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With a conserving formalism within the self-consistent Born approximation, we study the Hall conductivity
of Dirac fermions in graphene under charged impurity scatterings. The calculated inverse Hall coefficient is
compared with the experimental data. It is shown that the present calculations for the Hall coefficient and the
electric conductivity are in good agreement with the experimental measurements.
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I. INTRODUCTION

Since the experiments of graphene were realized,1–3 much
effort has been devoted to studying the transport properties
of the Dirac fermions. Many theoretical studies are based on
the model of zero-range scatters in graphene.4–11 However,
there is strong evidence that the charged impurities with
screened Coulomb potentials12–14 are responsible for the ob-
served carrier-density dependence of the electric conductiv-
ity of graphene.2 Although the electric conductivity experi-
ment has been successfully explained, so far there existed no
microscopic theories to fit the density dependence of inverse
Hall coefficient as measured by another experiment in Ref. 2.

In this work, with a conserving formalism within the self-
consistent Born approximation �SCBA�, the Hall conductiv-
ity is calculated by using the diagrams generated from the
current-current correlation function. We show that the ex-
perimentally measured electric conductivity and the inverse
Hall coefficient can both be successfully explained in terms
of the carrier scatterings off charged impurities.

At low carrier concentration, the low-energy excitations
of electrons in graphene can be viewed as massless Dirac
fermions7,15–17 as being confirmed by recent experiments.2,3

Using the Pauli matrices �’s and �’s to coordinate the elec-
trons in the two sublattices �a and b� of the honeycomb lat-
tice and two valleys �1 and 2� in the first Brillouin zone,
respectively, and suppressing the spin indices for briefness,
the Hamiltonian of the system is given by

H = �
k

�k
†vk� · �� �z�k +

1

V
�
kq

�k−q
† Vi�q��k, �1�

where �k
†= �cka1

† ,ckb1
† ,ckb2

† ,cka2
† � is the fermion operator, the

momentum k is measured from the center of each valley,
v��5.86 eV Å� is the velocity of electrons, V is the volume
of system, and Vi�q� is the charged impurity potential.14

Here, we neglect the intervalley scatterings in Vi�q� for two
reasons. First, for low electron doping, the intervalley scat-
terings are negligible small than the intravalley ones. Sec-
ond, by doing so, our formulation of the problem given be-
low will be much simplified. Explicitly, Vi�q� is written as
ni�−q�v0�q��0�0 with ni�−q� and v0�q� as, respectively, the
Fourier components of the impurity density and the electron-
impurity potential. For the charged impurity, v0�q� is given
by the Thomas–Fermi �TF� type

v0�q� =
2�e2

�q + qTF��
, �2�

where qTF=4kFe2 /v� is the TF wave number, kF=��n �with
n as the carrier density� is the Fermi wave number, and �
�3 is the effective dielectric constant. This model has been
successfully used to study the electric conductivity.14

Under the SCBA �see Fig. 1�a��,18,19 the Green’s function
G �k ,�� = �� + �−vk� ·�� �z−	�k ,���−1 � g0 �k ,�� + gc �k ,��

kˆ ·�� �z and the self-energy 	�k ,�� of the single particles are
determined by coupled integral equations14

	0�k,�� =
ni

V
�
k�

v0
2�	k − k�	�g0�k�,�� �3�

	c�k,�� =
ni

V
�
k�

v0
2�	k − k�	�gc�k�,��k̂ · k̂� �4�

g0�k,�� = 1
2 �g+�k,�� + g−�k,��� �5�
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FIG. 1. �Color online� �a� Self-consistent Born approximation
for the self-energy. �b� Current vertex with impurity insertions. �c�
Diagrams for calculating the Hall conductivity �xy. The vertex j is
associated with the vector potential Aj. k�=k�q /2. �n

+=�n+�m

with �m and �n, respectively, the bosonic and fermionic Matsubara
frequencies.
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gc�k,�� = 1
2 �g+�k,�� − g−�k,��� , �6�

where g��k ,��= ��+�
vk−	0�k ,��
	c�k ,���−1 with �

the chemical potential, k̂ is the unit vector in k direction, and
the frequency � is understood as a complex quantity. The
chemical potential � is determined by the doped carrier den-
sity n,

n =
2

V
�

k

− �

−�

� d�

�
F���Tr Im G�k,� + i0� − 2� �7�

where the front factor 2 comes from the spin degree, the first
term in the square brackets is the total occupation of elec-
trons, the last term corresponds to the nondoped case with 2
as the valley degeneracy, and F��� is the Fermi distribution
function. We hereafter will call � determined by Eq. �7� as
the renormalized chemical potential, distinguishing from the
approximation �
EF=vkF used in some cases such as the
semiclassical Boltzmann theory at zero temperature.

Corresponding to the SCBA to the self-energy, the current
vertex correction v�x�k ,�1 ,�2� is given by the ladder dia-
grams in Fig. 1�b�. �x�k ,�1 ,�2� is expanded as

�x�k,�1,�2� = �
j=0

3

yj�k,�1,�2�Aj
x�k̂� , �8�

where A0
x�k̂�=�z�x, A1

x�k̂�=�x�� · k̂, A2
x�k̂�=�� · k̂�x, A3

x�k̂�
=�z�� · k̂�x�� · k̂, and yj�k ,�1 ,�2� are determined by four-
coupled integral equations.14 The functions yj describe how
the current vertex is renormalized by the impurity scatterings

from the bare one A0
x�k̂�.

II. FORMALISM

We start to calculate the Hall coefficient of the Dirac-
fermion system in graphene. Consider that the system is
acted with a weak external magnetic field B perpendicular to
the graphene plane. The vector potential A� �q� is related to B
via B� = iq� 
A� �q�, where q� is a wave vector. The Hall conduc-
tivity �xy is determined as the ratio between the electric cur-
rent density along x direction and the electric field E applied
in y direction. To find out �xy, one usually introduces a vec-
tor potential Ay�=cE exp�−i�t� / i� corresponding to E, and
calculates the linear response of the current Jx to Ay�,

��Jx�r,t�� =
E

��
� dr���

−�

t

dt�e−i�t���Jx�r,t�,Jy�r�,t���� ,

�9�

where Jx,y�r , t� is the current operator, �¯ � means the statis-
tic average. Notice that the average ��Jx�r , t� ,Jy�r� , t���� in
the right-hand side of Eq. �9� is under the existence of an-
other vector potential A� �q� corresponding to the weak mag-
netic field. Therefore, ��Jx�r , t�� is expected to have only the
component of exp��i�q� ·r�−�t���. From Eq. �9�, �xy can be
obtained and written as �xy =−lim�→0 Im �xy��+ i0+� /�
with �xy��� as the retarded current-current correlation func-
tion. For the Matsubara frequency �m=2�mT with m as a
integer, �xy�i�m� is given by

�xy�i�m� = −
1

V
�

0

�

d�ei�m��T�Jx�q,��Jy��0,0��� ,

where T� is the � ordering operator and Jy�0,0�
=Jy�q� ,��� 	q�=0,��=0. Since the Hall coefficient R is defined as
R=�xy /�2B in the limit B→0, where � is the longitudinal
electric conductivity at B=0, we here consider only the case
of very weak magnetic field B and expand the current-current
correlation function to the first order of A� �q�. �xy�i�m� is
then obtained as20,21

�xy�i�m�

= −
1

V
�

j
�

0

�

d��
0

�

d��ei�m��T�Jx�q,��Jy�0,0�


Jj�− q,����Aj�q� , �10�

where �=T−1 with T the temperature and the use of units in
which �=c=kB=1 has been made. The statistical average in
Eq. �10� is now understood as for the system without any
external field. Within SCBA, the function �xy�i�m� is calcu-
lated according to Fig. 1�c�. Writing it explicitly, we have

�xy�i�m� =
2v3e3

V�
�
knj

Tr���x�k−,k+,i�n,i�n
+�G�k+,i�n

+�


�y�k+,k+,i�n
+,i�n� + �y�k−,k−,i�n,i�n

−�


 G�k−,i�n
−��x�k−,k+,i�n

−,i�n��


G�k+,i�n�� j�k+,k−,i�n,i�n�G�k−,i�n��Aj�q� ,

�11�

where the factor 2 stems from the spin degeneracy, k�

=k�q /2, and �n
�=�n��m. The vertex given by Eq. �8�

corresponds to �x�k ,k ,�1 ,�2���x�k ,�1 ,�2�.
���k− ,k+ ,�1 ,�2� satisfies the 4
4 matrix equation

���k−,k+,�1,�2�

= �3�� +
1

V
�
k1

niv0
2�k − k1�G�k1

−,�1�


���k1
−,k1

+,�1,�2�G�k1
+,�2� . �12�

���k+ ,k− ,�1 ,�2� is obtained by exchanging − and + in Eq.
�12�. The analytical continuation i�m→�+ i0+ for �xy�i�m�
can be manipulated according to the text book.22 To find out
the linearity of �xy in the magnetic field B� = iq� 
A� �q�, we
need to expand the right-hand side of Eq. �11� to the first
order in q. The expansions of the Green’s function G�k� ,��
and the vertex functions ���k+ ,k+ ,�1 ,�2� and
���k− ,k− ,�1 ,�2� can be easily obtained. The most involved
expansion is for the vertex function �x�k− ,k+ ,�1 ,�2�. By
expanding both sides of Eq. �12�, one gets a new integral
equation for determining the linear-q term. To the first order
in q, ���k− ,k+ ,�1 ,�2� is expanded as ���k ,�1 ,�2�
+���k ,q ,�1 ,�2� with
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���k,q,�1,�2� =
1

V
�
k�

niv0
2�k − k��G�k�,�1����k�,q,�1,�2�


G�k�,�2� −
1

V
�
k�

niv0
2�k − k��


��G�k�,�1����k�,�1,�2�G�k�,�2�

− G�k�,�1����k�,�1,�2� � G�k�,�2�� · q�/2,

�13�

where � means the gradient with respect to k�. For simpli-
fying the final formula for �xy, we need to rewrite Eq. �13�.
From the identity

1

V
�
kk�

ni
� �

�kj
+

�

�kj�
�v0

2�k − k���Tr�G�k,�1����k,q,�1,�2�


G�k,�2�G�k�,�2����k�,�2,�1�G�k�,�1�� = 0, �14�

performing the integral by part in the left-hand side of Eq.
�14� and using Eq. �13� and the equation for ���k ,�1 ,�2�,
we obtain

�
k

Tr����k,q,�1,�2�
 �

�kj
G�k,�2����k,�2,�1�G�k,�1�

+ G�k,�2����k,�2,�1�
�

�kj
G�k,�1���

= −
q�

2
· �

k

Tr���G�k,�1����k,�1,�2�G�k,�2�

− G�k,�1����k,�1,�2� � G�k,�2��
�

�kj
���k,�2,�1�� .

�15�

On the other hand, the factor
G�k+ ,��� j�k+ ,k− ,� ,��G�k− ,�� outside the square brackets
in the right hand side of Eq. �11� can be expanded according
to

vG�k+,�����k+,k−,�,��G�k−,��

=
�

�k�

G�k,�� +
q�

2
· �

j

Aj
��k̂��aj�k,��k̂ + i�zbj�k,���̂� ,

�16�

where � is the angle of k, �̂ is the unit vector in � direction,
and the use of the Ward identity,
vG�k ,�����k ,� ,��G�k ,��=�G�k ,�� /�k�, has been made.
This expansion can be further simplified. If we consider the

left-hand side as a functional of the matrices Aj
��k̂�, then its

transpose should be a functional of matrices Ãj
��k̂� defined as

Ã0
��k̂�=�z��

t , Ã1
��k̂�=��

t �� t · k̂, Ã2
��k̂�=�� t · k̂��

t , and Ã3
��k̂�

=�z��
t · k̂��

t �� t · k̂, where �t means the transpose of the Pauli
matrix. By comparing the transpose of Eq. �16� and the ex-
pansion of vGt�k− ,����

t �k+ ,k− ,� ,��Gt�k+ ,�� in terms of

Ãj
��k̂�, we find a1=−a2�a, b1=b2�b, and all other a’s and

b’s vanish. Using ��� · k̂−� · k̂��=−2i�z�̂ · �̂, and ��� · k̂

+� · k̂��=2�̂ · k̂, we obtain

vG�k+,�����k+,k−,�,��G�k−,��

=
�

�k�

G�k,�� + i�z�̂ · �b�k,��k̂�̂ − a�k,���̂k̂� · q� .

�17�

This result can also be obtained by solving Eq. �13�. Since
the final result depends on a�k ,��+b�k ,���c�k ,��, we here
present only the equations for determining c�k ,���z�k ,��
+ �g0

2�k ,��−gc
2�k ,���X�k ,��

z�k,�� = �g0��k,��gc�k,�� − g0�k,��gc��k,���


�y0�k,�,�� − y3�k,�,��� − gc�k,���g0�k,��


�y0�k,�,�� + y3�k,�,��� + 2gc�k,��y1�k,�,���/k ,

�18�

X�k,�� =
1

V
�
k�

niv0
2�k − k���z�k�,��

+ �g0
2�k�,�� − gc

2�k�,���X�k�,��� , �19�

where g��k ,��=�g�k ,�� /�k. Using above results, we obtain
for the Hall conductivity

�xy =
Bv2e3

V
�

k
�

−�

� d�

2�

−

�F���
��

�

Im Tr��x

−+
G+� ��y
+−

�kx

�G−

�ky
−

��y
+−

�ky

�G−

�kx
�

+ � �G+

�kx

��y
+−

�ky
−

�G+

�ky

��y
+−

�kx
�G− − 2ic�k,�−�G+�y

+−�z�� ,

�20�

where �x
−+=�x�k ,�− ,�+�, �y

+−=�y�k ,�+ ,�−�, G�=G�k ,���,
and ��=�� i0. In the right-hand side of Eq. �20�, terms
such as �x

−+��G+ /�kx�y
+−�G− /�ky −�G+ /�ky�y

+−�G− /�kx� and
those containing the same frequency-�+ arguments are not
included because they happen to be zero under the operation
Im Tr.

III. NUMERICAL RESULT

In a recent work,23 we have described how to numerically
solve Eqs. �3�–�7� and get the solution to the vertex function
���k ,�1 ,�2�. With these results, the Hall conductivity �xy
can be calculated according to Eq. �20�.

The numerical result for the Hall conductivity �xy normal-
ized by �B as function of carrier concentration � �doped
carrier per carbon atom� is shown in Fig. 2. The solid �red�
line is the fully self-consistent calculation with the chemical
potential � determined by the carrier density n, while the
dashed �blue� line corresponds to the one of the approxima-
tion �
EF�v��n. For comparison, the Boltzmann result
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�normalized with the same � as for the solid line� is also
plotted as the dot-dashed �green� line. Here the impurity den-
sity ni=1.15
10−3a−2 �with a as the lattice constant of
graphene� is chosen as the same as in our previous work.14

This is the only fitting parameter. Within a very narrow range
of � around 0, �xy /�B varies dramatically. Beyond this re-
gime, the saturation behavior of �xy /�B implies that �xy
���� �for � see Fig. 3�. In the limit �→0, since the nor-
malization denominator is a constant because of the mini-
mum conductivity, �xy vanishes at �=0. Notice that �xy is an
odd function of � and �xy /�B here is independent of B. The
present result differs qualitatively from the low-B limit of
Ref. 6. Based on the center migration theory and the delta-
type impurity scattering �constant potential in momentum
space� model, Ref. 6 studies the Hall conductivity at finite B
by incorporating the Landau levels into the Green’s function.

As B→0, the spacing of the Landau level becomes vanish-
ing. In this limit, it is found that �xy as function of the Fermi
energy EF decreases at small positive EF and after reaching a
minimum turns to increasing �with the magnitude deceas-
ing�. The difference between the present calculation and Ref.
6 stems predominantly from the electron-impurity scatter-
ings. Also, our result is qualitative different from Ref. 21 in
which a constant scattering rate was phenomenologically in-
troduced and the current correlation was treated without ver-
tex correction.

For calculating the Hall coefficient, we need the result of
the electric conductivity � obtained with the same scattering
parameters as for �xy. The results �solid line with the renor-
malized � and the dashed line with �
EF� for � as func-
tions of � are shown in Fig. 3 and compared with experimen-
tal data.2 For the minimum conductivity �min, our calculation
gives rise to about 2.7 e2 /h using the renormalized �, and
3.5 e2 /h by �
EF, both larger than the well-known analyti-
cal result 4 e2 /�h obtained from the single bubble using the
phenomenological scattering rate in the Green’s
function.5,10,11 The present calculation also agrees with the
numerical computation in Ref. 12 for the conductivity of
electron under the charged impurity scatterings, except with
�min larger than that of the latter. It is known that the experi-
mental result of �min is not universal but depends on the
quality of the sample.24,25 By the present formalism, the
minimum conductivity is a consequence of the coherence
between the upper and lower band states. For comparison,
Fig. 3 also shows the semiclassical Boltzmann result for the
electric conductivity �green dot-dashed line�, �c
=EF�e2 /��2, with

�−1 =
nikF

2��v
�

0

�

d�v0
2�2kF sin �/2��1 − cos2 �� . �21�

Clearly, in most region of ��0, �c is nearly the same as the
present result, but goes to zero as �→0.

In Fig. 4, we exhibit the theoretical results for the inverse
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FIG. 2. �Color online� Hall conductivity �xy normalized by �B
as function of the electron-doping concentration �. � is the electric
conductivity, and B is the magnetic field in unit of Tesla �T�. The
solid �red� and dashed �blue� lines correspond to the calculation
with the renormalized chemical potential � and the one by �
EF,
respectively. The dot-dashed �green� line is the Boltzmann result.
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FIG. 3. �Color online� Electric conductivity � as function of the
electron-doping concentration �. The present calculations are com-
pared with the experimental data in Ref. 2 �symbols�. The solid
�red�, dashed �blue�, and dot-dashed �green� lines mean the same as
in Fig. 2.
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FIG. 4. �Color online� The inverse Hall coefficient R−1 �in unit
of 10−3 T /Ohm� as function of the electron-doping concentration
�. The present calculations are compared with the experimental data
in Ref. 2 �symbols�. The solid �red�, dashed �blue�, and the dot-
dashed �green� lines mean the same as in Fig. 2.
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Hall coefficient defined as R−1=B�2 /�xy and compare them
with the experimental data2 �symbols�. Clearly, the present
calculations �solid and dashed lines� fit the experimental
measurement of the inverse Hall coefficient as well as the
electric conductivity very well. With comparing to the clas-
sical prediction R−1=−nec, the present theoretical calcula-
tions and the experiment data for R−1 diverge at �=0. The
divergence of R−1 stems from the vanishing of �xy at �=0
while the conductivity � remains finite. The classical theory
is based on the concept of the drift velocity. At the zero
carrier concentration if the conductivity remains finite, the
drift velocity has to become infinitively large, which implies
an infinitely large Lorentz force acting on an electron. Actu-
ally, �min vanishes at �=0 by the classical theory. On the
other hand, at large carrier concentration, the present fully
self-consistent calculation using the renormalized chemical
potential �solid line� reproduces the classical theory, and both
of them are in agreement with the experimental result.

Though the classical theory fails to explain the experi-
ment measurement at very low carrier concentration, Hwang
et al.26 studied the problem based on the network model of
electron-hole puddles using the semiclassical approach. By
this model, the local carrier density is finite and the total
longitudinal and Hall conductivities are given by the aver-
ages of the Boltzmann results in the puddles neglecting the
detailed current transferring process between the puddles.
The experimentally measured minimum conductivity and the
behavior of R−1 are so explained.

IV. REMARKS

Before concluding, some remarks are in order. �1� In the
present formulation, the single-particle states are treated as
the plane waves without taking into account the Landau
quantization, since we are considering the B→0 limit. �2�
The direct electron-electron interaction is neglected here,
only partly taken into account in the electron-impurity scat-
tering potential via screening. It is difficult to fully take into

account the interelectronic interaction in the electronic trans-
port theory without violating the conservation laws. The con-
serving approximation is crucial in the microscopic transport
theory. Otherwise, any unphysical result could be obtained.
On the other hand, since the inner force due to the electron-
electron interaction does not change the total momentum, the
neglecting of it seems passable when the Coulomb coupling
is not strong enough. Actually, the graphene is a weak to
moderately coupled Coulomb system.27 �3� The present cal-
culation is based on the assumption that the impurities are
distributed without correlation. However, at very low carrier
doping, graphene is an inhomogeneous system due to the
interimpurity correlations as observed by experiment.28,29

There are regions where the carrier concentrations are very
low. The resistance comes predominately from these regions.
Our calculation at very low carrier concentration can be con-
sidered as to study the electron transport in these regions.

V. SUMMARY

In summary, on the basis of self-consistent Born approxi-
mation, we have calculated the Hall coefficient of the Dirac
fermions under the charged impurity scatterings in graphene.
The anomalous in the inverse Hall coefficient at zero carrier
concentration stems from the vanishing of the Hall conduc-
tivity and meanwhile the minimum remained in the electric
conductivity. The latter stems from the quantum coherence
effect between the upper and lower Dirac bands. The present
results for the inverse Hall coefficient and the electric con-
ductivity are in very good agreement with the experimental
measurements.
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