.85/5.15 0.41 98

III-V GROUP

BN PL 120.0 1.45 2.51 17.65 4.61 /KK–6.86 /	K 0.85/7.15 0.21 267

AlN PL 120.0 1.79 3.09 14.30 3.08 /	M–5.57 /	M 0.73/7.27 0.46 116

GaN PL 120.0 1.85 3.20 12.74 2.27 /	K–5.00 /	K 1.70/6.30 0.48 110

InN PL 120.0 2.06 3.57 10.93 0.62 /	K–5.76 /		 1.80/6.20 0.59 67

InP LB 115.8 0.51 2.46 4.17 8.37 1.18 /	K–2.88 /	K 2.36/5.64 0.43 39

InAs LB 114.1 0.62 2.55 4.28 7.85 0.86 /		–2.07 /		 2.47/5.53 0.43 33

InSb LB 113.2 0.73 2.74 4.57 7.11 0.68 /		–1.84 /		 2.70/5.30 0.43 27

GaAs LB 114.7 0.55 2.36 3.97 8.48 1.29 /	K–2.96 /	K 2.47/5.53 0.35 48

BP PL 120.0 1.83 3.18 13.26 0.82/KK–1.81/KK 2.49/5.51 0.28 135

BAs PL 120.0 1.93 3.35 11.02 0.71/KK–1.24/KK 2.82/5.18 0.29 119

GaP LB 116.6 0.40 2.25 3.84 8.49 1.92 /	K–3.80 /KM 2.32/5.68 0.35 59

AlSb LB 114.8 0.60 2.57 4.33 8.04 1.49/KM–2.16/KK 1.58/6.42 0.37 35

BSb PL 120.0 2.12 3.68 10.27 0.39/KK–0.23/KK 3.39/4.61 0.34 91
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a significant energy barrier. As we discuss in Sec. III B the
minimum of HB is not actually a local minimum on Born-
Oppenheimer surface. The sixfold rotation symmetry of
graphene is broken as a result of buckling and changes to the
threefold rotation symmetry C3. The similar symmetry
breaking takes place also in group III-V compounds having
PL honeycomb structures.

In concluding this discussion, we point out that even if the
calculated total energy has a minimum relative to a specific
structural parameter, this may not correspond to a local mini-
mum. Then it remains to answer which of these minima in
Fig. 2 corresponds to a local minima on the Born-
Oppenheimer surface. At this point, reliable tests for stability
of structure have to be performed.

A. Phonon modes and stability

Analysis of phonon modes provides a reliable test for a
structure optimized conjugate gradient method. If there is an
instability related with a phonon mode with k in BZ, the
square of frequency, 
�k� obtained from the dynamical ma-
trix becomes negative yielding imaginary frequency. Then
this particular mode cannot generate restoring force to ex-
ecute lattice vibration and hence the system is vulnerable to
go away from its original configuration. Phonon calculations
are performed by taking into account the interactions in
�7�7�1� large supercells consisting of 98 atoms. For all
the infinite 2D honeycomb structures, there are three acous-
tical and three optical modes. In Fig. 3, we present the cal-
culated dispersions of phonon modes of 22 honeycomb
structures of group-IV elements and their binary compounds
as well as group III-V compounds. These structures �some
being in PL and others in LB geometry� all have positive

�k� in BZ indicating their stability. On the other hand, low-
buckled Sn among group-IV elements and none of HB struc-
tures are stable in the honeycomb form and hence they are
not shown in Fig. 3.

It is well known that as k→0 phonon dispersions of LA
and TA branches are linear but that of ZA branch �due to out

of plane acoustical modes� is quadratic since transversal
forces decay rapidly. Among these, the LA and TA phonon
branches are heat-carrying modes. However, it was shown
that bending branch ZA makes negligible contribution to
thermal conductivity.57 Note that the ZA branch becomes soft
and can easily get imaginary frequencies in BZ for certain
honeycomb structures excluded in Fig. 3.

In our earlier paper43 we found that ZA mode of 2D pe-
riodic Ge honeycomb gets imaginary frequencies near 	
point of BZ. This situation has been interpreted as the insta-
bility against long-wavelength transversal waves. This insta-
bility can be removed by the defects, such as ripples which
do not allow these waves by limiting the size of Ge sheets.
Finite size Ge honeycomb sheets can also be stabilized since
long-wavelength transversal waves do not occur. Long wave-
length defects in honeycomb structures have been treated
earlier.11 An extensive analysis of phonon modes in the
present study revealed that the extent of the region of imagi-
nary frequencies around the 	 point also depends on the
mesh size used in the calculations. Decreasing the mesh size
may lead to the decreasing of their particular zone. There-
fore, a tedious analysis of the right mesh size is required to
determine whether or not the imaginary frequency zone of
ZA mode is an artifact of the mesh size. We performed this

Planar (PL) Low Buckled (Puckered)

∆

θ120ο ο

Top view

Side view

a2

a1

FIG. 1. Top and side views for two-dimensional �a� PL and �b�
LB �or puckered� honeycomb structure. In the PL structure atoms
are located on the same plane. In the LB structure the alternating
atoms are located in two different parallel planes. The buckling � is
the distances between these two planes. Bravais lattice vectors for
both structure are given with �a1��= �a2��=a. The unitcell is delineated
and shaded.
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FIG. 2. �Color online� Variation in total energy of C, Si, Ge, BN,
and GaAs honeycomb structures with respect to the lattice constant
a of 2D hexagonal lattice. The stable local minima of the Born-
Oppenheimer surface for each structure is shown with a dashed line
separately.
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analysis of mesh size for Ge-LB structure and found an op-
timum fine mesh size where imaginary frequencies of ZA
mode disappeared. We also note that since the interatomic
forces related with ZA modes decay rapidly, the numerical
inaccuracy in calculating forces due to the transversal dis-
placement of distant atoms may give rise to difficulties in the
treatment of ZA modes. Briefly, caution has to be exercised

in deciding whether the imaginary frequencies of ZA modes
is an artifact of numerical calculations.

Calculated phonon dispersion of graphene is in good
agreement with previous LDA results and also with reported
experimental data.58–60 Around 1600 cm−1, LO and TO
eigenmodes are degenerate at 	 point. In-plane TA and LA
eigenmodes have linear dispersion around the 	 point. As it
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 versus k of group-IV elements, their binary compounds and
group III-V compounds having honeycomb structure. Compounds having at least one constituent from first row elements have tendency to
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is mentioned in earlier works on 2D structures, out-of-plane
ZA eigenmode have quadratic phonon dispersion in the vi-
cinity of 	 point. Here, the calculated value for out-of-plane
optical eigenmode ZO is around 900 cm−1. Existence of
strong electron-phonon coupling in TO eigenmode at the K
point and E2g modes at 	 point is the reason of the Kohn
anomaly at these points. Therefore, scattering by phonon
with the energies that corresponds to these modes can cause
noticeable decrease in transmission spectrum.60,61 Since
force constant decreases with increasing atomic number or
row number in the periodic table, calculated vibration fre-
quencies exhibit the same trend.

As a result of symmetry in honeycomb structures of
group-IV elements �such as graphene, Si and Ge�, ZO and
TO branches cross at K point. We also note that the ZO
branch of a binary compound comprising at least one ele-
ment from the first row falls in the frequency range of acous-
tical vibration modes. By comparing the phonon dispersions
of InN, InP, InAs, and InSb samples, it is seen that ZO mode
have increasing tendency to move apart from the LA and TA
modes with increasing nearest-neighbor distance. However,
in all the samples containing first row elements, ZO mode is
located between the LA and TA modes. These characteristic
trends of ZO mode exists for all the 2D honeycomb struc-
tures.

B. Stability via puckering

According to analysis of stability based on the calculated
phonon modes, structures which do not contain first row el-
ements occur in LB �puckered� structure corresponding to a
local minimum in Born-Oppenheimer surface. Through
puckering the character of the bonding changes. Different
hybrid orbitals underlie the different allotropic forms of C
atom. While the bonding of diamond structure is achieved by
tetrahedrally coordinated, directional sp3 hybrid orbitals,
sp2+ pz and sp+ px+ py hybrid orbitals make the bonding in
graphene and cumulene �monoatomic chain of carbon at-
oms�, respectively. In forming hybrid orbitals one of two
valence s states is excited �promoted� to p state whereby a
promotion energy is implemented to the system. However,
by s and p hybridization the hybrid orbitals yield the maxi-
mum overlap between adjacent C-C atoms and hence the
strongest possible bonding. This way, the promotion energy
is compensated and the system attains cohesion. In sp3 hy-
brid combination one s orbital is combined with px, py, and
pz orbitals to form four orbitals directed from the central C
atom toward its four nearest neighbors in tetrahedral direc-
tions. The angle between these bonds is �109.5°. In sp2 one
s is hybridized with px and py orbitals to make three planar
sp2 which are directed from the central C atom at the corners
of the hexagons to its three nearest neighbors. For the cumu-
lene s orbital is hybridized with pz orbital along the chain
axis. In this respect, the strengths �i.e., self-energy� of these
hybrid orbitals decreases with increasing number of p-type
orbitals in the combination; namely, sp is strongest whereas
sp3 is least strong. As for the distance of C-C bonds, it is
shortest in cumulene �1.29� but longest in diamond
�1.53 Å�. In addition to these hybrid orbitals, p orbitals

make also � bonding between two C atoms. The � bonding
between two adjacent C atoms in graphene and cumulene
assures the planarity and linearity, respectively. In Fig. 4 the
charge density of the � bonds between neighboring C atoms
explains how the stable planar geometry is maintained.

As the bond distance between two nearest-neighbor atoms
increases, the overlap of the pz orbitals decreases. This, in
turn, decreases the strength of the � bond. This is the situa-
tion in the honeycomb structures of Si, where the Si-Si bond
distance �2.34 Å� increased by 92% relative to that of the
C-C bond. As a result of weaker � bonds the stability of the
planar geometry cannot be maintained and the structure at-
tains the stability through puckering, where three alternating
atoms of a hexagon rise as the remaining three are lowered.
At the end the structure is buckled by �. Through buckling
the sp2 hybrid orbital is dehybridized and s, px, and py orbit-
als are then combined with pz to form sp3-like orbitals.
While three sp3-like orbitals form covalent bonds with three
nearest-neighbor atoms, one sp3-like orbital directed upward
perpendicular to the atomic plane form a weak bond with the
adjacent sp3-like orbital directed downward. The weak bond-
ing between these adjacent sp3-like bonds is revealed from
the isosurface charge density plots in Fig. 4 as well as from
the dispersion of the corresponding energy bands in Sec. V.
The puckered Si honeycomb structure is reminiscent of
graphane62–64 with alternating C atoms saturated with hydro-
gen atoms from different sites. Briefly, puckering occurs as a
result of weakening of � bonds whereby the structure regains
its stability through tetrahedrally coordinated sp3-like bond-
ing. Puckering may be explained in terms of Jahn-Teller
theorem65 predicting that an unequal population of degener-
ate orbitals in a molecule leads to a geometric distortion.
This way the degeneracy is removed and the total energy is
lowered.

As shown in Table I, 11 out of 22 honeycomb structures
prefer planar geometry, the rest is puckered to regain stabil-

Planar Puckered

π−
bo
nd
in
g

σ−
bo
nd
in
g

FIG. 4. �Color online� Charge-density isosurfaces for � and �
bonding: in the honeycomb structures of C, BN, and several others,
the planar geometry is maintained by the strong � bonding through
the perpendicular pz orbitals, in addition to the � bonding through
the sp2 hybrid orbitals. In the case of honeycomb structures formed
by the elements beyond the first row, the �-� bonding is weakened
due to the increasing bond length and hence the structure is puck-
ering where sp2 hybrid orbitals are slightly dehybridized to form
sp3-like orbitals. This situation is depicted for Si honeycomb struc-
ture. Increasing charge density is plotted with colors from yellow
�light� to red �dark�.
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ity. There are interesting examples for planar and puckered
ring structures: besides BN, planar B�CH3�3 molecule and
well-known B�OH�3 boric acid planar crystals are other ex-
amples for boron-containing materials. Sn rings such as S7,
S8, and S12 have also puckered structures with a crown
shape.66 Another example is planar cyclobutadiene �C4H4�;
the well-known molecule was shown that it lowers its energy
when it has puckered �butterfly� structure for its positive di-
anion �C4H4

+2�. Additionally, it was shown before67 that
puckered shape of cyclooctatetraene C8H8 takes planar shape
for its negative dianion C8H8

−2. For the phosphazenes
�NPX2�, while N4P4F8 is planar N4P4Cl8 and N4P4�CH3�8
have buckled shapes68,69 and thus the rule regarding the com-
pounds including first row elements is still valid.

Having discussed the general aspects, we now concentrate
on the optimized atomic structure and corresponding elec-
tronic properties of stable honeycomb structures. Calculated
values of atomic- and electronic-structural parameters are
given in Table I. One notes that all 11 structures having
planar geometry has at least one constituent from the first
row elements of the periodic table; namely, C, B, and N.
Since the radii of these atoms are relatively small, their pres-
ence as one of the constituents assures that the bond length is
small enough to keep strong � bonding. This explains how
the radius of constituent atoms enters as a crucial ingredient
in the structure. The rest of the honeycomb structures in
Table I including Si and Ge are puckered to have LB geom-
etry.

Finally, we note that calculated results given in Table I
display interesting trends depending on the radius of con-
stituent elements or their row number in the periodic table.
For example, the bond strength or cohesive energy Ec of a
honeycomb structure gets weaker as the atomic radii or the
row number of the constituent elements increase. The corre-
lation between the cohesive energy, Ec, and lattice constant,
a and also that between the in-plane stiffness, C, and cohe-
sive energy, Ec, are shown in Fig. 5.

IV. MECHANICAL PROPERTIES

Honeycomb structure with sp2 bonding underlies the un-
usual mechanical properties providing very high in-plane
strength but transversal flexibility. We note that graphene and
its rolled up forms, carbon nanotubes are among the stron-
gest and stiffest materials yet discovered in terms of tensile
strength and elastic modulus. We investigated the mechanical
properties of 22 stable honeycomb structures listed in Table
I. We focused on the harmonic range of the elastic deforma-
tion, where the structure responded to strain � linearly. We
pulled the rectangular unit cell in x and y directions in vari-
ous amounts and generated a mesh of data corresponding to
the strains in x and y directions versus strain energy defined
as Es=ET���−ET��=0�; namely, the total energy at a given
strain � minus the total energy at zero strain. The data is
fitted to a two-dimensional quadratic polynomial expressed
by

ES��x,�y� = a1�x
2 + a2�y

2 + a3�x�y , �2�

where �x and �y are the small strains along x and y directions
in the harmonic region. Owing to the isotropy of the honey-
comb structure a1=a2. The same equation can be obtained
from elastic tensor70 in terms of elastic stiffness constants,
namely, a1=a2= �h ·A0 /2� ·C11; a3= �h ·A0� ·C12. Hence one
obtains Poisson’s ratio �=−�trans /�axial, which is equal to
C12 /C11=a3 /2a1. Similarly, the in-plane stiffness, C
=h ·C11· �1− �C11 /C12�2�= �2a1− �a3�2 /2a1� / �A0�. Here h and
A0 are the effective thickness and equilibrium area of the
system, respectively. In Table I, calculated Poisson’s ratio
and in-plane stiffness results are shown. The calculated value
of the in-plane stiffness of graphene is in agreement with the
experimental value of 340�50 �N /m�.71 Graphene has
highest in-plane stiffness and lowest Poisson’s ratio among
all honeycomb structures of group-IV elements and group
III-V compounds. Being a compound of first row elements,
BN has second highest C and second lowest �. The Poisson’s
ratio � increases with increasing row number of elements of
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FIG. 5. �Color online� A plot showing the correlation between the cohesive energy Ec and lattice constant �left� and between in-plane
stiffness C and Ec among honeycomb structures studied in this work. Squares and circles are for PL and LB structures, respectively.
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elemental and compound honeycomb structures. C shows a
reverse trend. The order of values of C in the last column of
Table I is similar to that of cohesive energies Ec in the sev-
enth column. This clearly indicates a correlation between Ec
and C as shown in Fig. 5.

V. ELECTRONIC STRUCTURE

Our results on the electronic-band structure of group-IV
elements and binary compounds between different group-IV
elements and group III-V elements, which are stable in either
infinite periodic form or in finite size, are presented in Fig. 6.
In these hexagonal lattice structures �PL or LB� relevant
electronic-energy bands around the Fermi level are derived
from � and �� bands. In elemental honeycomb structures,
such as graphene, Si and Ge, these bands have linear cross-
ings at two inequivalent K and K� points of BZ, called Dirac
points and hence they are semimetallic. Because of their lin-
ear dispersion of E�k�, the charge carriers near the Dirac
points behave as massless Dirac fermions. By fitting the �
and �� bands at k=K+q to the expression

E�q� � vF��q� + O�q2� �3�

and neglecting the second-order terms with respect to q2, one
can estimate the Fermi velocity for both Si and Ge as vF
�106 m /s. We note that vF calculated for 2D LB honey-
comb structures of Si and Ge are rather high and close to that
calculated for graphene using the tight-binding bands. It is
also worth noting that because of the electron-hole symmetry
at K and K� points of BZ, 2D LB Si and Ge are ambipolar for
E�q�=EF�E, E being small.

In graphene Dirac fermions have a high Fermi velocity,
vF=c /300. Due to its high carrier mobility, graphene-based
ballistic transistors operating at room temperature have al-
ready been fabricated.72 In addition to these unusual elec-
tronic properties of graphene, the observation of anomalous
quantum Hall effect and the possibility of Klein paradox are
features, which attract the interest of researchers. Electronic
properties of graphene and graphene-based structures have
recently been reviewed.73,74

In the polar structures, such as BN, GaAs, after charge-
transfer pz orbital electrons are located predominantly on one
type of atom. Thus the degeneracy of valence and conduction
bands at K point is removed and gap opening occurs.75 In
Table I the minimum width of band gaps calculated with
LDA are given together with the symmetry points where the
maximum �minimum� of valence �conduction� bands occur.
Values of these band gaps after a correction by the GW0
method are also given. The bands of compounds before and
after GW0 correction are also illustrated in Fig. 6.

Binary compounds have polar character in addition to the
covalency of bonds. Effective charge on cation and anion, Zc

�

and Za
�, charge transferred from cation to anion, �=Za

�−Zv
�Zv being the valency of the constituent atom� are calculated
using Bader analysis. In spite of the ambiguities in finding
the true effective charge, the calculated effective charges in
Table I give some idea about the direction of charge transfer
and ionicity of the honeycomb structure. For some binary
compounds such as SiC, BN, and AlN calculated effective

charges appear to be right in sign but exaggerated in magni-
tude. We note that as the difference in the row numbers of
constituent elements increases, Z� usually decreases. One can
also generalize that the charge transfer decreases with in-
creasing row number or atomic radii of anion if the cation is
fixed. This trend is obvious in the structures of InN, InP,
InAs, and InSb.

VI. HETEROSTRUCTURES

Depending on the constituent elements the band gaps of
compound honeycomb structures change in a wide energy
range. In contrast, the lattice constant a of the compounds do
not show significant variation. The situation, where band
gaps of two honeycomb structures are significantly different
while their lattice constants are practically the same, is a
convenient condition to make semiconductor heterostru-
cures. As an example, let us consider AlN and GaN, which
have LDA band gaps of 3.08 and 2.27 eV, respectively. Their
lattice constants are not significantly different and are 3.09
and 3.20 Å, respectively. Moreover, armchair nanoribbons
can form pseudomorphic heterostructure with perfect junc-
tion. This is reminiscent of an AlN/GaN commensurate het-
erostructure having 2D interface. Owing to charge transfer
between constituent nanoribbons at the junction, the bands
are shifted and eventually aligned. Heterostructures of el-
emental and compound semiconductors generating a 2D
electron gas and devices produced therefrom have been an
active field of study in device physics in the past decades. It
is expected that the heterostructure of armchair nanoribbons
of GaN and AlN can constitute a 1D analog. When periodi-
cally repeated, this heterostructure can form superlattices be-
having as multiple quantum wells or quantum dots. Earlier
similar effects have been investigated for the heterostructures
of graphene nanoribbons with different widths.24

Superlattices of armchair honeycomb nanoribbon struc-
tures can be constructed according to the width and repeat
periodicity of the constituent segments. We can label GaN/
AlN superlattices as GaN /AlN�n1 ,n2 ;s1 ,s2�. Here, s1 and s2
specify the length of segments in terms of the numbers of the
unit cells of constituent nanoribbons. Also n1 and n2 specify
the width in terms of the number of dimer lines in the primi-
tive unit cell of constituent nanoribbons. By varying the n
and s, we can construct variety of superlattice structures. As
a proof of concept, we consider a superlattice Ga-
NAlN�10,10;4,4� as shown in Fig. 7. In the same figure we
also presented the electronic-band structure of constituent
GaN and AlN nanoribbons. Upon construction, the atomic
structure is fully optimized. Resulting energy band-structure
and charge-density isosurfaces are presented in the same fig-
ure.

The highest valence-band and the lowest conduction-band
states are flat and they are identified as confined states. As a
result, one can deduce a type-I �normal� band alignment
since states are confined to the GaN part of heterostructure.
One notes that the bandgap of the superlattice in momentum
space is different from those of constituent nanoribbons and
can also expect that the superlattice band gap in momentum
space gets larger as the extension of GaN and AlN sides
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increases. Similar confined states can be obtained by con-
structing AlN core and GaN shell structures, where electrons
are expected to be confined in the core region.

VII. DISCUSSIONS AND CONCLUSIONS

In view of the exceptional electronic, magnetic, and me-
chanical properties of recently synthesized graphene, ques-
tions have been raised whether well-known materials in mi-
croelectronic and optoelectronic industry can attain similar
honeycomb structures. It is hoped that unusual properties can

be attained from these structures. The present paper exam-
ined a large number of materials, group-IV elements, binary
compounds of these elements, as well as a large number of
group III-V compounds to reveal whether they may form 2D
honeycomb structure. For several decades, the bulk crystals
of these materials have dominated microelectronic and opto-
electronic industry. Based on ab initio structure optimization
and calculations of phonon modes we are able to determine
22 honeycomb structures, which can be stable in a local
minimum on the Born-Oppenheimer surface as either 2D
infinite periodic crystals or finite-size flakes �patches�. Our
calculations reveal that group-IV elements, Si and Ge, and
binary compounds SiC, GeC, SnC, SnSi, SnGe, and SiGe
have stable honeycomb structures. However, while SiC,
GeC, and SnC are planar like graphene and BN, Si, Ge,
SnSi, SnGe, and SiGe are buckled �or puckered� for stabili-
zation. We also find that all III-V compounds containing first
row elements B, C, or N have planar stable structures. How-
ever, the binary compounds formed from the combination of
Al, Ga, In and P, As, Sb are found to be stable in low-
buckled structure. It should be noted that the present study
does not exlcude the occurrence of other local minima which
may be more energetic than these 2D honeycomb structures.

For honeycomb structures which were deduced to be
stable, an extensive analysis has been carried out to deter-
mine their atomic structure, elastic and electronic properties.
While Si and Ge are semimetallic and have linear band
crossing at the Fermi level like graphene, all the binary com-
pounds are found to be semiconductors. It is also seen that
honeycomb structures of group-IV elements and III-V binary
compounds exhibit interesting correlations among the cohe-
sive energy, lattice constant, band gap, effective charge, in-
plane stiffness, and Poisson’s ratio.

These materials in honeycomb structure have a variety of
band gaps. Even more remarkable is that the nanoribbon13

forms of these materials provide diverse properties depend-
ing on not only their constituents but also their chirality76,77

and width. All these properties are expected to offer number
of applications. Therefore, the studies related with their
functionalization78 by vacancy defects or adatoms, their me-
chanical and spintronic properties, their heterostructures and
core-shell structures will open a field of research. We hope
that the findings in this work will promote the research aim-
ing at the synthesis of these materials.
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